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In this work, we adopt a statistical-mechanics approach to investigate basic, systemic features exhibited by
adaptive immune systems. The lymphocyte network made by B cells and T cells is modeled by a bipartite spin
glass, where, following biological prescriptions, links connecting B cells and T cells are sparse. Interestingly,
the dilution performed on links is shown to make the system able to orchestrate parallel strategies to fight
several pathogens at the same time; this multitasking capability constitutes a remarkable, key property of
immune systems as multiple antigens are always present within the host. We also define the stochastic process
ruling the temporal evolution of lymphocyte activity and show its relaxation toward an equilibrium measure
allowing statistical-mechanics investigations. Analytical results are compared with Monte Carlo simulations
and signal-to-noise outcomes showing overall excellent agreement. Finally, within our model, a rationale for
the experimentally well-evidenced correlation between lymphocytosis and autoimmunity is achieved; this sheds
further light on the systemic features exhibited by immune networks.
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I. INTRODUCTION

While the first half of the 19th century saw triumphal
discoveries in physics, ranging from quantum mechanics and
general relativity up to the discovery of chaos, the second half
has probably been inspired by biology: Among its several
fields of investigation, immunology (both theoretical and
experimental) is currently one of the most promising.

The immune system constitutes the defensive army of hosts
against pathogens as bacteria, virus, fungi, or deranged cells. In
higher organisms, one usually distinguishes between the innate
immune system and the adaptive immune system; the latter is
able to mount a specific response against diverse and evolving
pathogens. The adaptive immune system is basically a network
of lymphocytes exchanging chemical signals and proteins
such as cytokines or antibodies. In particular, B lymphocytes
produce antibodies and are grouped into clones: all cells
belonging to the same clone produce the same antibody,
while different clones produce different antibodies. When a
pathogen enters the body, the best-matching clone expands
and its cells secrete the antibody able to chemically bind the
pathogen, hence (possibly) avoiding the propagation of the
infection. If the pathogen has already infected a host cell,
the latter is killed (e.g., via lysis) by killer lymphocytes and
order is restored. B cells and killer cells make up the so-called
“effector branches,” whose activation can take place only if
another signal (beyond the presence of the pathogen) occurs.
This signal is prompted by another subset of lymphocytes,
i.e., helper T lymphocytes, which, devoid of any cytotoxic or
phagocytic activity, can coordinate the immune response by
exchanging with the effector branches either eliciting (e.g.,
interleukin-4 cytokine) or suppressive (e.g., interleukin-10
cytokine) messages [1].

Given the large amount of its constituents (e.g., the
complete B repertoire in humans is estimated to range in
108–1010 clones) and the interest in understanding global

“collective” features of the immune system thought of “as
a whole,” scientists are becoming attracted towards the po-
tentiality of statistical-mechanics approaches even in this area
of theoretical biology (see, e.g., [2–6]). Accordingly, here we
deepen and extend the model introduced in Ref. [7], which is
focused on the adaptive immune response performed by B cells
and helpers interacting via antibodies and cytokines. Clearly,
such a model is far from being a complete representation of
the whole immune system (which is built on a huge number of
different constituents [1], see Fig. 1), yet it is able to capture, as
emergent features, some collective properties of real systems.

From a mathematical perspective, the model is based
on bipartite spin glasses [8] and on their equivalence with
information processing systems [9] as Boltzmann machines
and neural networks. As we will explain, the interactions
between helper cells and B cells via cytokines give rise to
an effective Hebbian structure among helpers alone, where
the latter, under proper conditions, relax towards a “retrieval
state,” meant as the proper activation of a single B clone
[7]. Interestingly, bypassing the mean-field approximation,
where each helper interacts with each B clone, toward a
description where each helper interacts only with a fraction of
the available repertoire of B clones (as biologically required),
makes the helpers able to activate multiple clones to fight
several pathogens simultaneously. This means that helpers can
perform parallel retrievals (i.e., strategies, instructions for the
B cells) at the same time, without falling into spurious states
(i.e., errors), typical of the underlying glassy nature of neural
networks. This is the first network able to accomplish this task
as an emergent property, and its study could contribute toward a
rationale of the systemic properties of immune networks. Such
a theoretical framework aims to mirror Medzhitov research
which, ultimately, seeks to understand the rules of engagement
when our body simultaneously deals with multiple infections
in vivo (see, e.g., [10,11]).
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FIG. 1. (Color online) Main constituents of the immune system:
From the stem cell (left), two branches develop, roughly speaking
defining the primary immune response (lower branch) and the
secondary adaptive one (higher branch). In the box there are B and T
cells, whose properties are the subject of this investigation.

Indeed, despite a clear interest in compassing these mul-
titasking capabilities of the immune system, and despite
dramatic evidences of their failures (e.g., in advanced H.I.V.
progression several opportunistic infections, altogether, be-
come fatal [12–14]), much efforts are still required, from
both experimental and theoretical viewpoints, in order to get
a clear picture. In this work, we will try to tackle the problem
via a statistical-mechanics approach, focusing on multitasking
associative networks. As a necessary first step, here we will
restrict to the “low storage regime” where the number of
helpers is considerably larger than that of B cells. This is
clearly an approximation, however, it still poses the basis for
a general comprehension of parallel processing in biological
devices and opens interesting questions on the capabilities of
diluted (real) networks.

The paper is organized as follows. In Sec. II, we review
the minimal, fully connected model previously introduced in
Ref. [7], while in Sec. III we explain how dilution is introduced
and we scaffold the statistical-mechanics analysis; then, in
Sec. IV, we study in details the parallel retrieval performed by
the system and in Sec. V we give some insights in the numerical
methods exploited; in Sec. VI, we model the occurrence of
lymphocytosis and see how it might be related to autoimmune
phenomena; finally, Sec. VII is left for discussions on results
and on future perspectives. Technical details concerning the
analytical and numerical solutions of the model are collected
in the Appendices.

II. THE MINIMAL MODEL:
FEATURES AND LIMITATIONS

In this section, we briefly review a minimal model for the
response of the adaptive immune system [7]. Since in the
original model there is full symmetry between the effector
branches made by B cells and killer cells, respectively, in
the following we consider only the B branch, so that the

protagonists of the paper will be B cells, helper cells, and
their chemical messengers.

There are B different B clones and each of them is built by
an amount of identical B cells. We call b0,μ the size of the μth
clone in normal conditions, namely, the background reference
value, while the size measured at any arbitrary state is referred
to as bμ, in such a way that the difference (bμ − b0,μ) can be
either positive (if the clone has expanded) or negative (if the
clone has shrunk). Since the range of reference values is much
smaller than the extent of variation of each clone size, it is
possible to assume that the normal size of each clone is the
same, namely, b0,μ = b0,∀μ; moreover, in a healthy state, we
can set b0 equal to zero without loss of generality. In general,
(bμ − b0) is a real variable, ranging in (bμ − b0) ∈ (−∞,∞),
and it will be looked at as a “soft spin.”

B lymphocytes interact with each other through an effective,
“imitative” coupling I, with elements Iμ,ν , such that when a
clone μ has expanded and a large amount of related antibodies
are secreted, these can act upon the other clones ν and
prompt their expansion [2,15,16]. The resulting network of
interactions is often referred to as idiotypic network [see
Fig. 2(a)].

As for helper cells, we analogously introduce a set of
quantities representing the status of each clone: we call hi

the activity of the ith helper clone. However, differently from
B cells, helper cells interact via cytokine signaling [17,18],
which is nonspecific, and intraclonal response can be highly
cooperative1 so that hi is better approximated by a step
function (a steep hyperbolic tangent). Consequently, we define
the status (active or inactive) of helper clones as a “hard
spin” such that if hi = −1 the ith clone is quiescent, while
if hi = +1 it is firing, namely, secreting cytokines.2

Cytokines are cell-signaling protein molecules able to
make B clones grow or shrink, respectively. Denoting with
ξ

μ

i the cytokine exchanged by the ith helper clone and the
μth B clone, we confer to these chemical messengers either
positive (expansion) or negative (suppression) signs and we
assume them to play as quenched variables, extracted from
an a priori probability distribution. It should be remarked
that the interaction between B and helper cells is rather
complex as it requires that B cells first recognize and engulf a
matching antigen and then display antigen fragments bound to
their major histocompatibility complex [1]. Then, the helpers,
attracted by this combination, secrete cytokines directed to
B cells themselves. Here, we generically refer to helper
cells as T cells secreting cytokines, without distinguishing
between “helper” T cells (secreting stimulatory cytokines)

1In particular, in biochemistry the degree of cooperation is measured
by the Hill coefficient C [19,20], such that for high values, e.g., C � 4,
there is a strong sigmoidal shape in the response: The system shows
unresponsiveness to small stimuli while it is maximally responding
once the stimulus reaches a threshold and stays stable beyond.

