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Defining statistical perceptions with an empirical Bayesian approach
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Extracting statistical structures (including textures or contrasts) from a natural stimulus is a central challenge
in both biological and engineering contexts. This study interprets the process of statistical recognition in terms of
hyperparameter estimations and free-energy minimization procedures with an empirical Bayesian approach. This
mathematical interpretation resulted in a framework for relating physiological insights in animal sensory systems
to the functional properties of recognizing stimulus statistics. We applied the present theoretical framework
to two typical models of natural images that are encoded by a population of simulated retinal neurons, and
demonstrated that the resulting cognitive performances could be quantified with the Fisher information measure.
The current enterprise yielded predictions about the properties of human texture perception, suggesting that the
perceptual resolution of image statistics depends on visual field angles, internal noise, and neuronal information
processing pathways, such as the magnocellular, parvocellular, and koniocellular systems. Furthermore, the two
conceptually similar natural-image models were found to yield qualitatively different predictions, striking a note
of warning against confusing the two models when describing a natural image.
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I. INTRODUCTION

The findings of a line of studies on natural statistics have
shown that stimuli, such as natural scene images, are known to
have characteristic statistical structures other than unstructured
noise [1–3]. For properly set statistical parameters, we can
perceive specific figures, textures, or scenes, which are differ-
ent from random patterns of light intensities. The processing
of natural images based on those statistical regularities has
been investigated for its close relationship to the statistical
mechanics of lattice systems [4–6]. Generally, statistical values
differ among stimuli and vary for each local region within
a stimulus. Fluctuations in statistical values are not always
random but are often found to have ecological implications
for living things. For example, the spatial smoothness of the
luminance contrast in a visual stimulus is known to provide
cues for recognizing image blur [7], texture [8], and scene
category [9]. Furthermore, a line of psychophysical studies has
reported that human subjects are actually able to recognize and
discriminate the statistics that are related to image smoothness
[10–13]. According to these insights, we can naturally expect
that animals perceive changes in stimulus statistics in order to
obtain valuable information for their survival.

If animals can perceive stimulus statistics, what mecha-
nisms make this possible? What are the factors that determine
the resolution of the perception? How do biophysical proper-
ties, such as the neuronal receptive field, affect or restrict the
perceptual consequences? Although there have been intensive
discussions on neuronal receptive-field structures in relation
to the efficient encoding of natural images [14–18], few
studies have focused on the encoding of the global statistics
of images in neural function. However, from a functional
viewpoint, the global statistics are not trivial, but rather, they
are more important than the pointwise representation of image
data, because the statistical structure conveys ecologically
meaningful cues for animals, as mentioned above.

In this study, the perceptions of stimulus statistics in the an-
imal sensory system are related to hyperparameter estimations
in Bayesian noise reduction. We mathematically interpret the

perception of stimulus statistics based on neural population
activity, in terms of empirical Bayesian inference. We propose
a theoretical framework for quantifying the perceptual resolu-
tion of stimulus statistics and deriving the relationship between
perceptual resolution and neural receptive-field structures. For
a concrete example, we apply the framework to the problem of
the retinal information coding of natural-image statistics, by
simulating the typical receptive-field structures of the retinal
ganglion cells. The aim of the present simulation is first
to demonstrate the relationship between the receptive-field
structure and the information encoding of global statistics,
by using a simple linear model. In addition, we discuss how
the current model can be related to more realistic models of
neurons, including the nonlinearity of the response functions.

II. METHODS

A. Empirical Bayesian framework

We first derive a mathematical interpretation of the percep-
tion of stimulus statistics with an encoding and decoding model
of stimuli in the nervous system from the viewpoint of an
empirical Bayes framework.In summary, the empirical Bayes
framework results from the use of hierarchical generative
models, in which prior beliefs about certain parameters are
functions of other parameters, which are sometimes referred to
as hyperparameters. In particular, the empirical Bayes method
considers the cases in which a prior belief of the parameter has
to be set depending on the observed data. The prior belief on the
parameter that is conditioned by a hyperparameter is referred
to as an empirical prior. In the aforementioned example of
luminance smoothness, the hyperparameters determine the
prior beliefs about the second-order statistics of images,
such as spatial correlations. Our focus in this paper is on
the hyperparameters which, as we see below, correspond to
precision or covariance parameters that, in turn, determine
the likelihood of a particular visual input. The use of the
empirical Bayes method and implicit hierarchical models is
important because hierarchical inference is a popular metaphor
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of perceptual processing in the brain [17,19–22]. When
applied to time-varying inputs, it leads to Bayesian filtering
schemes, such as the Kalman filter [23]. These schemes can
be formulated in terms of predictive coding, and they can
be regarded as a biologically plausible implementation of
hierarchical Bayesian inference [24].

