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An exact description is provided of an almost spherical fluid vesicle with a fixed area and a fixed enclosed
volume locally deformed by external normal forces bringing two nearby points on the surface together
symmetrically. The conformal invariance of the two-dimensional bending energy is used to identify the
distribution of energy as well as the stress established in the vesicle. While these states are local minima of
the energy, this energy is degenerate; there is a zero mode in the energy fluctuation spectrum, associated with
area- and volume-preserving conformal transformations, which breaks the symmetry between the two points.
The volume constraint fixes the distance S, measured along the surface, between the two points; if it is relaxed,
a second zero mode appears, reflecting the independence of the energy on S; in the absence of this constraint
a pathway opens for the membrane to slip out of the defect. Logarithmic curvature singularities in the surface
geometry at the points of contact signal the presence of external forces. The magnitude of these forces varies
inversely with S and so diverges as the points merge; the corresponding torques vanish in these defects. The
geometry behaves near each of the singularities as a biharmonic monopole, in the region between them as
a surface of constant mean curvature, and in distant regions as a biharmonic quadrupole. Comparison of the
distribution of stress with the quadratic approximation in the height functions points to shortcomings of the latter
representation. Radial tension is accompanied by lateral compression, both near the singularities and far away,
with a crossover from tension to compression occurring in the region between them.
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I. INTRODUCTION

A striking feature of cellular membranes in biology is that
they behave as fluid membranes on mesoscopic length scales.
Their mechanical properties are captured by the geometrical
degrees of freedom of the membrane surface, which is de-
scribed with extraordinary accuracy by the Canham-Helfrich
energy, quadratic in the curvature [1,2],

HCH = κH1 + κ̄HGB + σ (A − A0) + P (V − V0), (1)

where

H1[X] = 1

2

∫
dAK2, HGB[X] =

∫
dAKG, (2)

where K is twice the mean curvature, KG the Gaussian
curvature of the surface, given by the trace and determinant
of the curvature tensor, K = C1 + C2, and KG = C1C2 with
C1 and C2 the principal curvatures. HGB is the Gauss-Bonnet
topological invariant. The physical parameters κ and κ̄ are the
bending and saddle splay modulus, with units of energy. The
remaining two parameters σ and P are Lagrange multipliers
fixing the membrane area A at some value A0 and its enclosed
volume V at a value V0.

While it is simple to write down the energy, the nonlinear
field theory associated with it is not simple. Thus, unless the
membrane lends itself to a description in terms of a height
function which varies slowly above some simple geometry, it
will tend to be necessary to examine its behavior numerically.

On occasion, the symmetries of the theory allow one to
circumvent this necessity. In this paper, a stratagem exploiting
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the conformal symmetry of the bending energy will be used to
provide an exact analytical description of a local deformation
that is established in an almost spherical vesicle when two
neighboring points are brought into contact.

Consider two closely separated points on an almost spher-
ical vesicle. The obvious way to bring the two together is to
apply tangential forces. In the geometric approximation there
is no penalty associated with surface shear on a fluid membrane
and, thus, the two points can be brought together this way
without deforming the membrane. It is also possible, however,
to apply forces normal to the surface, with appropriate torques,
in such a way that the points remain separated on the surface
but are brought together in space. An illustration of this process
is shown in Fig. 1. These forces can be directed in or out of
the vesicle.

Views of the corresponding deformed vesicles at the end
point of this process are shown in Figs. 2(a) and 2(c). We show
a close-up of the local behavior of the vesicle in Figs. 2(b) and
2(d).

The surprise is that, even though the membrane undergoes
large deformations in a neighborhood of the two points under
the influence of the force, an exact description of this final
state exists. In this state, the external forces are horizontal,
and the torques about the point of contact vanish. This
description is a happy accident of the conformal invariance
of the two-dimensional bending energy [2–4]. In contrast,
neither the initial state nor any of the intermediate states in the
sequence before contact is made, involving nontrivial external
forces and torques, lend themselves to an analogous treatment.
While this state may represent an idealization from a physical
point of view, and developing an experimental protocol to
construct it will provide its own challenges, it is nonetheless a
genuine nonperturbative feature of the mesoscopic description
of fluid membranes, and it does provide unexpected access
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FIG. 1. Sequence of normal deformations bringing two points on
an almost spherical membrane together.

to the nonlinear response of fluid membranes to external
forces.

Constraints would typically be expected to break the full
conformal invariance of the bending energy. However, the
contact constraint associated with the end state is invariant
under conformal transformations (in particular, it does not
introduce an additional length scale). Fixing the area will
restrict the invariance group to the subgroup of area conformal
transformations. As we will see, conformal transformations
preserving the area of the equilibrium surface are described
by two parameters.1 Likewise, their counterparts preserving
volume will be characterized by two parameters. Simulta-
neously constraining the area and the volume restricts the
invariance group to a smaller subgroup characterized by a
single parameter. A variational argument showing that the
multipliers vanish under these circumstances is provided in A.

Axially symmetric membrane states with two poles brought
together were constructed a few years ago [5,6]. This was
done by exploiting the fact that any state related by inversion
in a sphere to any equilibrium state will also be an equi-
librium state. In particular, states described by inversion of
a catenoid—an axially symmetric infinite cylindrical surface
growing exponentially at its two ends—are also equilibria.
Under inversion, the topology of the catenoid will be changed
as its two ends get compactified to a single point. The compact
axially symmetric vesicle states described in Refs. [5,6] result
when the center of inversion lies on the axis of symmetry.
By positioning this point instead close to the surface of
the catenoid in the neighborhood of its neck, nearby points
on the surface get inflated into a large spherical region. A
very different closed vesicle is obtained: spherical almost
everywhere, with a localized defect—held together by a force
dipole—illustrated in Fig. 2, sitting at one of its poles.

Any one of these equilibrium configurations will have a
particular area, A0, and a particular volume, V0. Since it is a
stationary state of the unconstrained energy, it will also be a
stationary state of the constrained energy in which the area
and volume are constrained to be A0 and V0. By construction,
it will satisfy the new constraints.

1In general, a three-parameter family would be expected; this is
reduced by the uniqueness, modulo scale, of the catenoid as an axially
symmetric minimal surface.

FIG. 2. Geometry of localized defects on an almost spherical
vesicle. (a) Membrane with two touching fingers pushed out. (b)
Close-up of the fingers. (c) Membrane pinched into self-contact. (d)
Close-up of the pinch. These two surfaces are obtained with the center
of inversion placed at x0 = 1.07 i and x0 = 0.93 i, respectively, as
explained in Sec. II.

If the center of inversion lies just outside the catenoid,
the local geometry of the defect resembles a flat sheet with
two fingers of membrane—touching at a point—pushed up
from below, a valley forming beneath them, as illustrated in
Figs. 2(b). If, on the other hand, the point of inversion lies
just inside, the exterior resembles a flat sheet that has been
pinched into self-contact; a ridge forms above the two points
that have been brought into contact, illustrated in Fig. 2(d), not
unlike the wrinkle that is formed in skin that has been pinched
together between two fingers. Locally, these two geometries
are identical; one is the other viewed from below: The interior
of the defect represented in Fig. 2(a) is indistinguishable from
that represented in Fig. 2(c).

A feature of this geometry is that a well-defined tangent
plane exists at the two points of contact. This is consistent
with a logarithmic singularity in the curvature at these two
points. In this construction, these singularities originate in the
compactification of the exponential ends [5,6]. The asymptotic
behavior of the minimal surface thus completely determines
the geometry at the center of the defect. The conformal sym-
metry of the bending energy provides a connection between
the weak-field harmonic behavior of the catenoid at infinity,
described accurately by perturbation theory, and the nonlinear
behavior of the defect at its center. This correspondence is
a general feature of field theories exhibiting an underlying
conformal symmetry.