2As simplifying assumptions, we neglected details about the
subclasses Th1 ,Th2 [17] and we neglected the “hierarchical” strength
of various cytokines [21] (e.g., interferons usually induce stronger
responses w.r.t. interleukins) assuming all the chemical signals as
equivalent. These assumptions can be relaxed by assuming a more
complex alphabet for chemical messengers.
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FIG. 2. (Color online) Example of networks with B = 5 and H = 6. (a) Network for B cells pairwise connected through idiotypic imitative
couplings (dotted lines); notice that the network is underpercolated and made of two components. Each node is associated to a different
specificity encoded by the cell receptor. (b) Bipartite network for B cells and T cells interacting through excitatory (brighter link) or inhibitory
(darker link) signals ξ . For instance, assuming that all T cells are active, i.e., hi = 1, the B clone represented by the upmost node on the right
receives two inhibitory signals and one excitatory signal. Notice that, due to dilution, only a fraction of the all possible B × H links are present.
(c) Monopartite network for T cells obtained by the bipartite graph in (b) through Eq. (5), which directly relates the pattern of interactions ξ

between helpers and B cells to the couplings J between helpers. In the monopartite, weighted graph, T cells are pairwise connected through
imitative (i.e., Jij > 0, brighter link) or anti-imitative (i.e., Jij < 0, darker link) couplings J , whose magnitude is rendered by the thickness of
the link.

and “regulatory” or “suppressor” T lymphocytes (secreting
inhibitory cytokines). Indeed, such a discrimination is intrinsic
in our model since clones coupled with a negative (suppressive)
cytokine can be seen as suppressors, while the clones coupled
to positive (eliciting) cytokine can be seen as helpers.

Taking into account all the related stimuli, the evolution of
an arbitrary B clone can be described as

τ
dbμ

dt
= − 1

B

B∑
ν=1

Iμνbν +
√

1

H

H∑
i=1

ξ
μ

i hi + Aμ +
√

2τ

β
ημ(t).

(1)

In the left-hand side, τ sets the typical time scale for the
growth of B clones (∼1 week), which is described through the
time derivative of bμ. In the right-hand side, we have three
contributions: the first one accounts for the B-B interactions
[see Fig. 2(a)]; the second one accounts for interactions
with helpers through cytokines and defines the bipartite B-H
network [see Fig. 2(b)]; the third term accounts for a pathogen
insult, which is linearly coupled to the corresponding B clone;
the fourth term accounts for a standard white noise with
zero mean and covariance 〈ημ(t)ην(t ′)〉 = δμ,νδ(t − t ′) whose
fluctuation strength is ruled by β.

For the sake of simplicity, we neglect second-order effects
due to the idiotypic network (see, e.g., [2,16,22–25]), and we
set Iμν = 1,∀μ,ν. Hence, within such a mean-field approxi-
mation, we can write (1/B)

∑B
ν=1 Iμνbν ∼ bμ, so to get the

dynamical evolution of the generic μth B clone as

τ
dbμ

dt
= −bμ +

√
1

H

H∑
i=1

ξ
μ

i hi + Aμ +
√

2τ

β
ημ(t)

= − d

dbμ

H(h,b; ξ ) +
√

2τ

β
ημ(t), (2)

where, in the last equality we highlighted the Hamiltonian
representation holding as far as the interactions are assumed
symmetric. In fact, this dynamics converges to a Boltzmann-
type measure on the {b,h} phase space implicitly defined by

the following Hamiltonian:

H(h,b; ξ ) = 1

2

B∑
μ=1

b2
μ −

√
1

H

B∑
μ

H∑
i=1

ξ
μ

i hibμ −
B∑

μ=1

bμAμ.

(3)

Let us focus on the simpler framework of null external
stimuli (Aμ = 0), and outline the plan: Once a Hamiltonian
representation is achieved [Eq. (3)], defining α = B/H , it
is possible to introduce the corresponding partition function
ZH,B (β,α), as a sum over all the configurational space of
the Maxwell-Boltzmann weight exp[−βH(h,b; ξ )], and from
the partition function derive the free energy of the system
F (β,α) ∝ ln ZH,B(β,α). Extremizing the free energy (hence
minimizing the energy and maximizing the entropy of the
system) then offers the thermodynamics of the model, where
spontaneous collective behavior can be observed.

Now, the partition function ZH,B (β,α) of this system,
defined as

ZH,B(β,α) ≡
2H∑
{h}

∫ B∏
μ=1

dbμe−βH(h,b;ξ ),

can be written as

ZH,B (β,α) =
2H∑
{h}

∫ B∏
μ=1

dbμe−∑B
μ=1 β

b2
μ

2 e
β√
H

∑HB
iμ ξ

μ

i hibμ

=
2H∑
{h}

exp

⎛
⎝ β

2H

H∑
ij

B∑
μ=1

ξ
μ

i ξ
μ

j hihj

⎞
⎠

=
2H∑
{h}

exp[−βH̃(h; ξ )], (4)

where the interactions among B clones, which constitute
the first term in Eq. (3), allow convergence in the integrals
of Eq. (4) acting as Gaussian measures. In the statistical-
mechanics scaffold, the parameter β rules the level of noise in
the network; notice that above we mapped β2 into β.
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We stress that, interestingly, the complex interactions
between helpers and B cells are absorbed, via marginalization
(namely Gaussian integration), within a two-body Hamiltonian
H̃(h; ξ ), namely, the evolution of B clones is recast into
the thermodynamics of a system of T clones making up a
monopartite, weighted network [see Fig. 2(c)], where links
are built according to the Hebbian structure

Jij =
B∑

μ=1

ξ
μ

i ξ
μ

j . (5)

Indeed, H̃ turns out to be equivalent to the Hamiltonian of
the Hopfield model, whose striking property is that, under
proper conditions, it is able to work as an associative memory
[26]: Interpreting the string ξμ as a pattern of information and
introducing the set of “pattern overlaps”

mμ ≡ 1

H

B∑
μ=1

ξ
μ

i hi, (6)

one finds that when α � αc and β > βc [9], the system
typically relaxes to a state where one pattern, say the μth one, is
perfectly retrieved, which means that for any i, hi = ξ

μ

i (under
gauge invariance). In this state, mμ = 1 and mν = 0 for any
ν �= μ. In fact, overlaps, also called Mattis magnetizations, are
order parameters of the model, meaning that they are able to
quantify the phases of the system as they are zero when the
system displays no collective capabilities in retrieval and differ
from zero otherwise.

Here, the memorized “patterns of information” correspond
to particular strategies, encoded by cytokine secretions, di-
rected to B cells. Therefore, the overlap mμ related to the
μth B clone is larger whenever the signaling from helpers
is concerted [T cells associated to excitatory (inhibitory)
signals over the B clone considered are (are not) firing] and
this corresponds to an activation of the μth B clone itself. This
situation can be looked at as the retrieval of the strategy aimed
to expand the μth B clone itself, following, for instance, the
insult from a matching pathogen.

As mentioned above, the system described by H̃(h; ξ )
can show cooperative cognitive features as long as α � αc,
where αc � 1 is a critical value implicitly offering the first
global constraint for a correct performance of the immune
system: helper T cells must be more than B cells and this fact
is indeed confirmed experimentally [1]. Interestingly, from
this viewpoint, the breakdown of immune surveillance by
H.I.V. infection or the (temporary) breakdown due to E.B.V.
infection can be associated to an anomalous large value of α:
in the former case, this stems from a drop in the number of
helper cells and in the latter from a growth in the number of
B cells.

These concepts can be better understood by rewriting he
Hamiltonian of the model in terms of pattern overlaps mμ, that
is,

βH̃(h; ξ ) = − β

2H

H∑
i,j=1

B∑
μ=1

ξ
μ

i ξ
μ

j hihj = −βH

2

B∑
μ=1

m2
μ, (7)

in such a way that the minimum (free-) energy principle
implies mμ = 1 for a particular μ (this is called the “pure

state ansatz” [26]). If, for example, the pattern of cytokine
activation concerning the B clone μ = 1 has been retrieved,
then m1 = 1, which means that all helper states hi are parallel
to the corresponding cytokines ξ 1

i linking them to the first
B clone. As a consequence, all the inhibitor signals are
absent (because each ξ 1

k = −1 is coupled to hk = −1 such
that their product is positive), while all the eliciting signals
are present (because each ξ 1

k = +1 is coupled to hk = +1).
Thus, the assembly of helpers spontaneously orchestrates
the response against the antigen coupled to the B clone
μ = 1, conferring to the latter the maximal strength for the
clonal expansion; from this point, classical Burnet theory
follows.

