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Finite-length effects on the coil-globule transition of a strongly charged polyelectrolyte chain in a
salt-free solvent
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The nature of coil-globule transition and scaling behavior of a strongly charged polyelectrolyte chain in a
solution system with explicit neutralizing counterions and solvent molecules are studied using replica-exchange
Monte Carlo simulations, focusing on the effects of finite chain length. The results reveal that at the thermodynamic
limit of infinitely long chain length, the coil-globule transition may remain first order. Phase transition
temperatures at various ion concentrations are obtained by extrapolating the values obtained at finite chain
lengths. Furthermore, it is found that the exponent ν of the radius of gyration, 〈Rg

2〉 ∼ N 2ν , can be slightly larger
than 1 under some conditions.
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I. INTRODUCTION

Polyelectrolytes are polymers with positively or negatively
charged groups, which may ionize in a polar solvent [1].
The charged groups can dissociate to release counterions
and hence leave net charges on the polymer chains. The
most noticeable feature of polyelectrolytes, as compared
to uncharged polymers, is their high solubility in water.
Polyelectrolytes attract great research attention because of
their biological and industrial applications due their solubility
in water. Furthermore, many important synthetic and biolog-
ical macromolecules are polyelectrolytes. The electrostatic
interactions between the charges lead to the rich behavior of
polyelectrolyte solutions which may differ significantly from
those of uncharged polymers [2]. For an uncharged flexible
polymer chain in solution, it is well established that the chain
undergoes a continuous collapse, or coil-globule transition,
as the solvent quality changes from good to poor, typically
realized by decreasing the temperature [3]. However, for a
flexible polyelectrolyte chain in a solution, the nature of its
collapse transition is still a topic of debate.

For an uncharged flexible polymer chain in solution,
its coil-globule transition occurs in a continuous fashion
when the temperature is decreased, displaying no coexistence
between distinct coil and globule states, and thus is analogous
to a second-order phase transition. Further cooling of the
system leads to a first-order globule-crystalline transition [4,5].
Furthermore, it is well known that the radius of gyration of
a long, flexible, uncharged polymer chain satisfies a scaling
relation, 〈Rg

2〉 ∝ N2ν , where 〈Rg
2〉 is the mean-square radius

of gyration of the chain, N the chain length, and ν an exponent
[6,7]. At very high temperatures, ν is close to 0.59, which is the
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value for athermal excluded volume chains. It decreases with
decreasing temperature. At very low temperatures, when the
chain collapses, ν is close to 1/3, which is the value of compact
spheres. Intermediate between these two limiting cases, ν can
be equal to 0.5, which corresponds to the ideal chain at the θ

temperature. Moreover, for a rigid rod chain, one can strictly
deduce that ν = 1 for a long chain.

For a flexible polyelectrolyte chain in a solution, previous
extensive studies [8–19] show that its conformation exhibits a
more complex behavior than an uncharged polymer chain. At
very high temperatures, the conformation of a polyelectrolyte
chain should be similar to that of a random coil chain. With
decreasing temperature, the polymer chain changes to an
expanded conformation due to the electrostatic interactions
between charged monomers. After reaching a maximum coil
size, the polymer chain shrinks and finally collapses to a
compact globule. The size of an expanded polyelectrolyte
chain can be much larger than that of a random coil chain
[19]. Previous studies also showed that the electrostatic
attraction between charged monomers of a polyelectrolyte
chain and counterions in solution results in the condensation of
counterions on the chain. This counterion condensation and the
associated dipole formation between the charged monomers
and the condensed counterions lead to the shrinkage and
collapse of the charged chain. Despite the various previous
studies, a controversy about the nature of the collapse transition
exists. Specifically, for a flexible polyelectrolyte chain in a
solution, the coil-globule transition was predicted to be first
order by theories [8–10], whereas the first-order nature of this
transition has not been positively identified in simulations.
Furthermore, based on Flory theory, Dobrynin and Rubinstein
found that for a flexible polyelectrolyte chain in solution, the
chain size grows faster than linear with the chain length [2].
However, such a scaling behavior has not been investigated
systematically in simulations.