The focus here, for simplicity, will be on mirror symmetric
states, generated by placing the point of inversion on the mirror
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plane containing the waist of the catenoid. The scale is set
by fixing the area; fingerlike and pinchlike almost-spherical
symmetric states are characterized uniquely by the geodesic
distance S separating the two points along the surface which,
in turn, we will see, is determined by the fixed volume. Thus,
if both area and volume are fixed, there is a unique symmetric
state of each kind.2 In a future publication, the breaking of the
mirror symmetry will be explored [7].

Even though the total energy will be independent of the
distance separating them along the surface, the degree of
localization of the energy density will depend on this distance.
What is more, we will show that if the forces and torques
are fixed, this state will be energetically stable, whether the
perturbation breaks the symmetry or not. This means that there
are no negative eigenvalues in the fluctuation spectrum. Unless
the configuration is a sphere, it will have a different ratio of
V 2

0 /A3
0 than a sphere does, so it cannot be transformed into

a sphere by energy-, volume-, and area-preserving transfor-
mations. There will, however, be a zero mode of the energy
associated with conformal transformations that preserve both
the vesicle area and its volume. This zero mode breaks the
mirror symmetry between the two poles. If the constraint
on the volume is relaxed, a second zero mode appears. For
symmetric states, this corresponds to changing the geodesic
distance between the poles. Under these circumstances, there
is a path connecting the defect state to a sphere with S = 0, the
same energy and the same area; because the defect state has
the same topology as a sphere, it is not protected topologically.
Such a mode would allow the membrane to slip out of the
defect.

The normal force tying the points together provides a source
of stress in the membrane.3 If these forces were removed, the
membrane sheet would collapse into one of the equilibria of a
fluid membrane described, for axially symmetric vesicles, in
Refs. [8] and [9]. In the absence of the volume constraint this
would be a featureless spherical state, the only unconstrained
equilibrium geometry with this topology. It is these forces that
establish the defect geometry and, thus, the tangent planes
along which the molecules forming the fluid membrane may
flow. In the absence of an appropriate zero mode, the vesicle
cannot slip out of the defect.4

The stress finds itself concentrated in the neighborhood of
the two points; it is also completely captured by the defect
geometry. The curvature singularities in this geometry are
associated with these localized external forces and manifest
themselves as divergences in the stress. The strength of these
forces is registered by an appropriate integral of the stress along

2The two points will migrate along the surface in the process of
bringing them together. Once equilibrium is established, however,
the distance between them will be set by the constraints, independent
of their initial positions on the surface.

3The catenoid generating this geometry is itself a stress-free
equilibrium state of a fluid membrane, albeit one that is never realized
physically. This is not a problem here for its only role will be to
generate the state of physical interest.

4Other symmetric states with two points held together may exist.
They will, however, involve more complicated applied forces and
nonvanishing torques.

a contour encircling one of the points. As we will demonstrate,
it is also possible to evaluate them exactly by deforming the
contour to exploit the symmetry of the problem. Unlike the
energy, they vary inversely with the distance S between the
two points measured along the surface. The same argument
can be tweaked to show that the external torques about these
points vanish.

Conformal invariance also permits an exact analytic de-
scription of the inhomogeneous and anisotropic distribution
of stress established in the membrane in the fully nonlinear
theory. This is the first instance—to our knowledge—of such
a description in any nontrivial fluid membrane geometry. Three
qualitatively different regimes are identified: the neighborhood
of the singularities within the fingers, the valley that extends
under them, and the far region. While a global description
of the surface in terms of a height function does not exist,
in each of these three regions it is possible to describe the
surface in terms of its height above an appropriate plane and
to compare the exact stress tensor with its counterpart in the
small gradient biharmonic approximation. In particular, it will
be shown that, whereas near the singularities the geometry
behaves as a biharmonic monopole, in the valley it behaves as
a surface of constant mean curvature, and far away it behaves as
a biharmonic quadrupole. Characteristic distributions of stress
are found to be associated with each region; both near the
poles as well as asymptotically, radial tension is accompanied
by an equal lateral compression. A crossover from tension
to compression is encountered in the region between the
poles.

II. GEOMETRY OF THE DEFECT

Consider a catenoid, with unit neck radius, aligned along the
Z axis.5 Its polar radius ρ at a given value of Z is given by [10,
11] ρ(Z) = cosh Z, so the surface is described parametrically
in the form

X0(Z,ϕ) = (ρ(Z) cos ϕ,ρ(Z) sin ϕ,Z). (3)

The surface obtained by inversion of this catenoid in a
sphere of radius R, centered at the point i on its neck, will be
described by the new position vector X̃ = R2X/|X|2, where
X = X0 − i, [10], given explicitly by6

X̃ = R2

Z2 + P 2(ρ,ϕ)
(ρ cos ϕ − 1,ρ sin ϕ,Z),

(4)
P 2(ρ,ϕ) = ρ2 − 2ρ cos ϕ + 1.

The two planar ends of the catenoid, represented by the neigh-
borhood of the points at infinity Z → ±∞ get compactified to
a single point, the origin of the Euclidean plane, O. Because the
center of inversion lies on the catenoid, the neighborhood of

5Three-dimensional Euclidean space will be described by Cartesian
coordinates X,Y,Z, with basis vectors i = (1,0,0), j = (0,1,0), and
k = (0,0,1). Polar coordinates ρ and ϕ are adapted to the X-Y plane.

6This surface is also parametrized by Z and ϕ. X is dimensionless
in our construction. This implies that R2 must have dimensions of
length in order for the physical geometry described by X̃ to possess
dimensions of length.
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this point is mapped to infinity. Inversion generates another
infinite surface. This is the defect geometry illustrated in
3(b), a labeled reproduction of Fig. 2(b) [or viewed below
as Fig. 2(d)]. This does not, of course, represent a defect
on a vesicle of fixed finite surface area. But it is simple to
tweak the construction to do so: by moving the center of
inversion off the catenoid, its neighborhood on the catenoid get
compactified into a sphere. If this point is located close to the
neck, the vesicle geometry will approximate an almost round
sphere with the defect located at its north pole. Geometries
corresponding to a point of inversion lying both outside as
well as inside the catenoid are illustrated in Figs. 2(a) and
2(c). Notice in particular that the distance between the two
points, as measured along the surface, is small compared to
the radius of the sphere. As we will quantify below, the local
defect geometry in an almost-spherical vesicle is accurately
described by a center of inversion lying on the catenoid
itself.

To describe the defect geometry in greater detail, first note
that its geometry possesses Ỹ = 0 and Z̃ = 0 as mirror planes:
the former is what remains of the axial symmetry and the
latter is the unbroken mirror symmetry of the catenoid. These
two symmetries are captured, respectively, by ϕ ↔ −ϕ and
Z ↔ −Z. One can now trace the image under inversion of
various surface curves on these two mirror planes:

(a) Two catenaries describe the intersection of the catenoid
with the plane Y = 0 (given by ϕ = 0,π ).The catenary
with ϕ = 0, �0, passing through the center of inversion i,
represented by the red (upper) curve in Fig. 3(a), is mapped to
two semi-infinite curves �̃−

0 and �̃+
0 (with Z < 0 and Z > 0,

respectively)

�̃±
0 = R2

Z2 + (ρ − 1)2
(ρ − 1,0, ± |Z|), (5)

both of which terminate at O and represented in red in
Fig. 3(b). They both increase to an asymptotic value X̃ =
R2/2.The second catenary with ϕ = π , �π , maps to the
finite curve �̃ whose two ends also terminate at O. They are
represented by the green (lower) curves in Figs. 3(a) and 3(b)
respectively. The point (−1,0,0) on the catenary maps to the

FIG. 3. (Color online) (a) Surface curves on the catenoid obtained
from its intersection with relevant planes: catenaries on the plane
Y = 0 with ϕ = 0 (�0); π (�π ) are represented by red (upper) and
green (lower) curves, respectively; the circle �‖ on the plane Z = 0
with a black line; and curves on the plane X = 1 (γ ±

1 ) with blue (front
left) and yellow (front right) lines. The center of inversion is indicated
by the point i. (b) The image under inversion in a unit sphere centered
at i.

point (−1/2,0,0) on this curve. Together �̃⊥ = �̃−
0 ∪ �̃ ∪ �̃+

0
form a single curve with a continuous tangent vector, making
contact with itself at O.

