
PHYSICAL REVIEW E 87, 042506 (2013)

Field-induced dynamics and structures in a cholesteric-blue-phase cell
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We investigate numerically the relaxational dynamics of the orientational order of a cholesteric blue phase (BP)
in a planar cell enforcing normal alignment in response to the application and cessation of an external electric
field. We focus on the cases where blue phase I (BP I) is stable in the bulk. We show how the reorganization
processes of the network of disclinations depend on the field strength and the history of the application of the field.
We also demonstrate that the relaxation processes following the cessation of the field are particularly complex
and depend sensitively on the profile of the orientational order before the cessation of the field.
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I. INTRODUCTION

Cholesteric blue phases [1,2] are exotic three-dimensional
ordered structures formed by highly chiral liquid crystals.
Cholesteric blue phases are optically isotropic; they do not
show birefringence. Nevertheless, they show Bragg reflections,
which suggests a periodic structure. These specific optical
properties attracted academic interest in the 1980s and 1990s,
and thus extensive studies were carried out to elucidate the
structural properties of cholesteric blue phases. Two of the
three bulk blue phases identified so far possess cubic symme-
try; the symmetry of blue phase I (BP I) is O8(I4132), and that
of blue phase II (BP II) is O2(P 4232) (the structure of blue
phase III (BP III) is still under debate, although an amorphous
structure is likely [3]). It was demonstrated that BP I and
BP II are made up of an intricate network of topological line
defects, or disclination lines of winding number −1/2, and the
so-called double-twist cylinders, in which the nematic director
n adopts twist distortions along all the directions normal to
the cylinder axis. Cholesteric blue phases have thus drawn
attention as an intriguing example of frustration-induced
structures; double-twist ordering can be shown to be unable to
fill the whole space without introducing singularities [1].

In conventional liquid crystal materials exhibiting
cholesteric blue phases, the temperature range of their thermo-
dynamic stability is limited to a few Kelvin, which hindered
their use in practical applications. However, Kikuchi and
coworkers demonstrated that the introduction of a polymer net-
work by photopolymerization drastically stabilizes cholesteric
blue phases and that their stability range can be larger than
60 K [4]. Subsequently, several liquid crystal molecules were
shown to exhibit blue phases over a wide temperature range
[5,6]. These findings motivated a number of studies aimed at
the practical applications of cholesteric blue phases, including
lasers [7,8] and fast-switching displays [9–11].

Most of the applications make use of a structural change of
cholesteric blue phases under an electric field. Electric-field-
induced birefringence, or the optical Kerr effect, is utilized in
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displays for the switching between off and on states [11,12].
Therefore, understanding how cholesteric blue phases respond
to an electric field is an important issue in practical applications
as well as in academic research. Field-induced switching
between various stable and metastable states of thin layers
of a simple cholesteric is well known and has led to numerous
applications [13]. Around two decades ago, electrostrictions
(variation of the lattice constants due to an applied field) and
change in the symmetry of cholesteric blue phases under
an electric field were extensively investigated [14]. More
recently, simulations studies were devoted to the understanding
of the properties of cholesteric blue phases [3,15,16]. Some
studies successfully reproduced the experimentally observed
electrostrictions and gave more insight into the deformation
and reorganization of disclination lines in response to an
electric field [17–19]. However, most of the previous numerical
studies concerned bulk properties and only very few studies
[20,21] addressed the effect of an electric field on cholesteric
blue phases in planar cells. In our previous studies, we
showed that strong spatial confinement drastically influences
the orientational ordering of cholesteric blue phases, yielding
various exotic defect structures [22–25]. We also clarified
the effect of strong surface anchoring by demonstrating a
discretized ordering (that is, the number of double-twist
cylinders per thickness must be an integer) which leads to
an oscillatory structural force between parallel surfaces of the
cell [26]. Therefore we believe that there still remains much
to be investigated on how cholesteric blue phases in a cell, not
in the bulk, behave in response to an electric field.

In this paper, we carry out simulation studies on the
behavior of cholesteric blue phases in a planar cell when
an electric field is applied between confining plates. Our
simulations are based on the Landau–de Gennes continuum
theory which describes the orientational order of a liquid
crystal using a second-rank tensor. We are interested in a
case where BP I is stable in the bulk and the cell surfaces
impose strong (but not perfect) homeotropic anchoring. The
cell is thick enough to accommodate a disclination network
resembling that of bulk BP I. In our previous paper [21], we
presented some preliminary results and here we consider in
more detail the effect of the variation of the field strength
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and the history of the application of the electric field; we
also investigate how the cell relaxes when the electric field is
switched off.