The difficulties in the study of polyelectrolyte systems in
simulations can be traced to the following two aspects. The first
aspect is the large CPU time requirement to treat the long-range
electrostatic interactions between the charges in the system.
Furthermore, the CPU time increases quickly with the increase
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of the chain length due to the increased number of charges
in the system. Because of this limitation, the chain lengths
considered in previous simulations are relatively short. The
second aspect is the fact that traditional simulation techniques
such as Metropolis Monte Carlo (MC) simulations have a
poor sampling efficiency, especially at low temperatures or
for a strongly charged chain system. This difficulty could be
overcome by using advanced simulation techniques, such as
MC simulations with the Wang-Landau algorithm [20] or with
the replica-exchange algorithm (REMC) [21].

Recently, the above-mentioned controversy was settled for
a polyelectrolyte chain with a finite chain length, where the
conformation transitions of a strongly charged polyelectrolyte
chain with length 125 were studied using REMC simulations.
In that study the first-order feature of the coil-globule transition
was unambiguously identified based on reliable canonical and
microcanonical analysis [19]. It was also found that for a poly-
electrolyte chain with length N � 79, the first-order feature
of the coil-globule transition no longer emerges. Therefore, it
was deduced that the small chain length, adopted in previous
simulation studies, may be the reason that these authors did
not observe the first-order features for the chain collapse
transition, even when an advanced simulation technique has
been used [18].

Strictly speaking, a true phase transition occurs at the
thermodynamic limit of infinite chain length. The nature of
the coil-globule transition at the thermodynamic limit has not
been studied in simulations yet. In this paper, we attempt to
generalize the study of the nature of the coil-globule transition
of a strongly charged polyelectrolyte chain with finite length to
the thermodynamic limit of infinitely large chain length using
REMC simulations based on a finite chain length analysis.
Furthermore, we investigate the scaling behavior of a strongly
charged polyelectrolyte chain system.

II. MODEL AND METHOD

In the current study, the nature of the coil-globule transition
and the scaling behavior of a strongly charged polyelectrolyte
chain are investigated using computer simulations of a lattice
model of polymers proposed by Carmesin and Kremer [22].
The simulations are carried out using the REMC method [21].
In using this technique, a set of separate replicas is simulated
simultaneously, and each replica is simulated at a unique
temperature. By allowing systems at different temperatures
to exchange complete configurations, this technique achieves
good sampling even at low temperatures or for a highly
charged system [19]. Thus it may provide high precision for
the calculated thermodynamic quantities. Our previous study
has established that the model and method are appropriate for
the study of the thermodynamic behavior of a strongly charged
polyelectrolyte chain in solution [19]. For completeness, the
model and algorithm are reviewed briefly below.

The simulations are performed on a model system that is
embedded in a simple cubic lattice of volume V = (Lc)3, where
c is the lattice constant and L the number of lattice sites in each
side of the simulation box. The polyelectrolyte is represented
as a chain of length N or (N + 1) successive beads (monomers)
connected by bonds that can adopt lengths of c,

√
2c, and

√
3c.

The model system consists of one polyelectrolyte chain in a

solution system including explicit neutralizing counterions and
solvent molecules. Throughout the simulations, each species (a
monomer, a counterion, and a solvent molecule) occupies one
lattice site. Double occupation of the lattice sites is not allowed.
Each monomer carries one unit of negative electric charge. A
counterion carries one unit of positive electric charge. The
number of counterions is determined by charge neutrality of
the system. The initial configuration is generated by randomly
creating a polyelectrolyte chain and a desired number of
counterions on the lattice. After the chain and the counterions
have been generated, the unoccupied sites are designated
as solvent molecules. Apart from the constraint of single
occupancy of the lattice sites, the only energetic interaction is
a Coulomb potential with the form of uij = qiqj /Drij , where
qi,j = ±e, D is the dielectric constant of the medium, and
rij is the distance between two charges. Periodic boundary
conditions are utilized and the long-range interactions are
computed using an approximation of the Ewald summation
with the procedure proposed in Ref. [17]. The chain trial
moves include the exchange movement, similar to that used
in the block copolymer system [23], and pivot movement
[24]. The counterion trial moves include its exchange with
a nearest-neighbor monomer and that with a solvent molecule
randomly selected in the whole system. Reduced units are used
throughout the paper, in which the unit of length is c, the energy
is measured in e2/Dc, and the temperature in e2/DckB . We
performed simulations for systems with different chain lengths
and different ion concentrations. The ion concentration ρ is
represented by the ratio of the total number of counterions to
the reduced volume of the system, i.e., ρ = (N + 1)/L3. In
our simulations, the chain length N is varied from 9 to 255 or
the total number of monomers on the chain from 10 to 256,
and the box length L from 54 to 1068. We use the finite chain
length scaling techniques proposed by Binder and Heermann
[25] to locate the coil-globule transition temperature at the
thermodynamic limit.