(b) The circular waist of the catenoid �‖ resulting from
its intersection with the plane Z = 0 [illustrated with a black
curve in Fig. 3(a)] passes through the center of inversion and,
thus, under inversion opens into the straight line �̃‖ [black line
in Fig. 3(b)] parametrized by

�̃‖ = R2

2
(−1, cot(ϕ/2),0), (6)

which intersects �̃ orthogonally.
(c) The curves γ ± resulting from the intersection of the

catenoid with the plane X = 1, given by tan ϕ = ± sinh Z, get
mapped to the curves

γ̃ ±
1 = R2

Z2 + sinh2 Z
(0, ± sinh Z,Z), (7)

which are the intersection of the defect surface with the plane
X̃ = 0. These two curves are represented by yellow (front
right) and blue (front left) lines in Figs. 3(a) and 3(b). This
plane represents the midplane of the asymptotic geometry,
described in detail in Sec. II C3.

The curves �̃⊥ and �̃‖ are geodesics on the surface.

A. Characterizing symmetric defects on almost
spherical vesicles

The symmetric defect geometry is characterized by a single
length scale, S, the length of the geodesic �̃ connecting the two
neighboring points in contact. There is a direct relationship
between S and the radius of inversion R. To establish this
relationship for small S (� √

A0), note that the line element
on the catenoid is given by

ds2 = ρ2(Z)(dZ2 + dϕ2); (8)

thus, it is conformally flat, with conformal factor given by the
polar radius ρ. Its counterpart on the surface, ds̃2, is given by

ds̃2 = R4

[Z2 + P 2(ρ,ϕ)]2
ds2; (9)

thus, the length of �̃ is given by

S = 2R2
∫ ∞

0

ρ

Z2 + (ρ + 1)2
dZ ≈ 1.206R2. (10)

A defect geometry with a given value of S is obtained from a
unit catenoid by choosing R appropriately. For a given value
of S there is a unique symmetric geometry with two points
held together.

If the center of inversion lies strictly on the catenoid, the area
of the inverted geometry will be infinite. The normalization
of the area would then require a vanishing value of R so
the separation between the two points vanish, the geometry
spherical. It is worth considering a little more carefully this
limit in order to interpret Eq. (10). Let us, therefore, consider
the inversion of the catenoid in a sphere centered on a point
x0 = x0 i along the X axis. The total area is given in terms of
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FIG. 4. (a) Radius of inversion R vs. center of inversion x0; (b) normalized distance between the defects s0 = S/S(0) vs. x0 (S(0) =
3.0669 is the distance between poles in symmetric discocyte); (c) Normalized enclosed volume v0 = V0/VS vs. x0 (VS = 4π/3 is the
volume of the unit sphere). v0 tends asymptotically to the value 1/

√
2 as x0 → ∞; (d) v0 vs. s0. The black (gray) line represents surfaces

with x0 � 1 (x0 > 1).

x0 and R by the expression

A0 = 2R4IA(x0) ,
(11)

IA(x0) =
∫ ∞

Z=0

∫ 2π

φ=0

dZdφ ρ2(
Z2 + ρ2 − 2x0 cos φ + x2

0

)2 .

Normalizing the total area by the radius of the spherical vesicle,
so A0 = 4π in Eq. (11), implies the functional relationship
between R and x0 illustrated in Fig. 4(a). R, of course, vanishes
at x0 = 1. The corresponding distance between the poles along
the membrane is given by

S = 2R2IS(x0), IS(x0) =
∫ ∞

0

dZ ρ

Z2 + (ρ + x0)2
. (12)

To an excellent approximation, IS(x0) is given by IS =
1.13073/(x0 + 0.874017). Equation (10) is reproduced when
|x0| � 1, which justifies the approximation. For a fixed area,
R is given as a function of x0 by Fig. 4(a), which determines
S as a function of x0 as illustrated in Fig. 4(b).

We confine ourselves to |x0| � 1. As |x0 − 1| is increased,
the separation between the two points on the vesicle increases.
This delocalization of the defect is reflected in a progressively
less spherical geometry. This is illustrated in Fig. 5, where
the defect geometry is represented for x0 = 0.5 and x0 = 2. In
the former, the geometry approximates the axially symmetric
discocyte discussed in Refs. [5,6]; in the latter it resembles a
sausage with its two ends tied together. As x0 becomes large,
however, these mathematical curiosities are likely to become

increasingly unreliable representations of physically realistic
defects. The details will be described elsewhere [7].

The connection between the value of x0 and the reduced
volume is given by

V0 = 2R6IV (x0),
(13)

IV (x0)

= 1

3

∫ ∞

Z=0

∫ 2π

φ=0

dZdφ ρ2(1 − x0 cos φ sechZ − Z tanh Z)(
Z2 + ρ2 − 2x0 cos φ + x2

0

)3 .

FIG. 5. Surfaces obtained by inversion centered (a) inside the
catenoid and (b) outside.
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FIG. 6. (Color online) Principal curves and directions on the catenoid and on the defect. (a) On the catenoid, the meridians are catenaries
(dashed lines) with the tangent vector V⊥ represented by blue (dark) arrows; the parallels (solid circles) with tangent vector V‖ are represented
by red (medium gray) arrows (they are oriented anticlockwise with respect to the symmetry axis). The normal vectors are represented by green
(light gray) arrows. (b) Top and (c) bottom views of the principal curves on the defect. The catenaries get mapped to closed curves which make
self-contacts at the poles, represented by dashed lines, whereas the parallel circles transform to rotated circles surrounding the poles, indicated
by solid lines. Red (medium gray), blue (dark), and green (light gray) arrows represent the mapping of the principal directions and the normal
vector onto the defect.

In Fig. 4(c) we plot the normalized volume v0 = V0/VS as
a function of x0, with VS the volume of the unit sphere.
This normalized volume is multivalued in an interval of the
normalized distance between the defects s0, as shown in
Fig. 4(d). In the regime we are interested in, with |x0 − 1| � 1,
the delocalization of the defect correlates directly with the
deflation of the vesicle. There is a a unique symmetric
two-finger defect, as well as a pinched counterpart for each
value of V0. For larger values of x0 this duality between
fingers and pinches breaks down. In particular, the maximally
deflate vesicle bearing two fingers is a sausagelike geometry,
not the two touching spheres that occur in the limit x0 → ∞.7

The pinched counterpart terminates at x0 = 0 in the symmetric
discocyte.

B. Curvatures

The curvature of the defect will play a role not only in
determining its energy but also in determining the stresses.
Singularities in the curvature signal external forces. The
curvature is characterized by two scalars, its extremal values,
as well as the directions—mutually orthogonal—along which
they occur. The intersections of the defect surface with the
mirror planes are both directions of curvature as well as
geodesic.