The model described so far has been implicitly embedded
in a mean-field framework [7], where each helper clone is
supposed to interact with the whole B repertoire and the
assembly for deciding about one single B clone includes the
whole helper ensemble. These are both unrealistic features
given the huge sizes of such populations and the fact that
interactions are essentially local and of diffusive nature. In
what follows, we remove the hypothesis of a fully connected
bilayered spin-glass network, and we allow only a (small)
fraction of the whole ensemble of helpers to coordinate the
response of a given B clone.

III. GETTING CLOSER TO BIOLOGY:
DILUTION IN THE B-H INTERACTIONS

When dilution is absent, the minimization of the free energy
derived from the Hamiltonian (7) implies3 the expansion of the
μth B clone (i.e., mμ > 0), but it provides the other clones
with no net information (i.e., mν �=μ = 0). Conversely, real
immune systems are able to address a wide variety of antigens
simultaneously managing several clones at the same time and,
in this sense, we refer to parallel processing capabilities of
the network. This property can be restated as the ability to
have equilibrium states with several order parameters mμ,
μ = 1, . . . ,K , different from zero (or above the noise level
at finite volume), without being spurious states [26]. As we
are going to show, this property can be captured by systems
where couplings are diluted.

More precisely, we introduce dilution in couplings, by
writing

ξiμ = εiμciμ, (8)

where εiμ assumes values ±1, representing the excitatory or
inhibitory quality of the link (cytokine), and ciμ assumes
values 1 or 0 representing existence or absence of the link,
respectively. Their probability distributions are

P (ciμ) = d δ(ciμ) + (1 − d)δ(ciμ−1), (9)

P (εiμ) = 1
2δ(εiμ−1) + 1

2δ(εiμ+1), (10)

3This holds rigorously for patterns ξμ · ξν = H · δ(μ − ν), where
orthogonality results from uncorrelated distributions in the thermo-
dynamic limit H → ∞.
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where d can range continuously in [0,1], allowing some
intensive tuning.4 Hence, we get the following distribution
for ξiμ:

P
(
ξ

μ

i

) = P (ciμεiμ) = 1 − d

2
δ(ξμ

i −1) + 1 − d

2
δ(ξμ

i +1) + dδξ
μ

i
,

(11)

such that for d → 1 no network exists, while for d → 0 the
Hopfield model is recovered.

As it is immediate to check, each missing link between the
ith T clone and the μth B clone in the bipartite B-H network
appears as a 0 (i.e., ξμ

i = 0) in the ith entry of the bit string ξμ in
the equivalent associative network, and this ultimately affects
the interaction matrix J among the helpers. The following
sections are devoted to the investigation of the properties of
the matrix J and of the weighted graph it generates.

A. Notes about the coupling distribution

Let us consider a set of H nodes labeled as i = 1, . . . ,H

and let us associate to each node a string of length B and
built from the alphabet {−1,0,1}, meaning that the generic
element ξ

μ

i , with i ∈ [1,H ] and μ ∈ [1,B], can equal either
±1 or 0. For the H -H network described by the Hamiltonian
under investigation, the interaction strength between two
arbitrary nodes i and j is given by Eq. (5), which is reported
here as

Jij =
B∑

μ=1

ξ
μ

i ξ
μ

j . (12)

Of course, Jij ∈ [−B,B]. Equation (12) generates a network
of mutually and symmetrically interacting nodes, where a
link between nodes i and j is drawn whenever they do
interact directly (Jij �= 0), either imitatively (Jij > 0) or anti-
imitatively (Jij < 0).

First, one can calculate the probability that two nodes (since
they are arbitrary, we will drop the indices) in the H -H network
are linked together, namely,

Plink(d,B) = P (J �= 0; d,B) = 1 − P (J = 0; d,B)

= 1 −
B∑

k=0

Psum−0(k; d,B), (13)

where Psum−0(k; d,B) is the probability that two strings display
(an even number) k of non-null matchings summing up to
zero; otherwise stated, there exist exactly k values of μ such
that ξ

μ

i ξ
μ

j �= 0 and they are half positive and half negative. In
particular, Psum−0(0; d,B) = [d(2 − d)]B because this is the
probability that, for any μ ∈ [1,B], at least one entry (either
ξ

μ

i or ξ
μ

j or both) is equal to zero. More generally,

Psum−0(k; d,B)

=
(

1 − d

2

)2k

[d(2 − d)]B−k

(
B

k

)[
2k

(
k

k/2

)]
, (14)

4The assumption of symmetry for cytokine distribution [see
Eq. (10)] can be easily relaxed leading to a network with low level of
activation consistently with real systems [28].

√
B(1 − d)

P
(J

=
0;

d
,B

)

B = 100
B = 300
B = 600
B = 900
B = 1200

FIG. 3. (Color online) The probability P (J = 0; d,B) is plotted
as a function of the dilution d and for different values of B, as
shown by the legend. Notice the semilogarithmic scale and that
dilution is rescaled by

√
B so to highlight the common scaling of

the distributions.

where the first and the second factors in the right-hand side
require that k entries are nonzero and the remaining B − k

entries are zero; the third factor accounts for permutation
between zero and nonzero entries, while the last term is the
number of configurations leading to a null sum for non-null
entries. Therefore, we have

P (J = 0; d,B)

= [d(2 − d)]B
B∑

k=0

[
(1 − d)2

2d(2 − d)

]k (
B

k

)(
k

k/2

)
, (15)

whose plot is shown in Fig. 3. As for its asymptotic behavior,
we can expand for d close to 1 and close to 0 (for simplicity,
we assume B finite and even) getting, respectively,

P (J = 0; d,B) = 1 − B(1 − d)2 + 3

4
B(B − 1)(1 − d)4

+ O(1 − d)6, (16)

P (J = 0; d,B) = (−1)B/2√π

�(1/2 − B)�(1 + B/2)
(1−2B d) +O(d2)

≈ 1 − 2B d

4B/2

(
B

B/2

)
+ O(d2). (17)

The average number of nearest neighbors per node 〈z〉d,B,H

follows immediately as 〈z〉d,B,H = HPlink(d,B).
More generally, we can derive the coupling distribution

P (J ; d,B), once having defined P+1(k), P−1(k), and P0(k), as
the probability that, given two strings, they display k matches
each equal to +1, −1, and 0, respectively, namely,

P+1(k; d) = P−1(k; d) =
[

(1 − d)2

2

]k

,

(18)
P0(k; d) = [d(2 − d)]k .

Hence, we can write

P (J ; d,B) =
(B−J )/2∑

l=0

P+1(l + J ; d)P−1(l; d)

× P0(B − 2l − J ; d)
B!

l!(l + J )!(B − 2l − J )!
∼ N [0,σJ (d,B)]. (19)
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FIG. 4. (Color online) Examples of structures for the [H -H ] system obtained for relatively high values of dilution and different sizes H

and B = ln(H ), namely, H = 500, B = 6, and d = 0.85 (leftmost panel); H = 500, B = 6, and d = 0.98 (middle panel); H = 5000, B = 8,
and d = 0.98 (rightmost panel); isolated nodes are omitted from these plots. The arrangements of nodes have been realized so as to highlight
the modularity of the structures which emerges especially at large dilutions. A node i working as a bridge between modules correspond to a
string ξi displaying more than one non-null entry.

The last asymptotic holds for large B, hence it is sufficient that
B scales like Hγ , with γ � 1 in the limit H → ∞. The null
mean value 〈J 〉d,B = 0 is due to the symmetry characterizing
P (ξμ

i ) [see Eq. (9)], while the standard deviation is σJ (d,B) =√〈J 2〉d,B = √
B(1 − d).

It is worth underlining that P (J ; d,B) does not depend
on the size H . Indeed, patterns are drawn independently
and randomly so that the coupling Jij may be regarded as
the distance covered by a random walk of length B and
endowed with a waiting probability d(2 − d). Hence, the
end-to-end distance is distributed normally around zero and
with variance (mean squared distance) given by the effective
number of steps performed, according to the diffusion law,
namely, ∼[1 − d(2 − d)]B = (1 − d)2B, in agreement with
results above.

B. Pattern dilution versus topological dilution

When dilution on pattern entries is introduced, a topological
dilution in [H -H ] can be induced, and, as we will see,
the resulting structure is far different from the one which
would be realized by a random bond deletion. Even from
a thermodynamic point of view, the behavior of the diluted
system is deeply different from the case of a Hopfield model
where edges are randomly deleted [27].