Consider that the task of the central nervous system is
to estimate (decode) the information in the input stimulus
(s) according to the output (r) of early sensory neurons.
This corresponds to obtaining P (s|r), which is the posterior
probability distribution of s under the observed data r . The
posterior probability is given as follows using Bayes’ theorem:

P (s|r; θ ) ∝ P (r|s)P (s|θ ). (1)

The likelihood P (r|s) depends on the noise properties and
receptive field structures of early sensory neurons, while the
prior P (s|θ) is determined by knowledge of the input stimuli.

Here, θ = (θ1, . . . ,θn) is a set of hyperparameters. In this
study, θ is considered to reflect knowledge of the stimulus
statistics (e.g., image smoothness or contrast). Since statistical
values differ between input stimuli, θ cannot be given a
priori; for example, if θ represents image smoothness, its value
depends on the properties of the input stimulus, as previously
described. This means that the hyperparameter concerning
stimulus statistics, θ , needs to be estimated only from the
output of the early sensory system, r . Determination of the
prior according to the observed data needs an empirical Bayes
approach, which is in contrast to the conventional Bayesian
estimation, in which the prior distribution is given a priori.

The posterior distribution of θ under an observation of r is
determined, again, using the Bayes’ theorem,

P (θ |r) ∝ P (r|θ )P (θ). (2)

We then consider the case in which there is no prior knowledge
of the stimulus statistics and assume P (θ) is an uninformative
prior,

P (θ |r) ∝ P (r|θ ). (3)

P (r|θ) is called the marginalized likelihood [25] or evidence
[26] (alternatively termedtype-II likelihood [27,28] or simply
called the likelihood of the statistical model [29,30]). This
value is formally obtained through the following marginaliza-
tion over the input stimulus:

P (r|θ ) =
∫

dsP (r|s)P (s|θ ). (4)

The logarithm of the marginalized likelihood, − ln P (r|θ),
can be related to the Helmholtz free energyin a precise
analogy with statistical mechanics, by expressing the posterior
in the form of a Gibbs distribution as described later [20].
If one optimized the hyperparameters with respect to the
marginalized likelihood, this would correspond to an exact
empirical Bayesian inference. However, in practice, this is
not usually a tractable solution, and its variational bound
that is computed with an approximated posterior is optimized
instead. This bound is also referred as the (variational) free
energy [20,31]; such that maximizing the variational free
energy maximizes the evidence approximately—leading to
an approximate Bayesian inference. It can be shown that the
expected value of the variational free energy that is defined

with the estimated hyperparameter θ̂ is bounded by the true
free energy:

〈− ln P (r|θ̂)〉r|θ = 〈− ln P (r|θ )〉r|θ
+DKL[P (r|θ)||P (r|θ̂)] (5)

� 〈− ln P (r|θ )〉r|θ , (6)

and that we have the equality only when θ̂ ≡ θ , except for some
special cases [32]. As noted above, there is a large literature on
optimizing the free energy in the context of empirical Bayesian
filtering and predictive coding.

In an empirical Bayes framework, the optimal prior P (s|θ)
is given by choosing a θ that maximizes P (r|θ). Importantly,
in this framework the process of estimating the hyperparameter
θ from the sensory output r can be interpreted as the
mathematical interpretation of the perceptual organization of
stimulus statistics.

B. Fisher information

We introduce the Fisher information in order to measure
how precisely the hyperparameter can be estimated. In a
Laplace approximation of empirical Bayesian inference, the
Fisher information matrix is simply the posterior precision or
confidence about the hyperparameter estimates. The Laplace
assumption means that the approximate posterior (or like-
lihood) distribution is assumed to have a Gaussian form,
which is asymptotically equal to the exact distribution at the
limit of large sample size. Hereafter, we will refer to the
Fisher information as the (upper bound of) precision in the
hyperparameter estimates that are related to stimulus statistics.
The estimate of the hyperparameter (θ̂) that maximizes the
marginalized likelihood is an unbiased estimator. The inverse
of the Fisher information gives the lower bound of each
hyperparameter estimate θ̂μ through the following Cramér-Rao
inequality:

Var[θ̂μ] � J −1
θμ

, (7)

where Jθμ
is the Fisher information of θμ,

Jθμ
≡ E

[
−∂2 ln P (r|θ)

∂θ2
μ

∣∣∣∣∣ θ
]

. (8)

Equation (7) yields a measure of the theoretical precision of
the hyperparameter estimation. As θ represents the knowledge
of the stimulus statistics, Jθμ

is interpreted as the perceptual
resolution of the stimulus statistics.