On the catenoid, the maximum curvature C‖ is achieved
along the parallel directions [circles of constant Z in Fig. 6(a)],
and the minimum curvature C⊥ along meridians [catenaries in
Fig. 6(a)]. They are given by C‖ = 1/ρ2 = −C⊥, confirming
that the catenoid is a minimal surface, i.e., K = C‖ + C⊥ = 0.
Its Gaussian curvature KG = C‖C⊥ is given by

KG = −1/ρ4. (14)

The principal directions (along the parallel circles and along
the meridians) align with the adapted basis vectors eϕ = ∂ϕX

7Intriguingly, there is a narrow band of values of s0 in which
a volume threefold degeneracy exists, with two distinct two-finger
geometries and a single pinch; see Fig. 4(d).

and eZ = ∂ZX,

V‖ = (− sin ϕ, cos ϕ,0);
(15a)

V⊥ = 1/ρ(sinh Z cos ϕ, sinh Z sin ϕ,1).

In Appendix B it is shown that the counterparts on the defect of
these two vectors fields are given by an appropriate reflection:

Ṽi = R Vi , i =‖ , ⊥ , (16)

where R = 1 − 2X̂ ⊗ X̂ represents a reflection in the plane
passing through the origin and orthogonal to X and X̂ denotes
the corresponding unit vector.

The integral curves of these two vector fields on the defect
are represented in Figs. 6(b) and 6(c). In particular, observe
that the parallel circles on the catenoid get mapped to two
nested families of circles, each of which encloses a single
pole; these circles degenerate into the straight line �̃π on the
mirror plane, Z̃ = 0. The meridians get mapped to a single
family of nested closed curves, each of which passes through
the point O where self-contact is made.

Three regions displaying features of particular interest can
be identified on the defect: the neighborhood of the poles,
the ridge-and-valley geometry connecting the poles, and the
asymptotic region where it approximates the large sphere.
Although the global defect geometry does not lend itself to
a Monge parametrization in terms of a unique height function
above a plane, it is possible to describe each of these regions
separately in terms of a height function above an appropriate
reference plane.

C. Height function representations

1. Near region

The region Z̃ � 1 originates in the compactification of
the exponential growing ends of the catenoid with Z � 1
under inversion in a sphere centered on the point i. This region
on the catenoid can be approximated by the height function
h1 = ln 2ρ (ρ � 1) above the X-Y plane, (X = ρ cos ϕ and
Y = ρ sin ϕ). Its counterpart on the defect under inversion in a
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sphere of radius R then has the height function representation

h̃1 = −R2 ρ̃2 ln

(
ρ̃

2

)
, ρ̃ = 1

ρ
, ϕ̃ = ϕ, (17)

above the plane Z̃ = 0(X̃ = R2ρ̃ cos φ̃ and Ỹ = R2ρ̃ sin φ̃).
The two curvatures diverge logarithmically at the origin as
ρ̃ → 0,

C̃‖ ,⊥ ≈ − 2

R2

(
ln

ρ̃

2
+ 1 ± 1

2

)
. (18)

However, their difference remains finite,

C̃‖ − C̃⊥ ≈ − 2

R2
. (19)

2. Ridge-and-valley region

The ridge-and-valley between the poles originates in the
neighborhood of the point −i on the catenoid diametrically
opposite the center of inversion. The latter is described by the
saddle-shaped height function above the plane X = −1: h2 =
−r2/2 cos 2φ, where r = √

Y 2 + Z2, and φ = arctan Y/Z. Its
inversion in a sphere of radius R centered at i is a parabolic
cylinder described by a height function above the plane X̃ =
−R2/2, (Ỹ = R2/4 r̃ sin φ̃, Z̃ = R2/4 r̃ cos φ̃),

h̃2 = R2

4
r̃2 cos2 φ̃, r̃ = r, φ̃ = φ, (20)

or h̃2 = 4Z̃2/R2.

3. Far region

The infinite region remote from the origin originates in the
neighborhood of the center of inversion i on the catenoid. The
latter is described by the height function h3 = r2/2 cos 2φ.
Inversion of this region in a sphere of radius R centered at
i can also be described by the height function above the the
asymptotic plane X̃ = 0 (Ỹ = R2̃r sin φ̃ and Z̃ = R2̃r cos φ̃),

h̃3 = R2

2
cos 2φ̃, r̃ = 1

r
, φ̃ = φ, (21)

which is independent of the radial distance r̃ on the base
plane. Thus, in the asymptotic region, with r̃ � 1, the defect
interpolates between the two orthogonal lines, X̃ = R2/2,
Ỹ = 0 and X̃ = −R2/2,Z̃ = 0; its height set by the scale S

[see Eq. (10)]. This geometry is illustrated in Fig. 7. Unlike the
exact defect, the geometry is symmetrical (modulo a rotation

FIG. 7. The surface given by the biharmonic height function h̃ =
1/2 cos 2φ̃ provides an accurate description of the defect in the far
region.

by π/2) with respect to the plane X̃ = 0. In the small gradient
approximation, the bending energy is proportional to

H ≈ 1

2

∫
dx (∇2h)2, (22)

where dx is the element of area on the plane and ∇2 is
the corresponding Laplacian. This is minimized when h

is biharmonic on the plane or (∇2)2h = 0. Note that all
three height functions are biharmonic on their respective
planes, consistent with the fact that each of the three surface
geometries locally minimizes bending energy. The catenoid
from which they stem is a minimal surface minimizing locally
the surface area.8

In cylindrical coordinates, h = cos 2φ, is the only bihar-
monic function independent of r . It belongs, with k = 2, to
the family of biharmonic functions, h = cos kφ/rk−2 with
a k-fold dihedral symmetry, obtained by the inversion in a
sphere centered at the origin of the harmonic height functions
h(k) = rk cos kφ, k � 2, representing k-th order saddles (a
monkey saddle is represented by k = 3).

III. DEFECT ENERGY

While the bending energy is not itself invariant under
inversion, it is modulo a contribution proportional to the
topological term, HGB. This is because H1 can be cast as a
linear combination of HGB and the manifestly conformally
invariant energy HW = 1/2

∫
dA (C‖ − C⊥)2. As a conse-

quence, equilibrium states are mapped to equilibrium states
under inversion. The defect geometry constructed in Sec. II is,
thus, also an equilibrium state.

It is simple to show that the bending energy of the inverted
surface is given by (see also Ref. [7])

H̃ = κ[H1 + 2(H̃GB − HGB)] + κ̄ H̃GB. (24)

Whereas H1 vanishes for a catenoid it does not on its inverted
counterpart. Thus, the total bending energy of a surface
obtained by inversion in a sphere of a minimal surface is
proportional to the difference of two topological contributions.

In general, the topology will change under inversion if the
surface is infinite or the point of inversion lies on the surface.
The catenoid has the topology of a punctured plane with Gauss-
Bonnet energy HGB = −4π ; the vesicle with the defect has a
spherical topology, with H̃GB = 4π (see Appendix C). Thus,
the bending energy of the defect is given by H̃ = 4π (4κ + κ̄),
depending on both physical parameters.

In particular, H̃ is independent of S. Although the total
energy is constant, the distribution of energy in the membrane

H̃ = 1
2κ K̃2 + κ̄ K̃G (25)

is concentrated in the vicinity of the defect center; it also
depends on κ̄ . Note, first, that the mean curvature of the defect

8The surface area excess is given in the small gradient approxima-
tion by

A ≈ 1

2

∫
dx (∇h)2, (23)

so minimal surfaces satisfy the Laplace equation locally.
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FIG. 8. (Color online) (a) K̃ , (b) K̃2/2, and (c) K̃G. These functions vanish along black lines.

is proportional to the support function on the catenoid (see
Appendix B)

K̃ = 4

R2
X · n, X · n = 1 − cos ϕ sechZ − Z tanh Z.

(26)

Its (scaled) value, as well as K̃2/2, are illustrated in Figs. 8(a)
and 8(b). It vanishes along the curves cos ϕ = cosh Z −
Z tanh Z, indicated in black in Figs. 8(a) and 8(b).