II. MODEL

As noted in the Introduction, in our numerical calculations
the orientational order is described by a symmetric and
traceless second-rank tensor Qαβ . We consider a parallel cell
whose confining surfaces are parallel to the xy plane, and
located at z = 0 and z = d. The total free energy of our
cholesteric blue phase cell as a functional of Qαβ is formally
written as F = ∫

dx dy [
∫ d

0 dz{flocal(Qαβ) + fgrad(Qαβ,∇) +
fE(Qαβ,φ)} + fs0(Qαβ) + fsd (Qαβ)]. Here and in the follow-
ing we adopt the forms of the free energy densities given
in Ref. [1], and the local energy density given by a Landau
expansion up to fourth order,

flocal(Qαβ) = c TrQ2 −
√

6b TrQ3 + a(TrQ2)2 (1)

takes care of the phase transition due to temperature change,
and Tr denotes the trace of a tensor. The parameters a(>0),
b, and c depend on the material and the temperature, and in
the usual Landau theory, only c is assumed to be temperature
dependent (the temperature dependence of a and b does not
play an important role and is neglected). The free energy
density due to the inhomogeneity of the orientational order,
or nonzero ∇Qαβ , is characterized by two elastic constants
and a chiral term

fgrad(Qαβ,∇) = 1
4K1[(∇ × Q)αβ + 2q0Qαβ]2

+ 1
4K0[(∇ · Q)α]2. (2)

Here using two elastic constants, K0 and K1 allows
the separate treatment of twist deformation, and 2π/|q0|
is the pitch characterizing the spontaneous cholesteric twisting.
The contribution of the electric field E = −∇φ is given by

fE(Qαβ,φ) = − 1
2εαβ∇αφ∇βφ = − 1

2εαβEαEβ, (3)

where φ is the electrostatic potential and εαβ is the dielectric
tensor that depends on Qαβ (see below). We denote the
contribution from the surface anchoring at z = 0 and d by
fs0 and fsd , respectively. Their explicit form is

fs0,d (Qαβ) = 1
2WTr(Q − Qs)2, (4)

where W characterizes the anchoring strength, and Qsαβ =
Q0[νανβ − (1/3)δαβ] defines the order parameter preferred by
the surface. In the present study, we consider the case of normal
anchoring, and the unit vector ν is taken along the surface
normal (or the z direction).

Now we rescale the length so that it is measured in
units of (2q0)−1 and then the rescaled cholesteric pitch
is 4π . We further introduce the rescaled order parameter
χαβ ≡ (a/b)Qαβ , and the free energy densities ϕlocal,grad,E ≡
(a3/b4)flocal,grad,E and ϕs ≡ (2q0)(a3/b4)fs . The rescaled
total free energy is given by F ≡ (2q0)3(b4/a3)Ftot =∫

dx̄dȳ[
∫ d̄

0 (ϕlocal + ϕgrad + ϕE) + ϕs0 + ϕsd ] with

ϕlocal(χαβ) = τ Trχ2 −
√

6 Trχ3 + (Trχ2)2, (5)

ϕgrad(χαβ,∇) = κ2{[(∇ ×χ )αβ + χαβ]2 + η[(∇ · χ )α]2}, (6)

ϕs = 1
2wTr(χ − χs)2. (7)

Here x ≡ (2q0)x and so on are rescaled lengths,
∇ = (2q0)−1∇, and τ , κ , w are the rescaled temperature,
the strength of chirality, and the rescaled anchoring strength,
respectively. η represents the inherent anisotropy of liquid
crystal elasticity, though we simply set η to 1, which
corresponds to the so-called one-constant approximation.
The rescaling employed here is the same as that in Wright
and Mermin [1] and our previous study [22–25], and see the
Appendix for more details of the rescaling.

Following the spirit of de Gennes [27], we assume the
linear dependence of the dielectric tensor εαβ on χαβ so that
the rescaled electrostatic energy density reads

ϕE = − 1
2 (εisoδαβ + εaχαβ)EαEβ, (8)

where E = −∇φ is the rescaled electric field with φ being
the rescaled potential, and εa is the dielectric anisotropy.
When εa > 0 (<0) the liquid crystals tend to align parallel
(perpendicular) to the electric field, and here only the cases of
positive εa are considered. How to rescale φ and E is given in
the Appendix.

We assume that simple relaxational dynamics is given by
the following equation for χαβ :

τχ

∂

∂t
χαβ = −

(
δF
δχαβ

+ λδαβ

)
. (9)

Here τχ , estimated to be �1 μs [18], is the characteristic time
of the rotational relaxation of χαβ that is proportional to the
rotational viscosity. The second term ensures the tracelessness
of χ and λ is the Lagrange multiplier. We employ an explicit
Euler scheme [28] in the integration of Eq. (9). To reduce the
numerical cost, a hydrodynamic flow is not taken into account,
though it could affect the kinetic pathway of relaxation (in
previous similar studies [20] no significant qualitative changes
in the dynamics of cholesteric blue phases have been reported).