In our simulations, thermodynamic averages of various
quantities are computed at each temperature. At a given
temperature T , the probability distribution P (E) of the
system’s conformational energy E is obtained from the REMC
simulation data directly based on histogram analysis with the
procedure proposed in Ref. [26]. The density of state, g(E),
is computed based on P (E). The thermodynamic properties
of the model system can be completely determined from
the single chain density of state g(E) using the procedure
described in Ref. [5].

III. RESULTS AND DISCUSSION

The density of state curves g(E) for systems with different
chain lengths are presented in Fig. 1, where each curve is scaled
through assuming that g(E) = 1 at the maximum E value. It is
noticed that g(E) is a monotonically increasing function of E,
and larger chain length N , leads to a steeper increase of g(E).

For systems with different chain lengths, various quantities
are computed and normalized in terms of the chain length.
Figures 2(a) and 2(b) show the probability distribution curves
P (E) and the normalized free energy curves F (E)/(N + 1)
at the coil-globule transition temperature, and (c) and (d)
show the inverse microcanonical temperature curves 1/T (E)
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FIG. 1. (Color online) The density of state g(E) for systems with
different chain lengths.

and the normalized microcanonical specific heat curves
C(E)/(N + 1), respectively. As can be seen in Fig. 2, the
finite chain length effect strongly influences the behavior of
the coil-globule transition. In Fig. 2, it is noticed that at the coil-
globule transition temperature, for systems with long chains
each P (E) curve presents a bimodal distribution with equal
weight, each F (E)/(N + 1) curve has two identical minimum
values separated by a free energy barrier; each 1/T (E) curve
has a Maxwell-type loop, and each C(E)/(N + 1) curve has a
negative region bounded by two poles. All these signals are the
characteristics of a first-order phase transition, as pointed out
previously [19]. It is also noticed that with decreasing chain
length, the first-order features of the coil-globule transition
become less pronounced. Furthermore, for a system with
N = 79, none of the above-mentioned signals occur in Fig. 2.
Moreover, our extensive simulation results (not show) reveal
that none of the above-mentioned signals occur for systems
with N < 79 either. All these results suggest that for systems
with short chains, the first-order features for the chain collapse
transition no longer emerge in these analyses.

In Fig. 2(a), the energy difference between the two peak
positions in the probability distribution curve is denoted
as �E. This energy difference �E corresponds to the
energy difference between coil and globule structures at the
coil-globule transition temperature. The existence of such
an energy difference between the two states at the phase
transition temperature is also characteristic of a first-order
phase transition. In Fig. 2(a), it is noticed that with increasing
chain length, �E increases. From this observation it is deduced
that an energy difference with a nonzero �E value may
remain at the thermodynamic limit. That is, for a system with
an infinitely large chain length, the probability distribution
curve may remain to be a bimodal distribution with equal
weight, and therefore, the coil-globule transition may remain
to be a first-order phase transition at the thermodynamic
limit. Furthermore, as shown in Figs. 2(b)–2(d), the same
conclusion can be deduced from the variation trends of the free
energy curve, the inverse microcanonical temperature curve,
and the microcanonical specific heat curve when the chain
length is increased. It should be pointed out that the obvious
nonsmoothness of the curves for the system with N = 255 in
Fig. 2 is due to the insufficient computation time for this large
system.

Figure 3 shows the temperature dependence of the nor-
malized mean-square radius of gyration of the polyion chain,
〈Rg

2〉/N , and the canonical specific heat C/(N + 1) for

FIG. 2. (Color online) Various quantities for systems with dif-
ferent chain lengths at an ion concentration ρ = 7.874 × 10−6.
(a) The probability distribution curves and (b) the normalized free
energy curves at the coil-globule transition temperature. (c) The
inverse microcanonical temperature curves and (d) the normalized
microcanonical specific heat curves.

systems with various chain lengths at a given ion concentration
ρ = 7.874 × 10−6. In Fig. 3(a), it is noticed that with decreasing
T , each 〈Rg

2〉/N curve increases first, then decreases after
reaching a maximum value, and finally collapses to a minimum
value. In the inset of Fig. 3(a), it is noticed that with increasing
the chain length to N = 199, the intersection point between
two 〈Rg