Likewise, the Gaussian curvature on the defect is given by

K̃G = 1

R4
[4(X · n)2 − (Z2 + P (ρ,φ)2)2sech4Z]. (27)

K̃G is positive in a neighborhood of the two poles that extends
on its dorsal side to infinity, a region one would expect to
be under tension; it vanishes where 4 cos ϕ = sechZ(Z2 +
1) + 3 cosh Z − 2Z sinh Z, and along the axis of symmetry
Z = 0, indicated in black in Fig. 8(c). In Sec. II C1 it was
seen that the two principal curvatures diverge logarithmically
near the poles [see Eq. (18)], so the bending energies do also:
K̃2,K̃G ≈ ln2(ρ̃/2)/R4. The corresponding densities

√
gK2

and
√

gKG, however, not only remain finite but vanish at the
poles. Asymptotically, H̃ decays as 1/r̃4, as is easily confirmed
using Eq. (21).

A. Stability and the zero mode

A feature of the conformal symmetry of this problem is that
defect states are energetically stable. Indeed, this is implied by
the stability of a catenoid described by the energy HB[X]. The
second variation of the energy is given by [12]

δ2HB = κ

∫
dA�L�, (28)

where—for a minimal surface—the self-adjoint operator L is
given by L = (−∇2 + 2KG)2. � is the normal displacement.
L is manifestly positive, which implies the stability of the
catenoid as a fluid membrane. Conformal invariance now
implies equality, term by term, in perturbation theory between
the energy of the minimal surface and that of its counterparts
obtained by inversion in a sphere. They are, thus, also
guaranteed to be energetically stable.

This is not the end of the story, however. For the energy is
degenerate. Modulo Euclidean motions, there will be a one-
parameter family of defect states of a given area and volume
with the same energy. Distinct geometries with a fixed area

are labeled by the position of the center of inversion, x0 on the
quadrant, x0,y0 � 0; fixing the volume constrains x0 in terms
of y0. The construction of symmetric states, with y0 = 0, was
discussed in Sec. II A. When y0 �= 0 the mirror symmetry
between the poles is broken.

This degeneracy implies the existence of a zero or Gold-
stone mode satisfyingL� = 0. It can be constructed explicitly
as a linear combination of a rescaling and a special conformal
transformation, � = n · δX, where δX is given by Eq. (A2).9 It
is clear that modulo Euclidean motions, the axial symmetry of
the catenoid implies that c has two independent components
corresponding to a displacement of the center of inversion
on the quadrant. The first-order constraints on the area and
the volume,

∫
dAK � = 0 and

∫
dA� = 0, impose two

constraints, leaving a single degree of freedom. On a mirror
symmetric state this mode generates displacement along j
which breaks the mirror symmetry.

This degeneracy implies that the two points tied together
still possess a freedom to migrate across the surface, at no
energy cost, while preserving the area and volume. However,
the volume constraint keeps them apart. If it is relaxed, there
will be a second zero mode corresponding to displacements
of x0 along the direction i. As we described in Sec. II A this
corresponds to changing the geodesic distance S between the
poles; in particular, there will now be a path between the
defect state and a sphere, generated by displacing the center
of inversion towards the surface of the catenoid. This same
mode allows the membrane to slip out of the defect. As we
will discuss in Sec. IV B1, however, this limit is not smooth,
involving a divergence in the force between the two poles.
Before it is reached, one would expect the defect to collapse.

IV. STRESSES AND TRANSMITTED FORCES
ON THE DEFECT

The stress tensor on the membrane is given by fa = fab eb +
f a n [13,14] (see also Refs. [15–17]), where (in units of κ)

fab = K
(
Kab − 1

2 K gab), f a = −∇aK, (29)

where ea , a = 1,2 are the two tangent vectors adapted to
the parametrization, n is the normal vector, and gab and Kab

are the the metric and extrinsic curvature tensors, defined in

9In this section, X refers to the defect geometry.
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FIG. 9. Closed integral curves of Ṽ‖ and Ṽ⊥.

Appendix B. Under a local deformation of the equilibrium
surface, X → X + δX, its energy changes by an amount

δH = −
∫

dA fa · ∇aδX. (30)

This stress depends only on the local geometry. There is no
local stress associated with the Gauss-Bonnet bending energy.
The tangential stress is quadratic in Kab and, thus, assumes
its maximum and minimum values along the directions
of curvature. In a source free region, fa is conserved in
equilibrium so [13]

∇a fa = 0, (31)

where ∇a is the covariant derivative compatible with the metric
tensor.

Consider a curve γ partitioning the surface in two regions,
such as one of those illustrated in Fig. 9(a). The force per
unit length on one side of this curve (darker region in Fig. 9),
exerted by the other side (lighter region in Fig. 9) is given in
terms of the stress tensor by f⊥ = −lafa , where la = gabl

b are
the covariant components of the vector l, the outward normal
to γ tangent to the surface, i.e., directed towards the region
exerting the force.10 If γ is closed, the total force is given by
the line integral [18]

F =
∮

γ

ds f⊥, (32)

where s is the arc length along γ . If γ is contractible to a point
or if it does not enclose sources of stress, this integral vanishes.

A. Stress distribution in the defect: Quadratic approximation

Before attempting to describe the fully nonlinear
distribution of stress in the defect, it is useful to, first, provide
an approximate description of this distribution in each of
the three regions described in Sec. II C in terms of a height
function.11 It is simple to check that gradients remain small

10If t is the unit tangent vector and n the surface normal along the
loop, then l = t × n and {t,n,l} form a right-handed trihedron (the
Darboux frame). Since t and l are tangent vectors to  they can be
expanded with respect to the adapted basis vectors, {ea} as t = taea

and l = laea.
11To unburden the notation, set R = 1 and rotate the geometry so the

base plane coincides with the plane Z = 0 parametrized by the radial
and azimuthal coordinates r = √

X2 + Y 2 and φ = arctan(Y/X).

in the regions of interest, i.e., |∇h| � 1, where ∇ represents
the gradient on the base plane, so a quadratic approximation
to the stress tensor in terms of gradients and Hessians of the
height function is legitimate.

In the quadratic approximation, the tangent and normal
vectors to the surface can be decomposed with respect to
an orthonormal basis adopted to a Cartesian description of
the appropriate base plane {Êx ,Êy , k}: ei = Êi + ∂ih k and
n = −∂ih Êi + k.12 The metric tensor is given by gij =
δij + ∇ih ∇jh. In this approximation, the extrinsic curvature
tensors is given by minus the Hessian of the height function
Kij = −∇i∇jh.

The quadratic approximation to the stress tensor (29) is now
given by fi = T ij Êj + Nik (compare with Ref. [19]), where

T ij = ∇2h
[∇ i∇jh − 1

2 (∇2h)δij
] − ∇ i(∇2h) ∇jh,

(33)
Ni = ∇ i∇2h.

Both T ij and Ni are conserved, or ∇iT
ij = 0 and ∇iN

i = 0,
when the height function is biharmonic.13 These equations
are equivalent to the conservation law (31) in the quadratic
approximation.

Let T and L represent the unit vectors along the projections
of the vectors t and l [introduced below Eq. (32)] onto the
base plane, so they form an orthonormal basis adapted to the
curve � obtained by projection of the surface curve γ onto this
plane. Equation (32) then implies that the force per unit length
transmitted across the curve γ on the surface is given, in this
approximation, by f⊥ = −Lifi = −LiT

ij Ej − LiN
ik.