C. Image encoding by the retina

We will consider the relationship between natural-image
statistics and retinal responses. In this situation, s and r
correspond to the true visual input and the output of retinal
ganglion cells that constitute the information received by the
brain, respectively. Bayesian inference then has to recover the
true visual input s, given retinal output r . These are given
in vector form, in which the vector elements are arrayed as
pixel luminance. The hyperparameter θ corresponds to the
statistical parameters of each stimulus. Of particular interest
are the contrast and the smoothness, which are two of the most
established statistical parameters. Contrast is quantified by the
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variability of the signal intensity (e.g., pointwise luminance
in visual stimuli), while smoothness is characterized by the
spatiotemporal correlation of light intensities (luminance).

The prior distribution of the input image P (s|θ) is formally
written as a form of the Gibbs distribution:

P (s|θ ) = e−H (s;θ )∫
dse−H (s;θ )

. (9)

H (s; θ ) is a value that depends upon the configuration of s and
can be thought of as the energy related to the prior distribution,
in analogy with statistical mechanics. We will refer to this as
the prior energy. Here we assume that H (s; θ ) is represented
by the following quadratic form of s:

H (s; θ ) = s�U s, (10)

where the � denotes the transposition of the matrix. U
corresponds to a precision matrix, such that if the prior beliefs
on the images are held with great precision, the prior energy
is greater. If the U satisfies the translational symmetry criteria
of the image, then H (s; θ ) is rewritten with a two-dimensional
Fourier transform:

H (s; θ ) =
∑

k

Ũk

N
|̃sk|2, (11)

where the tilde denotes a (two-dimensional) Fourier transform.
The retinal ganglion cells can be modeled as a communication
channel that determines the observation model P (r|s) as
follows:

r = As + n, (12)

n ∼ N (0,R−1). (13)

The transformation A depends on the receptive field structures
of the retinal ganglion cells. The neuronal receptive fields in
the early visual system are generally found to be described
well by linear filters. For example, the majority of retinal
ganglion cells have Mexican-hat-type receptive fields with
lateral inhibitions [33–36], which function as bandpass filters
in the spatial frequency domain. n denotes the trial-to-trial
fluctuation of neural responses (e.g., firing rates), which are
assumed to follow independent normal distributions with mean
0 and variance R−1. For the simulations and results presented
below, R is a scalar or a scaled identity matrix. In this case,
the likelihood is

P (r|s) = e−L(s,r;A,R)∫
d re−L(s,r;A,R)

, (14)

where

L(s,r) ≡ (r − As)�R(r − As). (15)

From Eqs. (10) and (14), the posterior is also expressed in
the form of a Gibbs distribution P (s|r,θ ) = e−E/

∫
d re−E ,

where the energy E ≡ H + L comprises a prior energy (H )
and a likelihood potential (L). We will consider a simple case
in which the shape of the visual receptive field is symmetrical,
and s and r have the same dimension (N ). This roughly
approximates the situation in the fovea (the central region
of the visual field) of primate retina [35,36]. Application of a

two-dimensional Fourier transform to Eq. (15) yields

L(s,r) =
∑

k

R

N
|r̃k − Ãks̃k|2. (16)

The receptive fields of retinal ganglion cells are approximated
by a Gaussian function, or the Laplacian transform of the Gaus-
sian function [Laplacian of Gaussian (LoG)]. Specifically,
the cells leading to the magnocellular and the parvocellular
pathways have receptive fields that are approximated by a LoG,
while the cells that correspond to the koniocellular pathway
have Gaussian-like receptive fields. LoG and Gaussian filters
are respectively described as follows:

Ãk = −4π2
√

2πγ 3||k||2
N

exp

(
−2π2γ 2||k||2

N

)
, (17)

Ãk =
√

2 exp

(
−2π2γ 2||k||2

N

)
. (18)