Let us first focus on the topological properties of the
emerging monopartite graph. First, we recall that, according
to a mean-field approach, the network is expected to display
a giant component when the average link probability is
larger than 1/H . In the thermodynamic limit and assuming
a large enough size B (stemming from either low, i.e.,
B ∼ ln H , or high, i.e., B ∼ H , storage regimes) to ensure
the result in Eq. (19) to hold, for any finite value of 1 − d

the emergent graph turns out to be always overpercolated.

In fact, Plink(d,B) = 1 − P (J = 0; d,B) ∼ 1 − 1/

√
2πσ 2

J , so

that it suffices that σJ > H/[
√

2π (H − 1)] → 1/
√

2π and
this leads to d < 1 − (2πB)−1/2 → 1. Similarly, when B

is finite, we can check the possible disconnection of the
network by studying P (J = 0; d,B) from Eq. (16) and we
get that Plink(d,B) < 1/H for d > 1 − 1/

√
BH . Thus, in the

thermodynamic limit, for any finite value of 1 − d, the graph is
still overpercolated. Replacing 1/H with (ln H )/H , one also
finds that the graph is even always connected.

In Fig. 4, we report some examples of structures for
several choices of parameters; these evidence that when d is
(relatively) small, the graph is (almost) fully connected, while,
as d gets close to 1, the graph starts to exhibit high modularity
with a number of cliques equal to B. More precisely, nodes
corresponding to helper clones and that in the bipartite graph
[B-H ] are connected to the same node, say μ, will form in
the monopartite graph [H -H ] a clique; a node that in the
bipartite graph has k neighbors, in the monopartite graph will
serve as a bridge between k cliques (see also [16,29]). If we
take d properly approaching to 1 as H is increased, different
scenarios may emerge [30,31].

Another kind of dilution can be realized by directly cutting
edges in the resulting associative network, as for instance early
investigations in the neural scenario by Sompolinsky on the
Erdös-Renyi graph [26,32] or more recently by Coolen and
co-workers on small worlds and scale-free structures [33,34].
Such different ways of performing dilution, either on links
of the associative network (see [26,32–34]) or on pattern
entries [see Eq. (11)], yield deeply different thermodynamic
behaviors, as for instance evidenced in Ref. [27], by looking
at the distribution of fields insisting on each spin, namely, for
the generic ith spin ϕi = ∑N

i �=j=1 Jijσj .

IV. PARALLEL PROCESSING PERFORMANCES

A. Statistical mechanics of the low-storage case

As a minimal bibliography in the statistical-mechanics
approach, we report that a different study sharing some
similarities with ours investigates an associative network
with pattern inhibition (due to chemical modulation) in the
neuroscience scenario [35,36], while a macroscopic behavior
close to parallel processing was reported in Ref. [37], where
more than one overlap was able to retain strictly positive values
owing to strong pattern correlations (a completely different
motivation with respect to ours).
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Now, we solve the model in the low storage regime B ∼
ln H , such that the limit α = limH→∞ B/H = 0 holds.5 Like
in the Amit-Gutfreund-Sompolinsky (AGS) neural network
[26], the comprehension of the nonsaturated case (α = 0) is
the first fundamental step to face before moving to the saturated
case (α > 0). This can be accomplished in several ways and
here we adopt the approach described in Ref. [9].

As standard in disordered statistical mechanics, we intro-
duce three types of average: the Boltzmann average ω(mμ) =∑

h mμ exp[−βH̃(h; ξ )]/ZH,B(β,d), the averageE performed
over the quenched disordered couplings ξ , and the global
expectation Eω(mμ) defined by the brackets 〈mμ〉ξ .

The equilibrium equations for the order parameter can be
obtained from the quenched free energy 〈F (β,d)〉ξ defined as

〈F (β,d)〉ξ = − lim
H→∞

1

β
E ln ZH,B (β,d)

= − lim
H→∞

1

β
E ln

2H∑
{h}

e−βH̃(h;ξ ). (20)

Introducing the notation m = (m1, . . . ,mB) and ξi =
(ξ 1

i , . . . ,ξB
i ), the above equation can be expressed in terms

of the density of states D(m),

D(m) ≡
2H∑
{h}

δ[m − m(h)], (21)

as

ZH,B(β,d) =
∫

dm Z(m), Z(m) = eHβm2/2D(m).

Notice that the delta function here is a product of independent
delta functions, one for each B clone, namely,

δ[(m − m(h)] =
B∏

μ=1

δ[mμ − mμ(h)].

We need now to introduce B integration variables x =
(x1, . . . ,xB) to switch the delta functions to their integral
representation as

D(m) =
(

H

2π

)B ∫
dx eiHx·m

2H∑
{h}

e−i
∑H

i

∑B
μ hiξ

μ

i xμ

=
(

H

2π

)B ∫
dx eH [ix·m+〈ln 2 cos(x·ξ )〉ξ ],

where we assumed the property limH→∞
∑H

i f (ξi)/H =
〈f (ξ )〉ξ .

Physically speaking, the log density of the states quantifies
the constrained entropy S(m) and can be evaluated through
saddle point integration because of the factor H in the exponent
of its integral representation above. Strictly speaking, we
calculate only the leading term of the density of states, which

5Results outlined within this scaling can be extended with little
effort to the whole region B ∼ Hγ , with γ < 1, such that the
constraint α = 0 is preserved, as realized in the Willshaw model [38]
concerning neural sparse coding.

is the one retaining statistical meaning in the thermodynamic
limit and it is given by the maximum over x of S(x,m), the
latter being

S(x,m) = ix · m + 〈ln 2 cos(x · ξ )〉ξ .
It is then clear that the intensive quenched free energy can be
rewritten as

lim
H→∞

〈F (β,d)/H 〉ξ

= − 1

β
ln 2 − lim

H→∞
1

Hβ

∫
dmD(m)e

1
2 βHm2

. (22)

The main contribution to free energy can be made explicit
as a finite-dimensional integral; as outlined before for the
constrained entropy, through the extensively linearity property
of thermodynamic observables, for large values of H the
integral will be dominated by the saddle point that maximizes
the exponent as

lim
H→∞

〈F (β,d)/H 〉ξ = − lim
H→∞

1

Hβ

∫
dm dx e−Hβf (x,m)

= extr[f (x,m)], (23)

f (x,m) = −1

2
m2 − ix · m − 1

β
〈ln 2 cos[βξ · x]〉ξ . (24)

To identify the various ergodic components (which are
expected to be B + 1, one being the paramagnetic one),
we find the stationary points of f (m) through the system
∂mμ

f (m) = 0 for all μ ∈ (1, . . . ,B), which gives the vectorial
self-consistence equations

x = iβm, im = 〈ξ tan[ξ · x]〉ξ . (25)

Being the saddle point values of x purely imaginary, and using
tanh(x) = −i tan(ix), we get

m = 〈ξ tanh[βξ · m]〉ξ . (26)

Then, the above equation has to be averaged over the pattern
distribution P (ξμ

i ) and finally solved numerically, as explained
in the examples of Secs. IV B and IV C.

Before proceeding, it is worth noticing that the Hamiltonian
H̃(h; ξ ) of Eq. (7) is quadratic in the pattern overlaps mμ and
the B stored patterns contain (on average) a fraction d of
null entries. As a consequence, the pure state ansatz (m1 =
1,m2 = · · · = mB = 0) [26] can no longer work. In fact, now,
the retrieval of a pattern (say ξ 1, the one coupled to m1) does
not employ all the available spins (and coherently m1 < 1, for
d �= 0) and those corresponding to null entries can be used to
recall further patterns up to the exhaustion of all spins.

In particular, at zero noise level and relatively low degree of
dilution (d < dc), one pattern, say μ = 1, is perfectly retrieved,
while a fraction d of spins is still available and its overlap with
any remaining pattern is, on average, 1 − d; hence, the second
best-retrieved pattern, say μ = 2, displays a (thermodynamical
and quenched) average of the Mattis magnetization equal to
d(1 − d). In other words, once m1 has been retrieved, it is
energetically convenient for the system to coordinate its free
helpers to align with another pattern instead of letting them
align randomly. Proceeding analogously, one finds

mk = dk−1(1 − d). (27)

042701-7



ELENA AGLIARI et al. PHYSICAL REVIEW E 87, 042701 (2013)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d

m

0 0.2 0.4 0.6 0.8 1
d

m1

m2

FIG. 5. (Color online) Behavior of the two Mattis magnetizations m1 and m2 versus d at two (small) noise levels, namely, β−1 = 10−4 (left
panel) and β−1 = 0.20 (right panel). We recall that m1 and m2 represent, from a biological perspective, the extent of the signal received by the
clones μ = 1 and 2, respectively. Thus, when both m1 and m2 are relatively large, both clones are prompt to react simultaneously.