1. Poles: h1 = −r2 ln(r/2), r � 1

Note that ∇2h1 = −4[ln(r/2) + 1] and (∇2)2h1 =
−8πδ(r). Thus, near the poles, the stress tensor on the base
plane has components

T rr = −4 ln
r

2
, T rφ = T φr = 0, T φφ = − 4

r2
ln

r

2
,

(34)

with counterparts normal to the plane

Nr = −4

r
, Nφ = 0. (35)

Construct a circle of constant rc on the base plane, ori-
ented such that T = Êφ = (− sin φ, cos φ,0) and L = −Êr =
(− cos φ, − sin φ,0).14 By projecting the stress tensor onto L,
one identifies the force transmitted per unit length across this
circle to be given by

f⊥r = −4

(
ln

rc

2
Êr + 1

rc

k
)

. (36)

Thus, the external radial force, viewed from the base plane, can
be decomposed into a sum of radial compression and a vertical

12The normal points toward positive Z.
13Note that Tij , unlike the genuine tangential stress fab, is not

symmetric. Consequently, ∇iTji �= 0. In addition, its trace T i
i is

different from zero, whereas f a
a vanishes.

14This gives the force exerted by the interior region with r < rc,
containing the pole, on the exterior region with r > rc.
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force associated with a source pulling (down) on the pole at
its center. This is a striking illustration of the shortcomings
of the Monge representation: One would expect radial tension
rather than compression. It should be remembered, however,
that Êr is not the tangent to the surface nor is k its normal. To
resolve this discrepancy, it is necessary to expand the radial
force with respect to a basis of tangent vectors adapted to
the surface: er = Êr − 2r ln(r/2)k and n = 2r ln(r/2)Êr + k.
One then recasts Eq. (36) as

f⊥r = 4

(
ln

rc

2
er − 1

rc

n
)

, (37)

which indicates that the outer region is subjected to radial
tension plus a normal force pulling on the pole. This coincides
with the result obtained below in the nonlinear analysis,
Sec. IV B.

If f⊥r is integrated along the circle one identifies the
total external force acting on the pole to be −8π k̂. In fact,
this quadratic analysis provides the correct exact nonlinear
result (46) derived below. This is because the quadratic
approximation becomes exact at the pole.

Now consider a radial line on the base plane along direction
Êr and with outward normal L = Êφ .15 The force per unit
length transmitted across this line is given by

f‖φ = 4 ln
r

2
Êφ, (38)

which implies compression along the azimuthal direction.
Near r = 0, the azimuthal compression is equal in magni-

tude to the radial tension, as measured along the surface. This
result hints at a more general result: Tension in one direction is
always accompanied by compression in an orthogonal direc-
tion. As discussed in greater detail in Sec. IV B, this is a direct
consequence of the vanishing trace of the tangential stress,
i.e., faa = 0. Surprisingly, this is not evident if tangents are
replaced by their projections on the plane, where one registers
compression in both directions, radial and azimuthal. As was
seen, this apparent discrepancy is an artifact of the Monge
parametrization; specifically the third term in the definition
of T ij , Eq. (33), originating in the projection of the normal
stress onto the base plane, contributes a trace to T ij : Tii =
−∇i(∇2h) ∇ih. Furthermore, ∇i(∇2h) ∇jh diverges near the
pole as 1/r . Thus, whereas the distinction between n and k
disappears near the pole, where the gradients of h are small
(n − k ≈ 2r ln r/2 er )), T ij (n − k) diverges logarithmically.
This example illustrates how the Monge representation can
yield counterintuitive results whenever curvature singularities
are involved. One needs to be careful to distinguish between
tangent vectors and their projections onto the plane. This kind
of gauge artifact is sidestepped in the covariant nonlinear
analysis presented in Sec. IV B.

2. Valley: h2 = 1/4 X2

The tangential stress is diagonal with constant components

TXX = 1/8, TXY = TYX = 0, TYY = −1/8. (39)

15The force is that exerted from a region with a value of φ below a
given value on that with a higher value.

Furthermore, because the Laplacian is constant, ∇2h2 = 1/2,
both normal components vanish, NX = NY = 0. The force
transmitted across the valley (constant X, along direction
Êx with L = Êx) is given by f⊥X = −1/8Êx , so it is under
compression. Likewise, the force along the valley (constant Y

along direction Êy , with L = Êy) is f‖Y = 1/8Êy so it is under
tension along its length.

3. Asymptotic region: h3 = 1/2 cos 2φ

In the asymptotic region, the components of the stress tensor
on the plane are (∇2h3 = −2/r2 cos 2φ)

T rr = − 2

r4
cos2 2φ, T rφ = −T φr = 1

r5
sin 4φ,

(40)

T φφ = 2

r6
(1 + sin2 2φ).

T ij is not diagonal. This reflects the fact that the principal
directions do not coincide asymptotically with the radial and
azimuthal directions. The corresponding components normal
to the plane are

Nr = 4

r3
cos 2φ, Nφ = 4

r4
sin 2φ. (41)

Projecting onto the azimuthal and radial directions, one finds
the forces per unit length transmitted across curves with
constant r (L = Êr ) and φ (L = Êφ) are given, respectively,
by 16

f⊥r = − 1

r4
sin 4φ Êφ + 2

r4
cos2 2φ Êr − 4

r3
cos 2φ k,

(42a)

f‖φ = − 2

r4
(1 + sin2 2φ)Êφ + 1

r4
sin 4φ Êr − 4

r3
sin 2φ k.

(42b)

The tangential forces decay as r−4, their normal counterparts
as r−3, confirming the localization of the stress in the
neighborhood of the poles.

B. Distribution of stress: Exact results

The distribution of stress in the defect is completely
encoded in the catenoid geometry. It is straightforward to show,
using results presented in Appendix B, that (see also Ref. [7])

f̃a =
( |X|

R

)6[
R fa + 4

|X|2
(

Kab − 1

2
Kgab

)
wb

]
, (43)

where [20,21]

wa = X × (n × ea). (44)

Because wa is orthogonal to X, R wa = wa . Whereas the stress
tensor fa vanishes in a minimal surface with K = 0, it will not

16The presence of a component along Êφ in f⊥r , as well as component
along Êr in f‖φ reflects the fact that the vectors Êr ,Êφ , and k do
not coincide asymptotically with the physically significant vectors,
Ṽ⊥,Ṽ‖, and ñ, described in Sec. II B.
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vanish in its inverted counterpart:

f̃a = 4
|X|4
R6

Kab wb . (45)

It can also be shown (see Ref. [7]) that if fa is conserved, then
f̃a is also, except at the points in contact at X̃ = 0, represented
by Z → ±∞. It is evident that the stress is concentrated in
the neighborhood of these points. Its divergence indicates
the presence of sources on the right-hand side of Eq. (31).
These sources are identified with the external forces enforcing
the contact constraint. In the absence of these forces the
equilibrium would collapse to a sphere with a vanishing stress.

1. External forces and torques on the poles

The external force pulling the poles together is determined
by evaluating the integral of the stress Eq. (32) along a loop
enclosing each point [18].17 An appropriate contour is one of
the closed circular integral curves of Ṽ‖ [indicated using red
red (medium gray) arrows in Fig. 6(b)], illustrated in Fig 9(a).18

The mirror symmetry in the plane Z = 0 can now be exploited
to deform this circular contour into the straight line �̃‖ running
along Z = 0, illustrated in Figs. 3(b) and 6(b). The contribution
to the force from the contour at infinity vanishes due to the
fast asymptotic decay of the stress tensor [see Eq. (42a)]. The
external force on the right-hand pole (Z > 0) is now given
by19

F̃ = −
∫

ds̃ l̃Z f̃Z = − 4

R2
k

∫ 2π

0
dϕ(1 − cos ϕ) = −8π

R2
k.

(46)

The detailed distribution of stress need not be known to
determine this force. This is just as well, for the detailed
distribution of stress is not simple. This result also validates
the analysis of the linearized theory in Sec. IV A1 where a
circular contour, collapsing to the point of application of the
external force, was used to determine this force.