D. Natural-image priors

Here, we describe the following two conventional statistical
models of a natural image: the nearest-neighbor model and
the power-law model. The nearest-neighbor model focuses on
the luminance differences between every pair of neighboring
pixels, formulating the prior energy as follows:

H (s; β,h) = β
∑

q

∑
q ′∈B(q)

(sq − sq ′)2 + h
∑

q

s2
q, (19)

where the hyperparameters β and h are positive scalars. A
larger value of β means that smoother images are likely to
be generated; a larger value of h indicates higher contrast.
B(q) denotes the neighbor of the pixel that is located at
q. Considering the four nearest pixels (two horizontal and
two vertical) for B(q), the first term on the left-hand side of
Equation (19) is∑

q

∑
q ′∈B(q)

(sq − sq ′)2 = sT J s. (20)

All pairs of juxtaposed pixels are related by the matrix J ,
whose component is given as follows:

Jq,q ′ = 2δq,q ′ −
∑

ε

δq,q ′+ε −
∑

ε

δq,q ′−ε, (21)

where δ is Kronecker’s delta, and ε ∈ {(1,0),(0,1)}. Intro-
ducing a positive definite matrix U ≡ β J + hI , H (s; β,h)
is expressed as H (s; β,h) = sT U s, or

H (s; β,h) =
∑

k

Ũk

N
|s̃k|2, (22)

Ũk = βJ̃k + h, (23)

J̃k = 4 − 2 cos
2πkx√

N
− 2 cos

2πky√
N

(24)

in the spatial frequency domain.
In the power-law model, the image smoothness is directly

defined in the spatial frequency domain. It expects natural
images to have a spatial-frequency amplitude spectrum that
follows a power law (exponential distribution). In this case,
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TABLE I. Natural-image models and variables related to the estimation of stimulus statistics.

Nearest-neighbor model Power-law model

Smoothness statistics β α

Contrast statistics h c

Precision matrix (Ũk) βJ̃k + h ||k||2α

2c2

Precision of smoothness estimates Jβ = ∑
k

J̃ 2
k
R2|Ãk |4

2Ũ2
k
Ṽ 2

k

Jα = ∑
k

2R2|Ãk |4(ln ||k||)2

Ṽ 2
k

Precision of contrast estimates Jh = ∑
k

R2|Ãk |4
2Ũ2

k
Ṽ 2

k

Jc = ∑
k

2R2|Ãk |4
c2Ṽ 2

k

the prior energy is given as follows:

H (s; α,c) =
∑

k

Ũk

N
|s̃k|2, (25)

Ũk ≡ 1

2(c||k||−α)2
= ||k||2α

2c2
, (26)

where the hyperparameters α and c are related to the
smoothness and the contrast, respectively. A larger value of
α indicates a smoother image, while a larger value of c

means higher contrast. On the basis of the above formulations,
Table I summarizes the hyperparameters and important vari-
ables in the two natural-image models, where Ṽk ≡ Ũk +
R|Ãk|2.

E. Reconstruction accuracy

This section describes the measure of encoding accuracy in
terms of the mean square error (MSE) E in full-image recon-
struction, which will be compared to the Fisher information
measure of precision in the hyperparameter estimation. To
assess the accuracy, the MSE compares the Bayesian estimate
(reconstruction) of visual input (ŝ) to the true value (s):
E ≡ ||s − ŝ||2/N . Notice that, in order to estimate the visual
input, it is necessary to optimize both ŝ and the hyperparameter
estimate θ̂ . The expected value of the MSE is bounded as

〈E〉s,r|θ =
∫

d r
∫

dsP (s,r|θ)E(s,r; θ ) (27)

=
∑

k

1

2NṼ k

{
1 + R|Ãk|2

Ũ k(θ )

(
R

Ṽ k(θ̂)

)2

×
(

Ũ k(θ̂ )

R
− Ũ k(θ)

R

)2}
(28)

�
∑

k

1

2NṼ k(θ)
, (29)

where Ṽ k and Ũ k are computed as functions of θ̂ or θ . The
equality condition is Ũ k(θ̂ ) = Ũ k(θ) (∀ k), which is obtained
for the hyperparameter estimates θ̂ that are matched to the true
values θ . In fact, it is shown that this lower bound quantitatively
well approximates the empirically derived MSE of image re-
construction, which is based on the hyperparameters estimated
by gradient descent of the variational free energy [32]. In the
simulation results appearing in the subsequent section, we
used the analytic lower bound

∑
k 1/2NṼ k(θ) to quantify the

reconstruction accuracy.