Therefore, the overall number K of retrieved patterns cor-
responds to

∑K−1
k=0 (1 − d)dk = 1, with the cutoff at finite

N as, due to discreteness, (1 − d)dK−1 � N−1 must hold.
For any fixed and finite d, this implies K � ln N , which
can be thought of as a “parallel low-storage” regime of
neural networks. Such a hierarchical fashion for align-
ment, providing an overall energy −H/2

∑
k[(1 − d)dk]2 =

−H (1 − d2+2B )(1 − d)/[2(1 + d)], is more optimal than a
uniform alignment of spins among the available patterns
which would yield mk = d/B for any k and an overall energy
−H/2

∑
k(d/B)2 = −(d2H )/(2B).

On the other hand, at larger degrees of dilution (d > dc) and
B > 2, the state (27) is no longer stable since no magnetization
is large enough to yield a field ξ

μ

i mμ able to align all the related
(ξμ

i �= 0) spins; as a result, the system falls into a spurious state
where all patterns are partially retrieved, but none exactly. The
state corresponding to Eq. (27) can be formally written as

hi = ξ 1
i +

B∑
ν=2

ξν
i

ν−1∏
μ=1

δ
(
ξ

μ

i

)
, (28)

and it ceases to be stable when m1 �
∑

k>1 mk . For B > 2,
this inequality has a solution, which corresponds to a critical
dilution dc. It is easy to see that dc approaches (exponentially
from above) 1

2 in the limit of large B [27]. The picture described
above is corroborated by the numerical solution of Eq. (26)
and by the numerical simulations presented in the following
sections.

B. The case B = 2

Despite the structure of the self-consistencies for an
arbitrary value of B, Eq. (26) is extremely simple both
conceptually and analytically, they become, already for B > 3,
of prohibitive length and handleable only via calculators.
Here, we first focus on the simplest case B = 2, where the
parallel ansatz (27) is always stable (see also Appendix B)
and no spurious state emerges. The analysis of this special
case is useful in order to introduce the statistical-mechanics
arguments and as a starting point to see how parallel processing

does work. The self-consistencies encoded into Eq. (26) for
the simplest case B = 2 read off as

〈m1〉ξ = d(1 − d) tanh(β〈m1〉ξ )

+ (1 − d)2

2
{tanh[β(〈m1〉ξ + 〈m2〉ξ )]

+ tanh[β(〈m1〉ξ − 〈m2〉ξ )]}, (29)

〈m2〉ξ = d(1 − d) tanh(β〈m2〉ξ )

+ (1 − d)2

2
{tanh[β(〈m1〉ξ + 〈m2〉ξ )]

− tanh[β(〈m1〉ξ − 〈m2〉ξ )]}. (30)

The solution of these equations for different values of β is
reported in Fig. 5. In the low (fast) noise limit (β → ∞,
right panel), when no dilution is present (d = 0) the second
magnetization m2 disappears and the first magnetization m1

approaches the value 1 as expected because the Hopfield
model is recovered. As dilution is increased, m1 decreases
linearly, while m2 displays a parabolic profile with peak
at d = 1

2 . In the presence of (fast) noise (right panel), m2

starts growing for higher values of dilution because (see next
section and the signal-to-noise analysis of the Appendix for
further details) the signal insisting on the latter, which is
proportional to d(1 − d), must be higher than the noise level
in order to be effective. Also, notice that, from intermediate
dilution onwards, m1 and m2 collapse and the related curves
converge at a “bifurcation” point.

We now deepen these results, first from a more intuitive
point of view, and later from a more rigorous one. Let us divide
spins into four sets:S1, which contains spins i corresponding to
zero entries in both patterns (ξ 1

i = ξ 2
i = 0), therefore behaving

paramagnetically; S2, which includes spins seeing only one
pattern (|ξ 1

i | �= |ξ 2
i |); S3, which contains spins corresponding

to two parallel, non-null entries (ξ 1
i = ξ 2

i �= 0), thus being the
most stable; S4, which includes spins i corresponding to two
parallel, non-null entries (ξ 1

i = −ξ 2
i �= 0), hence intrinsically

frustrated.
The cardinality of these sets are |S1| = d2, |S2| = 2d(1 −

d), |S3| = (1 − d)2/2, and |S4| = (1 − d)2/2. Now, the most
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FIG. 6. (Color online) Mattis magnetizations m versus dilution d for B = 3 (leftmost panel), B = 4 (middle panel), and B = 5 (rightmost
panel) patterns at zero noise level (β−1 = 0). The degree of dilution ranges in [0,dc(B)], where dc depends on the number of patterns
considered, namely, dc ≈ 0.61, dc ≈ 0.54, dc ≈ 0.52, respectively. Data from Monte Carlo simulations (symbols) are successfully compared
with the analytic results of Eq. (27) (solid lines).

prone spin to align with the related patterns are those in S3

and in S2, and this requires (1 − d) < β−1 for the field to get
effective. As d is further reduced, m1 and m2 grow paired, due
to the symmetry of the sets S2 and S3. The growth proceeds
paired until the magnetizations get the value m1 = m2 =
(1 − d)2/2 + d(1 − d), where the two contributions come
from spins aligned with both patterns and with the unique
pattern they see, respectively. From this dilution onwards,
frustrated spins also start to align so that one magnetization
necessarily prevails over the other. This explanation can be
extended to any finite B and, in general, the number of sets
turns out to be P + 1 +∑B

k=0�P−k
2 �.

Now, we want to quantify bifurcation points, and to this
task let us call

x = 〈m1〉ξ − 〈m2〉ξ . (31)

We use Eqs. (29) and (30) and expand for small values of x:

〈m1〉ξ − 〈m2〉ξ =x = d(1−d)[tanh(β〈m1〉ξ ) − tanh(β〈m2〉ξ )]

+ (1 − d)2 tanh[β(〈m1〉ξ − 〈m2〉ξ )],

where

d(1 − d)[tanh(β〈m1〉ξ ) − tanh(β〈m2〉ξ )]

∼ d(1 − d)

[
tanh(β〈m1〉ξ ) − tanh(β〈m2〉ξ )

+ βx

cosh2(β〈m1〉ξ )

]

and

(1 − d)2 tanh(β〈m1〉ξ − 〈m2〉ξ ) ∼ (1 − d)2βx + O(x3).

Thus, the leading term is

x ∼
[

d(1 − d)β

cosh2(β〈m1〉ξ )
+ β(1 − d)2

]
x. (32)

The critical value of β corresponding to the bifurcation point
is defined as

βbif
c = 1

(1 − d)2
[
1 + (1−d)

d
1

cosh2(βbif
c 〈m1〉ξ )

] . (33)

This mechanism can be easily generalized to the case B > 2.

We now analyze the critical noise level at which the order
parameters disappear and the network dynamics becomes
ergodic: By expanding expressions (30), we find

〈m2〉ξ ∼ d(1 − d)[β〈m2〉ξ ] + (1 − d)2

2

[
β〈m1〉ξ + β〈m2〉ξ

+ β3

3

(〈m1〉3
ξ + 〈m2〉3

ξ + 3〈m1〉2
ξ 〈m2〉ξ

+ 3〈m1〉ξ 〈m2〉2
ξ

)]+ d(1 − d)
β3

3
〈m2〉3

ξ

− (1 − d)2

2

[
β〈m1〉ξ − β〈m2〉ξ + β3

3

(〈m1〉3
ξ −〈m2〉3

ξ

− 3〈m1〉2
ξ 〈m2〉ξ + 3〈m1〉ξ 〈m2〉2

ξ

)]
,

such that we can write

〈m2〉ξ ∼ (1 − d)β〈m2〉ξ + O
(〈m2〉3

ξ

)
. (34)

Therefore, the critical noise level turns out to be

βc = 1

1 − d
, (35)

which collapses to βc = 1 when d → 0 (correctly recovering
the Hopfield scenario). Again, this calculation can be easily
generalized to the case B > 2, so to find (possibly on a calcu-
lator) all the bifurcation points at each desired storage level.

C. The case B > 2

In this section, we present some results for the general case
B > 2. In general, at zero noise level and for relatively small
values of d, the parallel ansatz of Eq. (27) holds, as shown in
Fig. 6 where several values of B are considered.