Note that there is no net vertical displacement of the vesicle.
This is consistent with the fact that the forces acting on the
membrane are horizontal. Raising the vesicle with respect to
the “asymptotic plane” X̃ = 0 would require the introduction
of vertical external forces which would need to be balance by
counter forces.

Using Eq. (10), which relates the inversion radius R to the
length S between the poles, one obtains F̃ S = 9.6539π . This
force diverges as the points approach each other along the
surface in an inflated sphere. Below some critical separation,

17The forces supporting the defect cannot be resolved by examining
the asymptotic physics. A contour completely encircling the defect
will register a vanishing total force.
18The appropriately oriented boundary has the Darboux basis t̃ =

sgn Z̃ Ṽ‖ and l̃ = sgn Z̃ Ṽ⊥.
19The outward normal to �̃‖ traversed from ∞ (ϕ = 0) to −∞ (ϕ =

2π ) is l̃ = k. In particular, the components of the conormal vector
expressed in the tangent basis are l̃Z = |X|2/R2, |X|2 = 2(1 − cos ϕ),
and l̃ϕ = 0, so the only component of its associated covector l̃ is l̃Z =
1/̃lZ . Also the line element along �̃‖ is d̃s = R2/|X|2 dϕ and the only
relevant component of the stress tensor is given by f̃Z = 2|X|6/R6 k.

the maximum normal tension supported by the membrane or
by the external agent holding the two points together will
be exceeded and the defect will disintegrate, decaying into
a spherical membrane as its additional bending energy is
dissipated. The volume constraint keeps the points apart on the
surface ensuring the stability of the defect. If this constraint is
relaxed, however, one would also expect a defect to possess a
finite lifetime. This lifetime will, however, depend on physical
properties of fluid membranes that fall outside the scope of the
geometric description provided in this paper.

The torque tensor on a surface is given by ma = X × fa +
Kea × n [13]. Using the same conventions as before the torque
per unit length exerted by one region onto another across γ

is m⊥ = −lama and the total torque M = ∫
dsm⊥. For the

surface resulting from the inversion of a minimal surface the
torque tensor reads

m̃a = 4
|X|2
R4

[KabX × wb + X · n R(ea × n)]. (47)

Evaluating the total torque along the contour used to determine
the force we find that

M̃ = −4
∫ 2π

0

dϕ

|X|2 [C⊥ X × (X × t) − X · n Rt] = 0. (48)

There is no net torque acting at the poles. Although the
intermediate states interpolating between the initial state and
the pinched membrane will be subject to torques, the final state
is free of them.

2. Stress distribution revisited

Using Eq. (43), one finds the force per unit length
transmitted across a circular loop with tangent Ṽ‖ is given
in terms of quantities measured along the parent catenoid by

f̃⊥ = −Ṽa ⊥ f̃a = 4|X|2
R4

C⊥X × V‖. (49)

A similar identity is obtained for f̃‖ with ⊥ replaced by ‖.
The stress is clearly localized near the poles, represented by
|X| → ∞.

Although the exact expression for the stress tensor is simple
to write down, its physical interpretation is not transparent.
This is facilitated by examining its projections onto the or-
thonormal basis adapted to its curvature, {Ṽ⊥,Ṽ‖ ,̃n}, discussed
in Sec. II B. One has

f̃⊥ := f̃⊥⊥ Ṽ⊥ + f̃⊥ ñ, (50)

where f̃⊥⊥ ≡ −Ṽ⊥ aṼ⊥ b̃fab and f̃⊥ ≡ −Ṽ⊥ af̃
a are given by

f̃⊥⊥ = 4

R4
C⊥ |X|2 X · n, (51a)

f̃⊥ = 4

R4
C⊥|X|2 X · V⊥. (51b)

The counterpart of f̃⊥⊥, f̃‖‖ satisfies f̃‖‖ = −̃f⊥⊥, a direct
consequence of the traceless character of the tangential stress
tensor, which is itself a manifestation of the scale invariance
of the energy. The off-diagonal projection f̃‖⊥ ≡ Ṽ‖ aṼ⊥ b̃fab
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FIG. 10. (Color online) tanh of stress distributions in defect. Black lines represent points where they vanish.

vanishes in this frame.20 If the membrane is under tension
in the direction Ṽ⊥, it will be under an equal and opposite
compression in the orthogonal direction Ṽ‖ and vice versa. The
tension and compression will also assume their maximum and
minimum values along these directions. f̃⊥⊥ is represented in
Fig. 10(a) for the principal curves Ṽ‖ represented in Fig. 9(a).
It is proportional to the mean curvature of the defect geometry:
f̃⊥⊥ = −(|X|/ρ)2K̃; thus, tangential stresses vanish wherever
K̃ = 0 [cf. Fig. 8(a)]. Tension and compression anticorrelate
with the sign of the mean curvature.

Near the poles the defect is under radial tension in response
to the external force. Moving away from the poles, the
dorsal side of the pole remains under radial tension; however,
a transition from radial tension to compression (̃f⊥⊥ < 0)
occurs on descent into the valley that stretches between
the poles.21 The radial tension is accompanied by lateral
compression, and the lateral compression along the valley is
accompanied by tension along its length.22 The membrane is
under rapidly decaying radial tension everywhere far from the
defect center. These results are consistent with those obtained
in the quadratic approximation in Sec. IV A3.

The projection of the normal stress f̃⊥ is represented in
Fig. 10(b). It is negative everywhere, except along �̃‖, where it
vanishes, so the normal external force transmitted across these
closed curves points in a direction opposite that of the surface
normal [see Fig. 6(c)].

For completeness, the counterpart f̃‖ normal to the principal
curves Ṽ⊥ is represented in Fig. 10(c).23 It is concentrated
within the valley region and positive everywhere (directed
along the normal) to the surface except along �̃⊥, where it
vanishes.

20There is, of course, no shear stress supported by a fluid membrane.
A nondiagonal tensor will occur when the tensor is decomposed with
respect to an inappropriate frame.
21This asymmetry in the distribution of stress under external forces

has its counterpart in a familiar daily routine: pulling a T-shirt by the
back of the collar over one’s head; whereas tension is established in
the shirt along one’s back, it will be compressed along one’s chest.
22The distribution of stress along the valley is also consistent with

one’s expectations for a surface of approximately constant positive
mean curvature.
23The appropriate Darboux basis, indicated in Fig. 9(b), is given by

t̃ = −sgn Ỹ Ṽ⊥ and l̃ = sgn Ỹ Ṽ‖.

V. DISCUSSION

In general, the nonlinearity of the underlying geometrical
theory makes it difficult to gather insight into the physical
behavior of fluid membranes without resorting to brute force.
The conformal invariance of the bending energy, however,
offers access to their nonlinear response—albeit idealized—to
external forces.

This symmetry has been used to construct a model of a
fluid vesicle with a local defect held together by localized
external forces. The deformations of the spherical geometry
are large at the center of the defect and they do not lend
themselves to a global perturbative description. Indeed, serious
shortcomings of the linear Monge representation of the surface
have been exposed where results, at best, are misleading:
Small gradients may have large curvatures lurking at their
center.

More abstractly, the conformal symmetry implies a duality
between the weak far-field description in one geometry—the
catenoid—and the strong near-field behavior in another—the
defect. Whereas the catenoid is a stress-free state, its dual
exhibits a localized distribution of stress, supported by external
sources, with curvature singularities at its center. At a technical
level, this duality establishes a link between harmonic func-
tions which describe the local behavior of minimal surfaces
and biharmonic counterparts which describe an unconstrained
fluid membrane. More complex defects could, in principle, be
constructed using other minimal surfaces.