2〉/N curves shifts to high temperatures. However,
when N = 255, it slightly shifts to low temperatures. This
is different from that for an uncharged single chain system
where a common intersection point, corresponding to the
θ temperature, was obtained for different curves [7]. In
Fig. 3(b), it is noticed that with decreasing T , each specific
heat curve displays a high-temperature plateau followed by
another sharp peak. In our previous study for the system with
N = 125 [19], a similar specific heat curve was obtained,
where the high-temperature plateau has been identified with
the counterion condensation and the low-temperature peak
with the polyion chain collapse transition. Our extensive
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FIG. 3. (Color online) The temperature dependence of (a) nor-
malized mean-square radius of gyration of the polyion chain and
(b) the specific heat for systems with various chain lengths at
ρ = 7.874 × 10−6. Partially magnified curves are shown in the inset
of the figure.

simulations show that these identifications apply to all systems
with a finite N . Hence, for a given system, the temperature
corresponding to the low-temperature peak in the specific heat
curve is defined as the coil-globule transition temperature. In
the inset of Fig. 3(b), it is noticed that with increasing N , the
low-temperature peak becomes sharper and the coil-globule
transition temperature shifts to high temperatures. Of course,
θ -function-like transitions are only to be expected as the limit
of N approaches ∞. Therefore, extrapolation of the transition
temperatures obtained for systems with finite chain lengths
needs to be carried out to locate the coil-globule transition
temperature at the thermodynamic limit.

Figure 4 shows the chain length dependence of the coil-
globule transition temperatures for systems with different ion
concentrations, where the symbols are obtained from our
simulations and each solid line is a fit to Eq. (1) corresponding
to a given ρ value:

Tρ(N ) = Tρ(∞) − AρN
−1/2. (1)

In Eq. (1), Tρ(N ) is the phase transition temperature in
system with a finite N and can be obtained from the
corresponding specific heat peak, Tρ(∞) is the phase transition
temperature for the system with an infinitely large chain length,
i.e., at the thermodynamic limit, and Aρ is a phenomenal
parameter. From the fittings, we obtain Tρ(∞) = 0.162
and Aρ = 0.140, Tρ(∞) = 0.157 and Aρ = 0.127,
Tρ(∞) = 0.152 and Aρ = 0.121, and Tρ(∞) = 0.145 and
Aρ = 0.113 at ρ = 6.299 × 10−5, 7.874 × 10−6, 9.842 × 10−7,
and 1.230 × 10−7, respectively. In Fig. 4 it is noticed that
the fittings are good, indicating that the variation of the
coil-globule transition temperature for a polyelectrolyte chain
is similar to that for an uncharged chain system [7]. The
value of Aρ decreases with decreasing the ion concentration,

FIG. 4. (Color online) The chain length dependence of the
coil-globule transition temperatures for systems with different ion
concentration ρ. The symbols are obtained from our simulations and
solid lines are fits to Eq. (1).

suggesting that for a pair of systems with different ion
concentrations, the difference between their coil-globule tran-
sition temperatures increases with increasing N and reaches
a maximum at the thermodynamic limit. It is also noticed
that with decreasing the ion concentration, the coil-globule
transition temperature decreases. It should be pointed out
that the ion concentration considered in our model system
is very low. For example, when c = 1 nm, a system with
ρ = 1.230 × 10−7 corresponds to an ion concentration of
2 × 10−4 mol/l. We may deduce that when the ion concentra-
tion approaches zero, the coil-globule transition temperature
also approaches zero based on the following reasons. First,
it is noticed that the transition temperature increases with
increasing chain length, even though the ion concentration
is very low. Second, it was concluded that the coil-globule
transition is induced by the counterion condensation [19].
In a system with an infinitely long chain length, when the
ion concentration approaches zero, the entropy of counterions
at a finite temperature will be infinity. This infinitely large
entropy predominates over the electrostatic interactions so
that counterion condensation does not occur at any finite
temperature. On the other hand, it should be pointed out that
the estimated coil-globule transition temperature at the thermo-
dynamic limit may be only a good approximation because the
chain lengths considered in the present paper are still relatively
short.