III. RESULTS

A. Retinal encoding capacity of natural-image statistics

The precision of the hyperparameter estimation can be
quantified by the Fisher information that is computed for
the marginalized likelihood P (r|θ) (see Sec. II). With the
Fisher information, the receptive-field structures of sensory
neurons are related to their ability to transfer information
about stimulus statistics. For a concrete example, we focus
on the relationship between natural-image statistics and the
retina. Using the simulation protocol described in the previous
section, we evaluated the performance of the two conventional
models of natural images (see Sec. II D): one considers
the luminance differences between the nearest-neighboring
pixels [37,38], while the other is based on the power
law of the spatial-frequency spectrum [1,39–43]. Figure 1
shows how the image appearance changes depending on the
hyperparameters.

Figure 2 illustrates how the Fisher information of each
statistic depends on the parameter that controls the receptive-
field size (γ ). The case of a LoG filter is shown in the
figure. For comparison, it also shows the performance in
reconstructing the original image as measured with the MSE.
Note that a lower MSE means a more accurate reconstruction,
while a larger Fisher information value indicates better
performance in transferring the stimulus statistics information.
The figure illustrates that an optimal receptive-field size exists
for each of the three criteria (MSE, Fisher information of
smoothness, and Fisher information of contrast), and that
the optimal receptive-field size depends on which criterion is
selected.

Figure 3 shows the optimal receptive-field size for each
of the three criteria under various neural noise conditions or
input stimulus statistics. It illustrates the general tendency that
a larger receptive-field size is more advantageous for noisy
channel conditions and for a smooth stimulus. Generally,
the neural noise level is considered to increase under a
lower illumination. With a larger noise level, it has been
suggested that a larger filter (weighting signals at lower
spatial frequency) becomes advantageous from the viewpoint
of efficient and robust image encoding [14]. The present results
derived for the MSE criterion are consistent with the previous
view. Furthermore, the results for the Fisher information
criterion suggest that the noise-to-receptive-field relationship
also holds for the encoding of the global statistics of the
image. More detailed observation reveals that the choice of
the smoothness or the contrast criterion strongly affects the
optimal receptive-field size in the nearest-neighbor model,
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FIG. 1. Changes of the image appearance due to different statistical parameter values. The figure shows examples of artificial noise stimuli
that are generated according to the two popular natural-image models (see Sec. II).

while it has little influence in the power-law model. In addition,
the two popular natural-image models with power-law-type
and nearest-neighbor-type interactions were found to lead to
qualitatively different predictions.

B. Model dependency

Comparing Figs. 3(c) and 3(f), the nearest-neighbor model
suggests that a larger receptive field is advantageous for higher
contrast, while the power-law model suggests that a smaller
receptive field is advantageous for higher contrast. This is due
to the difference in parametrizing between the two natural-
image models, although they are based on roughly similar
concepts. In previous works, many physicists have constructed

natural-image models based on Ising spin models, assuming
interactions between neighboring pairs of pixels [37,38,44],
and sometimes concluded that Ising spin models also lead to
scale-free characteristics similar to the power-law model [44].
However, the current results demonstrate that the result of
natural-image analysis can depend on the way a natural image
is modeled, striking a note of warning against confusing the
two models when describing a natural image.

C. Ability of visual pathways

Figure 4 compares the performances of three differ-
ent simulated retinogeniculate visual processing pathways:
the magnocellular, parvocellular, and koniocellular systems,
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FIG. 2. Optimal filter widths for reconstruction and hyperparameter estimation. (a)–(c) The nearest-neighbor model; β = 3000, h = 1.
(d)–(f) The power-law model; α = 1, c = 1.
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FIG. 3. (Color online) Dependency of optimal filter width on input image statistics and channel noise. (a)–(c) The nearest-neighbor model;
β = 3000, h = 1, R−1/2 = −15 dB. (d)–(f) The power-law model; α = 1, c = 1, R−1/2 = −15 dB.