For the purpose of containing the narrative, we have focused
almost completely on symmetric defect states. Theses are not
the only states of interest. Indeed free passage into states
which do not exhibit this symmetry is possible due to the
existence of the zero mode. One way to curtail this freedom
is to introduce additional constraints. One possibility, in the
spirit of the bilayer couple model, is to impose a constraint
on the area difference. This would involve adding to the
Hamiltonian a term, β(

∫
dAK − M0) [8]. Deformations will

now be constrained to also satisfy
∫

dAKG� = 0, which
will lift this degeneracy. Interestingly, there will generally
be no mirror symmetric state consistent with a given value
of M0. Indeed, M0 may also be negative, a possibility that
was never even contemplated in the original axisymmetric
analysis of the bilayer couple model where the parameter
space was truncated at M0 = 0. It would also be interesting to
understand how defects on vesicles behave when conformal
symmetry is broken: Accommodating an area reservoir, a
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pressure difference, or a spontaneous curvature would do
this; an external force dipole holding the two points a finite,
nonvanishing, Euclidean distance apart would also. While it is
not going to be pretty, it should be straightforward to develop
perturbation theory around one of the equilibrium states that
we have described.
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APPENDIX A: CONFORMAL INVARIANCE AND
CONSTRAINTS

Suppose that the surface is described by its embedding into
Euclidean space (u1,u2) → X(u1,u2). Consider the problem
of minimizing the energy of a closed vesicle with two of its
points brought into contact (say, X1 and X2) subject to the
constraints that both the area and the volume are fixed. The
contact constraint is incorporated formally into the variational
principle by introducing a new Lagrange multiplier, F, to tie
the points,

H [X] = HB[X] + σ (A[X] − A0) + P (V [X] − V0)

+ F · (X1 − X2), (A1)

where HB is the bending energy of the membrane given
by the sum of the first two terms in Eq. (1), HB[X] =
κH1[X] + κ̄HGB[X]. Consider the change in H under the
conformal transformation [4],

δX = λX + X2 c − 2(X · c) X, (A2)

where λ is a constant and c is a constant vector. One has

δH [X] = σ δA + P δV. (A3)

We have used the conformal invariance of the bending energy
as well as the contact constraint. In an equilibrium state, δH

must vanish, whether or not δX preserves the area or the
volume. In particular, one can tune the four parameters λ and
c in either of two independent ways: (i) the area is preserved
(δA = 0) but the volume is not (δV �= 0) or (ii) the volume
is preserved (δV = 0) but the area is not (δA �= 0). Such
variations exist; together, they imply that the two multipliers
vanish in the equilibrium end state.24,25 Had the two points
been held a fixed nonvanishing distance apart, as in any of

24Under a rescaling of the surface, δX = λX, one finds the weaker
condition, 2σA + 3PV = 0 in equilibrium states.
25In the absence of the contact constraint, the only equilibria are

axially symmetric with mirror symmetry with respect to a plane
orthogonal to the axis of symmetry. This is a consequence of the
fact that, when the vesicle is closed, δA = 2λA − 4c · ∫ dA X and
δV = 3λV − 2c · ∫

dA (n · X)(X · c), where n is the surface normal
[4]. One of the two integrals involving c can always be set to zero
by locating the appropriate center of mass at the origin. In general,
however, the second will not vanish.

the intermediate states in the sequence, this distance would
set a new scale that competes with the one established by
the size of the membrane. One then faces a more difficult
problem without conformal invariance to direct us towards a
solution and about which we have nothing to say. It should be
emphasized that vanishing σ does not imply that the tension
in the vesicle vanishes. The forces bringing the points together
establish stress in the vesicle.

APPENDIX B: TRANSFORMATION OF THE GEOMETRY
UNDER INVERSION

Let ea be the two tangent vectors to the surface adapted to
the parametrization by Z and ϕ, The corresponding tangent
vectors on the defect geometry are given by

ẽa =
(

R

|X|
)2

R ea, (B1)

where the linear mapping R = 1 − 2X̂ ⊗ X̂, represents a
reflection of surface points in the plane passing through the
origin and orthogonal to X. X̂ denotes the corresponding unit
vector.

The metric tensor induced on the surface are given by gab =
ea · eb. The metric under inversion is related to gab by

gab → g̃ab = R4

|X|4 gab. (B2)

Let n be the unit normal to the catenoid and Kab = ea · ∂bn
the extrinsic curvature tensor on this surface. The counterparts
on the defect are given by ñ = −R n26 and

K̃ab = − R2

|X|2
(

Kab − 2

|X|2 X · n gab

)
. (B3)

It involves only the two tensors, gab and Kab. A derivation
is provided in Ref. [7]. Let C‖ and C⊥ denote the principal
curvatures and V‖ = V a

‖ ea , V⊥ = V a
⊥ea the corresponding

directions on the catenoid, so Ka
bV

b
i = CiV

a
i , i =‖ , ⊥. Then

K̃a
bV

b
i = C̃iV

a
i , where

C̃i = −|X|2
R2

(
Ci − 2

|X|2 X · n
)

. (B4)

The corresponding principal directions are the normalized
images of V‖ and V⊥ on the transformed surface:

Ṽi = Ṽ a
i ẽa = R Vi . (B5)

These directions are, thus, appropriate rotations of their
counterparts on the original surface and their components
transform as Ṽ a

i = |X|2/R2V a
i .

As a consequence of the relation (B4), the difference of the
two principal curvatures under inversion is preserved, modulo
a scaling by the distance function and a change of sign,

C̃‖ − C̃⊥ = −|X|2
R2

(C‖ − C⊥). (B6)

In particular, on an inverted minimal surface (with a vanishing
mean curvature, K = 0), one has K̃ = 4/R2 X · n.

26The minus sign preserves the orientation of the adapted basis.
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APPENDIX C: GAUSS-BONNET ENERGY

Here the transformation of the Gauss-Bonnet energy under
inversion is examined. Specifically, it will be shown that the
change under inversion is a sum of boundary terms. To reduce
the burden of notation, consider the inversion in the unit sphere.
One has, using Eq. (B4), with K̃G = C̃1C̃2,∫

dÃ K̃G =
∫

dAKG − 2
∫

dA

(
X · n
|X|2

)
K

+ 4
∫

dA

(
X · n
|X|2

)2

. (C1)

However,∫
dA

(
X · n
|X|2

)
K = −

∫
dA

(
X · ∇2X

|X|2
)

= 2
∫

dA

(
X · n
|X|2

)2

− 1

2

∫
dA∇2 ln |X|2. (C2)

Thus, ∫
dÃ K̃G =

∫
dAKG −

∫
dÃ ∇̃2 ln |X̃|2. (C3)

In any axially symmetric geometry, the Gauss-Bonnet energy
itself can be cast explicitly as a boundary term. To see this,
note that C1 = �̇ and C2 = sin �/R, where R is the polar

radius, � is the turning angle that the tangent vector to the
generating curve makes with the radial direction, and the dot
represents differentiation with respect to �, the arc length along
the meridian [10]. Replacing � by � as variable of integration,
one obtains HGB as a difference of cosines,

HGB = 2π

∫ ∞

0
d�R�̇(�)

sin �(�)

R
= 2π (cos �1 − cos �2).

(C4)

The Gaussian energy of a surface of revolution depends only
on the boundary values �1 and �2 of �. For a catenoid
(�1,2 = π,0), HGB = −4π ; whereas HGB = 4π for its axially
symmetric inverted counterpart of spherical topology (�1,2 =
0,π ) with a well-defined tangent plane at its poles.27

This discrepancy is consistent with Eq. (C3). To see this,
note that the boundary term on the right in this equation is a
sum of two terms of the form

2
∫

ds̃
l̃ · X̃

|X̃|2 = −4π, (C5)

one for each pole.

27The sphere of inversion is not centered on the surface, otherwise
the resulting surface has a planar topology and, in consequence,
HGB = 0.
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