When noise is also introduced, we have that for the kth
pattern to be retrieved, the related field ξk

i mk insisting on the
ith spin has to be larger than the noise level, that is [dk−1(1 −
d)] > β−1, if this condition is not fulfilled the field is confused
with the noise and the pattern can not be retrieved. In particular,
m2 is nonvanishing only for d > (1 − √

1 − 4/β)/2, m3 is
nonvanishing only for (approximately) d > 1 − β−1 − 2β−2,

042701-9



ELENA AGLIARI et al. PHYSICAL REVIEW E 87, 042701 (2013)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d

m

m1

m2

m3

0 0.5 1
d

0 0.5 1
d

FIG. 7. (Color online) From left to right: Mattis magnetizations m versus dilution d for B = 3 at β−1 = 0.001, β−1 = 0.11, and β−1 = 0.26,
respectively. The discontinuity occurring at d = dc ≈ 0.61 in the leftmost panel corresponds to the failure of the parallel ansatz (27): for d > dc,
the system relaxes towards a state where none of the patterns are completely retrieved. For large degrees of noise, the discontinuity is smoothed
out.

and so on. On the other hand, when d > 1 − β−1, no pattern
is retrieved. This is confirmed by Fig. 7 where the case B = 3
is considered at different temperatures.

D. Space of configurations

In this section, we deepen the structure of parallel states
in the configurational space. To this task, let us fix a pattern
ξ 1
i , with i = 1, . . . ,H , and a dilution d, in such a way that

H d entries of ξ 1 are expected to be null and the remaining
H (1 − d) are expected to be half equal to +1 and half equal to
−1. The number of spin configurations displaying maximum
overlap with ξ 1 corresponds to the degeneracy induced by null
entries, namely 2Hd ; all these configurations lay in an energy
minimum because their pattern overlap is maximum (actually
the same holds for the symmetrical configurations due to the
gauge symmetry of the model).

Let us now generalize this discussion by introducing the
number of configurations n(m,d) whose overlap with the
given pattern displays m misalignments, in such a way that
n(m,d) is given not only by the degeneracy induced by null
entries, but also by the degeneracy induced by the choice of
m entries out of H (1 − d), which have to be mismatched. It
is easy to see that n(m,d) = 2Hd ( H (1 − d)

m ). Interestingly, for
such configurations, the signal felt by a spin i can be written
as ϕi = ξ 1

i {H [(1 − d)] − 2m} and the effect of the correction
due to the m misalignments might be vanishing in the presence
of a sufficiently large level of noise, so that the system is
not restricted to the 2Hd configurations corresponding to the
minimum energy, but it can also explore all the configurations
n(m,d).

Therefore, we can count the number of configurations
ñ(x,d) exhibiting a number of misalignments, with respect
to ξ 1, up to a given threshold x; in the presence of
noise, such configurations are all accessible, namely, they
all lay in the same “deep” minimum. Indeed, we can write
ñ(x,d) = ∑x

m=0 n(m,d); of course, for x = H (1 − d), we
recover ñ(x,d) = 2H . Moreover, when x = H (1 − d)/2, we
can exploit the identity

∑i
k=0( 2i

k ) = 1/2[4i + ( 2i

i )] [39], and

assuming without loss of generality H (1 − d) to be even we
get

ñ[H (1 − d)/2,d] =
x∑

m=0

n(m,d)

= 2Hd

2

[
2H (1−d) +

(
H (1 − d)

H (1 − d)/2

)]

≈ 2H

2

[
1 +

√
2

πH (1 − d)

]
, (36)

where in the last passage we used the Stirling approximation
being H (1 − d) � 1. Then, we have ñ[H (1 − d)/2,d] � 1/2,
and similar calculations can be drawn for smaller thresholds,
e.g., ñ[H (1 − d)/2 − 1,d] � 1/2.

As shown in Fig. 8, once d is fixed, when x is small
only a microscopic fraction ñ(x,d)/2H of configurations
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FIG. 8. (Color online) Normalized number of accessible config-
urations ñ(x,d) as a function of x and d for a system made up of
H = lymphocytes. The critical line xc = (1 − d) corresponds to the
emergence of a giant component and above it the system is no longer
able to retrieve patterns of information.
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is accessible (in the thermodynamic limit, this fraction is
vanishing), while by increasing the tolerance x, more and
more configurations get accessible and correspondingly their
fraction gets macroscopic. From a different perspective, each
configuration can be looked at as a node of a graph and those
accessible are connected together. The link probability is then
related to x, and when x is large enough, a “giant component”
made up of all accessible configurations emerges. This is a
percolation process in the space of configurations. Indeed,
similarly to what happens in canonical percolation processes,
the curves representing the giant component relevant to
different sizes H intersect at around 1

2 , and this determines
the percolation threshold xc. According to Eq. (36), we can
write xc ≈ H (1 − d)/2. Interestingly, when a giant component
emerges, retrieval is no longer meaningful because the system
may retrieve essentially anything and this corresponds to the
critical line (in the d,β plane) where all the magnetizations
simultaneously disappear.

V. PERTURBING WITH RANDOM FIELDS:
LYMPHOCYTOSIS AND AUTOIMMUNITY

The model described so far is able to capture several
issues of real immune systems. For instance, when affected
by Autoimmune Lymphoproliferative Syndrome, the system
undergoes a massive activation where a fraction (possibly
extensive) of clones are made to expand (e.g., see [40]); in
this particular condition, the reference state has to be taken
b0 � 0 to mimic strong clonal expansions. Therefore, in
the partition function ZH,B(α,β), we can substitute the cen-
tered Gaussian weight exp(−∑μ b2

μ/2) with exp[−∑μ(bμ −
b0)2/2] for the pertaining fraction of deranged clones. It is
immediate to check [7] that when the bipartite spin-glass
system is mapped into the associative network counterpart,
this time a new term appears in the resulting Hamiltonian
H̃(h; ξ ):

H̃(h; ξ ) = − 1

2H

H∑
i,j=1

⎛
⎝ B∑

μ=1

ξ
μ

i ξ
μ

j

⎞
⎠hihj − a

H∑
i=1

ηihi,

(37)

where η ∈ N [0,1] and a is a parameter tuning the overall effect
(it includes the number of deranged clones and their size b0).

It is intuitive to see that, as the parameters (β, a) are
tuned, different behaviors emerge. For instance, when a is
too large, one expects that random effects prevail over the
retrieval capacity of the system and helpers are no longer able
to properly manage an immune response, ultimately leading
to random activation of B clones and possible autoimmunity
phenomena. Indeed, it has been recently evidenced (see, e.g.,
[41,42]) that lymphocytosis can yield Chronic Lymphocytic
Leukemia, which in turn is often accompanied with mild-
to-severe autoimmune manifestations [43,44]. However, a
clear explanation for this link is still missing. Hence, in
the following, we try to obtain a systemic rationale of the
relation between lymphocytosis and autoimmunity through
the statistical mechanics perspective.

Given the Hamiltonian (37), the goal is finding an explicit
expression for the self-consistencies of the order parameters

〈mμ〉ξ that generalizes Eq. (27). To accomplish this task, we
adapted the Hamilton-Jacobi method, originally developed
in the framework of spin glasses [45,46] to this scenario:
Let us consider a generalized partition function ZH,B (t,x)
which depends on two interpolating parameters t,x, which
can be considered as generalized time and space, such that
the corresponding averaged free energy 〈F (t,x)〉ξ,η can be
derived from the free energy at finite H as 〈F (t,x)〉ξ,η =
limH→∞〈FH (t,x)〉ξ,η, being

〈FH (t,x)〉ξ,η

= −1

H
E ln ZH,B (t,x)

= − 1

H
E ln

∑
{h}

e
t

2H

∑H
i,j=1

∑B
μ=1 ξ

μ

i ξ
μ

j hihj +x
∑H

i=1 hi+βa
∑H

i=1 ηihi .

(38)

Note that the correct free energy is recovered when t = β, x =
0. It is straightforward to consider explicitly the 〈FH (t,x)〉ξ,η

derivatives

∂〈FH (t,x)〉ξ,η

∂t
= −1

2

B∑
μ=1

〈
m2

μ

〉
ξ,η

, (39)

∂〈FH (t,x)〉ξ,η

∂xμ

= 〈mμ〉ξ,η, (40)

and note that, if we define a potential VH (t,x) as the sum of
the variances of all the mμ, namely,

VH (t,x) = 1

2

B∑
μ

(〈
m2

μ

〉
ξ,η

− 〈mμ〉2
ξ,η

)
, (41)

in the space of the interpolants (t,x), the following Hamilton-
Jacobi equation holds:

∂〈FH (t,x)〉ξ,η

∂t
+ 1

2

B∑
μ=1

(
∂〈FH (t,x)〉ξ,η

∂xμ

)2

+ VH (t,x) = 0.