which correspond to the three different types (parasol, midget,
and small bistratified) of retinal ganglion cells in the primate
retina. We used LoG filters with γ = 10 and 5 to simulate
the magnocellular and the parvocellular pathways, and used
a Gaussian with γ = 5 for the koniocellular pathway, which
roughly approximates the scale orders of the receptive-field
structures at cone resolution, as has been observed in previous
studies [36,45]. Under various conditions of neural noise and
stimulus statistics, the present simulation yielded information
about the resolution of each visual pathway when encoding
the stimulus statistics and how that resolution depends on
the neural noise or stimulus statistics. For example, the
performance of the magnocellular pathway, which receives
signals from parasol ganglion cells, is expected to be more
mildly affected by changes in the values of the stimulus
statistics, when compared to the other two visual pathways.
These results demonstrate the encoding efficiency of each
visual pathway, which is normalized by the cell density and
response gains. Because the cell distributions and response
gains are not uniform in the real nervous system, it should be
noted that these factors have to be incorporated for a more
realistic analysis. In addition, we also have to be aware of the
nonlinearity and contrast adaptation in the cell responses when
we try to relate the present results to a real nervous system,
as we will discuss in a later section. Nevertheless, the results
presented here are expected to provide a useful basis for such
an advanced analysis in the future.

IV. DISCUSSION

In this study, we proposed a model of stimulus statistics
perception based on encoding by the early sensory system,

in terms of empirical Bayes inference. Using the Fisher
information as a measure of precision, we analyzed the
functional properties of the receptive-field structures in the
early visual system in recognizing stimulus statistics.

The present study simplifies the response properties of
visual nervous cells in several ways. For example, the ganglion
cells in the real retina show nonlinear response functions,
and, in that sense, the “linear filter + noise” model that was
considered in the present study is a simplification of real
retinal ganglion cells. However, such a simple linear model
has been found to be useful for a basic understanding of the
early nervous system [14,46]. In addition, the linear model
can be interpreted as approximating a combined output of
nonlinear units. Here, we demonstrated the relevance of the
present linear model to several nonlinear models that have
been proposed in the context of early visual processing
(Fig. 5). The most profound nonlinearity in the neuronal
response is rectification, which is led by the threshold of
spike generation. The rectification process strongly affects the
information transmission because it loses information that is
conveyed by subthreshold input signals. However, the loss
of information can be compensated for by combining the
outputs of two different cells that have opposite response
polarities (i.e., on- and off-type ganglion cells in the retina),
as in a push-pull circuit. We tested three types of rectification
nonlinearity: rectification that is followed by additive noise
[Fig. 5(b)], rectification followed by additive noise that is
limited to positive average response, which roughly simulates
the non-negative property of cell spiking [47] [Fig. 5(d)],
and rectification after noise perturbation, which was originally
proposed to explain the power-function-like response function
of neurons in the early visual cortex [48–50] [Fig. 5(f)]. For
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FIG. 4. (Color online) Efficiency of information transmission in the retinogeniculate visual pathways. Three simulated visual pathways are
shown: the magnocellular, the parvocellular, and the koniocellular systems. For quantification, Fisher information measures of smoothness (a),
(b), (e), (f) and contrast (c), (d), (g), (h) statistics were used. (a)–(d) The nearest-neighbor model. (a), (c) β was varied with fixed h = 1; (b), (d)
h was varied with fixed β = 3000. (e)–(h) The power-law model. (e), (g) α was varied with fixed c = 1; (f), (h) c was varied with fixed α = 1.

all of these three types of nonlinearity, the net output behavior
(average and noise variance) of these push-pull circuits is
approximated well by the linear + noise model [Figs. 5(c),
5(d), and 5(f)]. This observation supports the idea that the
current linear model, at least qualitatively, approximates the
information representation by the pairs of on-off cell re-
sponses. Nevertheless, it should be noted that the more detailed
structure of noise distribution in the last model [Fig. 5(f)] is
not exactly identical to the linear + noise model; investigating
how explicit modeling of response nonlinearity (after noise
addition, in particular) affects the quantitative performance
of information transmission is an important issue of future
study.

Another simplification in the present model concerns the
dynamics in contrast adaptation. The neural encoding in
the retina is known to show dynamic changes according to