We construct the double logarithm plot between the mean-
square radius of gyration of the polyion chain 〈Rg

2〉 and the
chain length N at different temperatures in Fig. 5 to investigate
their relationship. Figure 5(a) shows the plot in the relatively
high temperatures when all the chains are in the expanded
conformations. In Fig. 5(a), the bounds corresponding to
athermal excluded volume chain conformation and rigid rod
conformation are also included. It should be pointed out that at
a given temperature, the double logarithm plot for the polyion
chain is usually not a straight line but a curved one. On the
other hand, in the vicinity of a given N , the curved line can
be approximated as a straight line so that we can calculate
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FIG. 5. The double logarithm plot between the coil size and
the chain length at different temperatures for systems with
ρ = 7.874 × 10−6, in the (a) relatively high and (b) relatively low
temperatures. The error bars are smaller than the symbol size.

the slope of the curve, or the exponent ν in the relationship
〈Rg

2〉 ∼ N2ν corresponding to the given N value. It is noticed
that when N is small and the temperature is very high, the
slope of the curve is similar to that of an athermal chain, i.e.,
the exponent ν is about 0.59. With increasing the chain length
or with decreasing temperature, ν increases. It is interesting
to notice that when T is in the range of 10 ∼ 0.5, for systems
with relatively larger N values considered, ν is close to 1,
the value of a rigid rod chain, although the chain is in an
expanded conformation and not a rigid rod. Furthermore, in
a portion of this T range, ν is slightly larger than 1. This is
because at a given T value in that range, a longer chain is in
a more expanded conformation than that of a shorter chain
due to the stronger Coulomb interaction in the former system.
Based on Flory theory, Dobrynin and Rubinstein found that the
chain size of a uniformly charged flexible polyelectrolyte chain
grows faster than linearly with N [2]. Our simulation result
that the exponent can be slightly larger than 1 is consistent
with their result.

Figure 5(b) shows the double logarithm plot in the relatively
low temperatures when relatively long chains are in the shrink-
ing or collapsing states. In Fig. 5(b), the bounds corresponding
to rigid rod conformation and compact-sphere conformation

are also included. It is noticed that with decreasing T , the
exponent ν decreases quickly from slightly larger than 1
to 1, then to 0, further to a negative value, and finally to
1/3. This is because the temperature at which each 〈Rg

2〉
curve gets its maximum value shifts to high temperatures
with increasing N . Therefore, when a relatively longer chain
begins to shrink, a relatively shorter chain continues to expand,
and when a relatively longer chain has reached the collapsing
state, a relatively shorter chain continues to expand or begins
to shrink; all these cases result in a decrease in ν. In these
cases, when the 〈Rg

2〉 value for a relatively longer chain is
smaller than that for a relatively shorter chain, a negative
ν value occurs. When all the chains are in the collapsing
state, ν approaches 1/3, the value for a system of compact
spheres. The most striking feature seen in Fig. 5(b) is the
nonmonotonicity of the ln(〈Rg

2〉) curve at low temperatures.
A similar feature was noticed by Grassberger and Hegger and
also by Rissanou et al. in their study of an uncharged polymer
chain system [27,28]. Using a Langevin dynamics simulation,
Liu and Muthukumar systematically investigated the nature
of counterion condensation of a uniformly charged flexible
polyelectrolyte chain [13]. They also constructed a double
logarithm plot between 〈Rg

2〉 and the chain length. Their result
is qualitatively consistent with ours. However, the error bars in
their plot indicated that errors of their data are relatively large.
On the other hand, the error bars in Fig. 5 are smaller than the
symbol size.

IV. CONCLUSIONS

Based on an analysis of finite chain length effect, we
studied the nature of coil-globule transition and the scaling
behavior of a strongly charged polyelectrolyte chain in a
solution system including explicit neutralizing counterions
and solvent molecules using replica-exchange Monte Carlo
simulations. A number of thermodynamic quantities, such as
the mean-square radius of gyration of the chain and the specific
heat, are obtained from the simulation directly. The probability
distribution P (E) of the system’s conformational energy is
obtained from the simulation data directly based on histogram
analysis and the density of states is computed based on P (E).
From the density of states, various thermodynamic quantities,
such as the free energy curves at the coil-globule transition
temperature, the inverse microcanonical temperature, and the
microcanonical specific heat curves, are obtained for systems
with different chain lengths. All these quantities present the
first-order features of the coil-globule transition in systems
with longer chains. From the variation tendency of the
first-order features of the phase transition with chain length,
it is deduced that at the thermodynamic limit of infinitely
large chain length, the coil-globule transition may remain
first order, and the phase transition temperatures at various
ion concentrations are estimated by extrapolating the values
obtained for systems with finite chain lengths. Furthermore,
we investigated the dependences of the mean-square radius of
gyration of the polyion chain on the chain length at various
temperatures precisely and found that the exponent ν in the
relationship of 〈Rg

2〉 ∼ N2ν can be slightly larger than 1 under
some conditions.
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