(42)

Then, solving the model consists in finding the free-field
solution, requiring VH (x,t) = 0 as in the thermodynamic limit
(H → ∞) the order parameters self-average. If the potential
is zero, then the energy is a constant of motion and it is
trivially the Lagrangian L = 1

2

∑B
μ( ∂〈FH (t,x)〉ξ,η

∂xμ
)2. Further, the

trajectories of motion are straight lines:

xμ(t) = x0 + 〈mμ〉ξ,ηt. (43)

If we denote with a bar the Hamilton function which satisfies
the free-field problem, such solution F̄ (t,x) can be worked
out evaluating it in a starting point t0,x0 in the (t,x) space
and adding to it the integral of the Lagrangian over the time,
namely,

〈F̄ (t,x)〉ξ,η = 〈F̄ (t0,x0)〉ξ,η +
∫ t

t0

dt ′L(t ′,x). (44)
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FIG. 9. (Color online) Comparison of the parallel processing capabilities of the network with two (upper panels) and three (lower panels)
retrieved patterns and a random field afflicting their recognition. Left panels show the order parameter m versus dilution at noise level β = 10
and a = 0.1. Right panels show the order parameter m versus dilution at noise level β = 100 and a = 0.2. Both analytical (solid lines) and
Monte Carlo (the shades represent the standard deviation) results are displayed to show the good overlap between the various curves. The net
effect of the random field is always to deteriorate the net capabilities of helper network.

We choose t0 = 0 and we have

〈F̄ (0,x0)〉ξ,η

= − 1

H
E ln

∑
{σ }

exp

⎛
⎝ B∑

μ=1

x
μ

0

H∑
i=1

ξ
μ

i σi + βa

H∑
i=1

ηiσi

⎞
⎠

= − 1

H
E ln

H∏
i=1

∑
{σ }

exp

⎛
⎝ B∑

μ=1

x
μ

0 ξ
μ

i σi + βaηiσi

⎞
⎠ . (45)

Using Eq. (43), we obtain

〈F̄ (0,x0)〉ξ,η

= − ln

⎧⎨
⎩2 cosh

⎡
⎣ B∑

μ=1

[x(t) − 〈mμ〉ξ,ηt]ξ
μ

i + βaη

⎤
⎦
⎫⎬
⎭. (46)

For the second term of Eq. (44), since VH (t,x) = 0 when H →
∞, the Lagrangian takes the “standard” form L = p2/2m,
where the mass is m = 1 and the squared momentum p2 =∑B

μ〈m2
μ〉ξ,η. Thus, overall we can write

∫
dt ′L(t ′) =

B∑
μ

〈mμ〉2
ξ,η

t

2
. (47)

Now, we must evaluate the solution at t = β, x = 0:

〈F̄ (β,d,a)〉ξ,η = ln 2 + ln cosh

(
β
∑

μ

〈mμ〉ξ,ηξ
μ

i + βaη

)

− β

2

B∑
μ

〈mμ〉2
ξ,η. (48)

So, 〈F̄ (β,d,a)〉 corresponds to the free energy of the system
perturbed by the random field η and by minimizing this
function with respect to 〈mμ〉ξ,η, hence posing

∂〈F̄ (β,d,a)〉ξ,η

∂〈mμ〉ξ,η

= 0,

we find the self-consistency equations

〈mμ〉ξ,η =
〈
ξμ tanh β

(∑
μ

mμξ
μ

i + aη

)〉
ξ,η

, (49)

which generalize Eq. (27) and recover the latter when a → 0.
Finally, we average 〈mμ〉ξ,η over P (ξ ) and P (η) and solve the
equations numerically, as we are going to show explicitly for
B = 2.

Solving Eq. (49) in the case of two patterns, we find

〈m1〉ξ,η =
∫

dμ(η)
d(1 − d)

2
{tanh[β(〈m1〉ξ,η + aη)] + tanh[β(〈m1〉ξ,η − aη)]}

+ d2

4
{tanh[β(〈m1〉ξ,η + 〈m2〉ξ,η + aη)] + tanh[β(〈m1〉ξ,η + 〈m2〉ξ,η − aη)]}

+ d2

4
{tanh[β(〈m1〉ξ,η − 〈m2〉ξ,η + aη)] + tanh[β(〈m1〉ξ,η − 〈m2〉ξ,η − aη)]}, (50)
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〈m2〉ξ,η =
∫

dμ(η)
d(1 − d)

2
{tanh[β(〈m2〉ξ,η + aη)] + tanh[β(〈m2〉ξ,η − aη)]}

+ d2

4
{tanh[β(〈m1〉ξ,η + 〈m2〉ξ,η + aη)] + tanh[β(〈m1〉ξ,η + 〈m2〉ξ,η − aη)]}

− d2

4
{tanh[β(〈m1〉ξ,η − 〈m2〉ξ,η + aη)] + tanh[β(〈m1〉ξ,η − 〈m2〉ξ,η − aη)]}. (51)

Looking at Eq. (49), it is easy to see that when the value of a

prevails on the retrieval counterpart, helpers essentially behave
randomly, giving wrong instructions to B clones, ultimately
implying autoimmune manifestations. Hence, autoimmunity
and lymphocytosis appear as deeply correlated phenomena.

In Fig. 9, we show how the overlaps depend on d in the
cases B = 2 and 3 and for different values of noise and field.
We also successfully compare the numerical solution of self-
consistence equations with results from numerical simulations.

VI. SUMMARY AND OUTLOOKS

In a recent paper, we proposed a model for the adaptive
immune response, where helpers and B cells interact via
cytokines and are described as a fully connected bipartite
spin glass; we also showed that such a model is equivalent
to an attractor associative network where helpers are able
to collectively orchestrate the activation of B cells [7]. This
network, although able to capture several issues of real immune
systems, was actually able to elaborate only one strategy at a
time, namely, helpers could manage each clonal lineage of B
cells sequentially.

Here, we extended the model by introducing a degree of
dilution d in the bipartite spin glass in such a way that only a
fraction of the whole B repertoire interacts with a given helper
lineage; this yields a much more biological description, and
gives rise to a remarkable emergent behavior. In particular,
we show that this system is able to arrange multiple strategies
simultaneously, namely, helpers are able to orchestrate and
coordinate the responses of several B clones at the same time.
This is very consistent with the well-known capability of the
immune system to simultaneously fight several pathogens.

We studied in detail the case where the amount B of
B clones is sublinear with respect to the amount H of
helpers, namely, limH→∞(B/H ) = α = 0. This is certainly
an oversimplification, yet the novelty and the potentiality of
this approach are already evident and this may contribute
to a rational understanding of the systemic properties of
lymphocyte networks.

From a technical point of view, we studied the model via
statistical mechanics solving for the free energy and obtaining,
through its extremization, the self-consistencies for the order
parameter. These equations have been hierarchically solved
and tested against the results obtained via signal-to-noise
analysis and Monte Carlo simulations, finding overall perfect
agreement. Once shown that the “pure state ansatz” of standard
associative networks can no longer minimize the free energy,
we introduced a “parallel ansatz,” which works at relatively
small degrees of dilution and we studied the stability of the
basin of attraction of the minima it generates.

Finally, we investigated the case of strong clonal expansion
(lymphocytosis) which results in adding an extra random term
to the system and we solved this generalization of the model
through the adaptation of the Hamilton-Jacobi technique.
Again, we checked results against Monte Carlo simulations
finding excellent agreement. The biological interpretation of
these findings suggests that there is a deep, systemic link
between lymphocytosis and autoimmunity, consistently with
clinical and experimental evidence. Future works, beyond the
microscopical interpretation of the tunable parameters, should
be focused on the saturated case, namely, limH→∞(B/H ) =
α > 0, which is still mathematically challenging. The presence
of antigens (fields) and a discrimination between B clones
with low and high avidity against self-tissues are also in
order to show further emerging properties concerning self-
and non-self-discrimination.
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APPENDIX A: NUMERICS

In this Appendix, we discuss details on Monte Carlo
simulations. All the simulations were performed on a system
Ubuntu Linux with Intel Core I7, 3.2Ghz, 12 CPU, Nvidia-
Fermi technology, 12 Gb RAM and OpenMP libraries. The
simulations were carried out sequentially according to the
following algorithm:

(1) Building and storaging of the coupling matrix. First, we
generate B patterns according to the distribution (d = 0)

P
(
ξ

μ

i

) = 1
2δ(ξμ

i −1) + 1
2δ(ξμ

i +1), (A1)

then, we build a char-matrix Jij = ∑
μ ξ

μ

i ξ
μ

j with entries
ranging ∈ [0,2B + 1] and acting as key pointing to another
hash-matrix J̃ij where the H (H − 1)/2 real numbers account-
ing for the Hebb interactions [see Eq. (16)] are stored. If the
amount of patterns do not exceed B = 256, i.e., one byte,
it is then possible to account for 105 helpers with no need
of swapping on hard disk (which would sensibly affect the
performance of the simulation). This condition is fulfilled for
the low storage regime we are interested in.