the spatiotemporal context in visual stimuli [51–54]. Although
such a dynamic property of encoding is an interesting research
subject, it was omitted in the present study as in many other
studies, because this simplification was not expected to cause
a drastic effect in the current problem setting. First, the
present study focuses on the encoding of a single frame of
a static natural image. With this assumption, the dynamics
of adaptation to the image contrast, which typically has a
relatively large time constant on the order of several or decades
of seconds, can be ignored. Second, the present study does
not assume particular algorithms of decoding, but considers
an upper bound of information transmission accuracy by
assuming an ideal observer that decodes hyperparameters
according to a maximum likelihood estimation. It is worth
noting that the adaptation is problematic when one assumes a
fixed decoder because it leads to ambiguity for the observer
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FIG. 5. (Color online) Relevance to nonlinear models. Three typical nonlinear response models are considered: (b), (c) (half-wave)
rectification nonlinearity that is followed by additive noise, (d), (e) rectification before conditional noise, which is added only for the input
regime eliciting positive average responses [47], and (f), (g) rectification after the noise perturbation process, which yields average responses
that are similar to power functions [48–50]. (b), (d), (f) Simulations of nonlinear responses of on and off cells. (c), (e), (g) The differences of
on and off responses were computed for each model. The differential responses (on-off) show similar behaviors compared to the linear + noise
model (a), which is considered in the present study, as in a push-pull circuit. The solid or dashed lines represent the average outputs. The
shaded areas indicate intervals of ±1standard deviation that were derived from 1000 trials of the simulation for each input value. The dots
represent trial-to-trial responses (showing 20 trials for each of the input values that were uniformly sampled between −2 and 2). The noise had
a Gaussian distribution with a standard deviation of 0.5.

without knowledge of the changes in the encoding process.
However, the present study assumes an ideal observer, which
provides a complete probabilistic model that relates the
stimulus to the encoder output. This indicates that the present
study provides a theoretical upper bound of the information
transmission performance, whether or not the encoder is in the
adaptation state.

In the analysis of the encoding efficiency of natural image
statistics, we found that the two conceptually similar natural-
image models yielded qualitatively different predictions. It is

not likely that such a dependency is only an artifact resulting
from the simplification of the model. Considering that the
current linear model approximates well the combined outputs
of on and off cells with threshold nonlinearity as described
above, it is not probable that the dependency in the natural-
image model would vanish if more complex nonlinear models
were substituted for the linear model. For these reasons,
the finding that the method of modeling natural images can
qualitatively affect the model predictions should be stated even
though the current model is a simplified one. Nevertheless, it
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should be noted that the quantitative behavior of the model
might change if we introduce a more complex model.

In the present study, we focused on the second-order
statistics that are related to the local light intensity (pixel
luminance). Recent studies have also suggested the human
ability to discriminate higher-order local statistics that are
defined by the image intensity distribution [55–57] or by filter
outputs [58]. Extending the current theoretical framework to
those higher-order statistics is an important future issue. We
expect that the empirical Bayesian approach that is described in
the present study will provide a useful basis for the assessment
of higher-order statistical perceptions.

Although there have been a number of previous attempts to
relate cortical hierarchy to the hierarchical Bayesian method
[17,19–22], few studies have discussed the perceptions of
natural statistics in terms of empirical Bayesian inference. In
most previous studies,the hyperparameters correspond to the
precision (or uncertainty) of predicted estimates in Kalman
filtering, which are implemented in neural connectivity [23,59]
or activation level [60]. However, it is unclear how the nervous
system represents stimulus statistics. Considering that the
stimulus statistics have to be dynamically inferred for each
stimulus in a setting as in the present study, they are likely
to be encoded by the activities of specific neurons in the
higher visual area that receives information from a broad
visual field, or represented by a population response in early
visual neurons [61]. In addition, the gradient of free energy
is expressed using the estimated stimulus ŝ [32], and the
minimum free energy is obtained through an iterative method

that alternates between the optimization of ŝ and θ̂ , which
is similar to the expectation-maximization algorithm [62].
This iterative algorithm can be implemented by reciprocal
connections between cortical areas.

Finally, in light of the empirical Bayesian interpretation, the
estimation of stimulus statistics is found to have at least three
ecological functions: (1) to provide an efficient, compressed
representation of the external world, which on its own can
be utilized as advantageous information for the survival of
the animal; (2) to increase the decoding accuracy of neuronal
signals by flexibly adapting the prior distribution depending on
the input stimulus; and (3) to predict future stimuli according
to the generative model of the stimulus, particularly when the
statistics have temporal structures (such as the hidden Markov
model). Of particular interest, the second and third functions
have not been the target of thorough discussions in previous
studies (note that there have been recent studies that have
linked empirical Bayes and predictive actions; e.g., see [63]
for a free-energy interpretation of predictive uncertainty in
attentional tasks). We believe that interpreting the perceptual
organization of stimulus statistics with a Bayesian framework
provides a useful viewpoint for future investigations into the
functions of the sensory system and perception.
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