(2) Initialize the network status. We checked the two
standard approaches: The first is to initialize the network in a
(assumed) fixed point of the dynamics, namely,

hi = ξ 1
i ∀i ∈ [1, . . . ,H ], (A2)
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and check its evolution: This gives information on the structure
of the basins of attraction of the minima as we vary the
dilution (see Point 5). The second approach is to initialize
the network randomly: We set hi = 1 with probability 0.5 and
hi = −1 otherwise. This is a standard procedure to follow the
relaxation to a fixed point with no initial assumption and gives
information on the structure of the basins of attraction of the
minima at fixed dilution.

(3) Evolution dynamics. The activity of helpers evolves
according to a standard (random and sequential) Glauber
dynamics for Ising-type systems [26]: At each time inter-
val, the state of a lymphocyte is updated according to its
input signals, where the probability of the unit’s activity
is equal to a rectified value of the input (logit transfer
function), i.e.,

Pr[hi(t) = ±1] = 1

1 + exp[∓2β
∑

j Jijhj ]
. (A3)

The field-updating process is managed by a linked list whose
parsing is parallelized through OpenMP.

(4) Convergence of the simulation. Due to the peculiar
structure of the fields induced by pattern dilution (see Fig. 3,
right panel), the field insisting on a given helper may be
zero and the related spin would flip indefinitely. To avoid
this pathological situation, we skip the updating of these
“paramagnetic” lymphocytes and focus on the remaining ones:
In the zero noise limit, convergence is almost immediate, such
that when the whole ensemble of helpers remains unchanged
for the whole N length of the update cycle, dynamics is
stopped and the resulting B-pattern overlaps are printed on
a file. Relaxation at nonzero noise is checked through the
linked list (see next step): The pointer of each helper that is
aligned with its own field is stored, the ones of helpers with no
net fields are removed from the linked list, while all the other
helpers mismatched to their own fields are added into the linked
list.

(5) Making the B patterns sparser. There can be two
deeply different ways of increasing dilution. The former is
a Bernoullian approach, and if one starts from a dilution
d = 0.45 toward a dilution d = 0.5 essentially may forget
the starting information and generate a random pattern with
on average one half of zero entries; the latter is a Markovian
dilution by which one needs to start from the previous coupling
matrix (and patterns) diluted at d = 0.45 and increases dilution
on that structure. Dilution is tuned at steps of 0.01, ranging
from d = 0 to 1. We take as the state of the network the last
equilibrium state, then go to point (3).
Through Markovian dilution, we can follow the evolution
of the pure Hopfield attractors while tuning d. In general,
the results obtained via numerical simulations are in perfect
agreement with the theory.

APPENDIX B: SIGNAL-TO-NOISE RATIO IN THE ZERO
FAST NOISE LIMIT

As usually done in the neural network context [26], we
couple the statistical mechanics inspection to signal-to-noise
analysis. The aim of this procedure is trying to confirm
the “parallel ansatz” we made by studying the stability of

the basins of attractions (whose fixed points are the learned
strategies) created in the hierarchical fashion we prescribed.
We recall that the model we are investigating describes a low
storage of information in the associative network so that no
slow noise is induced by the underlying spin glass, i.e., α = 0.
Nonetheless, we study the signal-to-noise ratio in the zero fast
noise limit (β → ∞) as a problem formulated in general terms
of α,d; then, we take the limit α → 0 to get an estimate about
the stability of the basins of attractions (where the presence of
fast noise can possibly produce fluctuations).

Without loss of generality, we assume that the best retrieved
pattern is the first one. This means that spins are aligned with
the non-null entries in the first bit string ξ 1, while the remaining
spins explore the other patterns. Thus, for the generic spin hi ,
we can write

hi = ξ 1
i +

B∑
ν=2

ξν
i

ν−1∏
μ=1

δ
(
ξ

μ

i

)
. (B1)

Accordingly, the local field acting on the ith lymphocyte can
be written as

ϕi = 1

H

H∑
j �=i

B∑
μ=1

ξ
μ

i ξ
μ

j

⎡
⎣ξ 1

j +
B∑

ν=2

ξν
j

ν−1∏
μ=1

δ
(
ξ

μ

j

)⎤⎦ . (B2)

In the reference case B = 1, similarly to the pure states of the
Hopfield network, we set

hi = ξ 1
i + δ

(
ξ 1
i

)
ki, (B3)

where ki is a random variable uniformly distributed on the
values ±1 added to ensure that there are no nulls entries in the
state of the network. Hence, we find

〈ϕihi〉ξ = 〈signal + noise〉ξ = 〈signal〉ξ , (B4)

being 〈noises〉ξ = 0, and so for large H we have

〈signal〉ξ = H − 1

H
(1 − d) = (1 − d), (B5)

while

〈(noises)2〉ξ = B − 1

H
(1 − d)2 = α(1 − d)2. (B6)

In the test case of two patterns retrieved, B = 2, we set

hi = ξ 1
i + δ

(
ξ 1
i

)[
ξ 2
i + δ

(
ξ 2
i

)
ki

]
. (B7)

Now, we need to distinguish between the various possible
configurations:

(i) ∀i such that ξ 1
i �= 0, ξ 2

i = 0 and so that hi = ξ 1
i �= 0 for

large value of H

〈signal〉ξ = (1 − d), 〈noises〉ξ = 0, (B8)

〈(noises)2〉ξ = (H − 1)(B − 2)

H 2
(1 − d)2 = α(1 − d)2. (B9)

(ii) ∀i such that ξ 1
i �= 0, ξ 2

i �= 0 and so that hi = ξ 1
i �= 0 :

If ξ 1
i = ξ 2

i

〈signal〉ξ = 2(1 − d) − (1 − d)2, 〈noises〉ξ = 0; (B10)
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If ξ 1
i = −ξ 2

i

〈signal〉ξ = (1 − d)2, 〈noises〉ξ = 0; (B11)

and in both cases

〈(noises)2〉ξ = (H − 1)(B − 1)

H 2
(1 − d)3

+ (H − 1)(B − 2)

H 2
d(1 − d)2

= α(1 − d)2.

(iii) ∀i such that ξ 1
i = 0, ξ 2

i �= 0 and so that hi = ξ 2
i �= 0

〈signal〉ξ = d(d − 1), 〈noises〉ξ = 0, (B12)

〈(noises)2〉ξ = (H − 1)(B − 1)

H 2
(1 − d)3

+ (H − 1)(B − 2)

H 2
(1 − d)2d

= α(1 − d)2. (B13)

Therefore, in the regime of low storage of strategies considered
(α = 0), the retrieval is stable, states are well defined, and the
amplitude of the signal on the first channel is order (1 − d),
while on the second is of order d(1 − d), in perfect agreement
with both the statistical-mechanics analysis and Monte Carlo
simulations.
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[4] A. Košmrlj, A. K. Chakraborty, M. Kardar, and E. I.

Shakhnovich, Phys. Rev. Lett. 103, 068103 (2009).
[5] T. Mora, A. M. Walczak, W. Bialek, and C. G. Callan Jr, Proc.

Natl. Acad. Sci. USA 107, 5405 (2010).
[6] G. Parisi, Proc. Natl. Acad. Sci. USA 87, 429 (1990).
[7] E. Agliari, A. Barra, F. Guerra, and F. Moauro, J. Theor. Biol.

287, 48 (2011).
[8] M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory

and Beyond (World Scientic, Singapore, 1987).
[9] A. C. C. Coolen, R. Kuehn, and P. Sollich, Theory of Neural

Information Processing Systems (Oxford University Press,
Oxford, UK, 2005).

[10] R. Medzhitov, Nature (London) 449, 18 (2007).
[11] R. Medzhitov, Immunity 30, 766 (2009).
[12] F. H. Wolff, S. C. Fuchs et al., PLoS One 5, e10494 (2010).
[13] L. Gao, F. Zhou, X. Li, and Q. Jin, PLoS One 5, e10736 (2010).
[14] J. W. Koehler and M. Bolton et al., PLoS One 4, e7139 (2009).
[15] F. J. Varela and A. Coutinho, Immunol. Today 12, 159 (1991).
[16] E. Agliari, L. Asti, A. Barra, and L. Ferrucci, Phys. Rev. E 85,

051909 (2012).
[17] C. Janeway, P. Travers, M. Walport, and M. Shlomchik,

Immunobiology (Garland Science, New York, 2005).
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