The electrostatic potential φ obeys the Maxwell equation,
which reads

δF
δφ

= ∇α[(εisoδαβ + εaχαβ)∇βφ] = 0. (10)

We consider the case in which the confining surfaces are
covered with electrodes imposing fixed φ, and therefore we
solve Eq. (10) under the boundary conditions φ = 0 at z = 0
and φ = φ0 at z = d . As we show in the Appendix, the relation
between the (unrescaled) average field E in V/μm and φ0
becomes

φ0/d = 2.7 × 10−2E. (11)

In Sec. III we present our results with the variation of E.
We employ a multigrid method [28,29] for efficiently solving
Eq. (10). We set εiso = 10 and εa = ±10 (see the Appendix
for the reason of this choice).
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In the present study, we choose τ = −1, κ = 0.7, and
w = 2.5, which corresponds to setting 2π/q0 � 161 nm
(cholesteric pitch) and W = 1 × 10−3 Jm−3 (anchoring
strength), though the relation between rescaled and dimen-
sional parameters sensitively depends on the material parame-
ters chosen. See the Appendix for the rescaling. The anchoring
strength is large but experimentally achievable. In our previous
study [18], we confirmed that, with this choice, BP I is the most
stable when confining surfaces are absent. The lattice constant
of bulk BP I is 12.60 in the rescaled unit, almost equal to the
natural cholesteric pitch (4π ). We choose χ0 = 1.44 so that χs

minimizes ϕlocal.
As the initial condition, we employ the profile of a chiral

liquid crystal in a parallel cell of thickness d = 33 (�420 nm in
real units and approximately 2.6 times the unit cell dimension
of BP I) that was obtained in our previous study [26] using
the same parameters τ , κ , η, and w. The structure of the
disclination lines in the middle of the system closely resembles
that of bulk BP I, and the [001] direction is parallel to
the surface normal. One can regard this disclination line
network as that of 2 BP I unit cells in the z direction. Our
previous calculation was performed on a 32 × 32 × (64 + 1)
lattice with periodic boundary conditions along the x and y

directions. To reduce possible finite size effects, the present
calculations are carried out on a 256 × 256 × (64 + 1) lattice
with the initial condition being a 8 × 8 repetition of the profile
obtained in our previous calculation. In contrast to our previous
studies [18] dealing with a single unit cell of cholesteric blue
phases or associated defect structures, here we do not change
the grid spacings of the numerical system to find a state that
minimizes the total free energy. This is because it is practically
impossible to find the optimum grid spacings in some cases, in
particular, when the liquid crystal is uniformly aligned along
a strong field, or it exhibits entangled disclination lines as we
will discuss below. We also incorporate small randomness in
the initial condition by adding a random number distributed
uniformly in the range [−0.05,0.05] to each component of
χαβ at each lattice point and making χαβ at each lattice point
traceless. Without this randomness, we would be simulating
8 × 8 simulations of the same system connected by periodic
boundary conditions. As we will see below, small randomness
remaining in the course of relaxation plays an important role in
the nucleation of defects after a strong field aligning the liquid
crystal is switched off. No thermal fluctuations are included in
the dynamics.

III. RESULTS AND DISCUSSION

In our numerical calculations we are interested in the cases
where an applied electric field induces a recognizable change
in the profile of disclinations. In the following, we present
results for E = 10, 15, and 20 V/μm.

To discuss the dynamical behavior of the system
quantitatively, we introduce χzz = ∫

d r χzz/
∫

d r , as a
simple measure of anisotropy. We also calculate the rescaled

total energy per unit area F/A = A
−1 ∫

dx̄dȳ[
∫ d̄

0 (ϕlocal +
ϕgrad + ϕE) + ϕs0 + ϕsd ], with A being the rescaled area of
one of the confining surfaces, and each contribution from
the local, gradient, electrostatic, and anchoring energies

defined by Flocal/A = A
−1 ∫

dx̄dȳ
∫ d̄

0 ϕlocal, Fgrad/A =
A

−1 ∫
dx̄dȳ

∫ d̄

0 ϕgrad, FE/A = A
−1 ∫

dx̄dȳ
∫ d̄

0 ϕE , and

Fs/A = A
−1 ∫

dx̄dȳ[ϕs0 + ϕsd ], respectively.

A. Dynamics after the field is switched on

In Figs. 1(a) to 1(c), we show how the disclination network
evolves when an electric field E = 10 V/μm is applied.
Here and in the following we draw isosurfaces of Trχ2 = 0.8
and identify disclinations with weaker orientational order as
regions with smaller Trχ2. The disclination network shrinks
along the direction of the cell surface normal, or the field
direction, though its topology remains unchanged. In Figs. 1(d)
and 1(e), we also show the orientation profile at t/τχ = 0 and
396 at a plane perpendicular to the confining surfaces and
parallel to the plane of the page. Here and in the following
similar figures, we illustrate the direction of an eigenvector of
χαβ with the largest eigenvalue. One can identify double-twist
cylinders with their axis being normal to the plane of the page,
together with surface disclinations that are allowed because the
surface anchoring is not perfect but finite. The alignment of
the liquid crystal along the electric field is more enhanced near
the confining surfaces. It is interesting to note that previous
experimental [14] and numerical [17,18] studies concerning
the electrostriction of blue phases demonstrate that bulk BP I
is compressed along the field direction when the field is applied
along the [001] direction, and εa > 0. Our present result,
the compression of the disclination network along the field
direction, is consistent with that of bulk electrostriction. Our
previous result [18] indicates that the compression of bulk BP I
along the field direction with E = 10 V/μm is approximately
7.6% (see Fig. 2(a) of Ref. [18], where ε̃ � 0.2 corresponds to
E = 10 V/μm). The compression of the disclination network
in Fig. 1, though it is not easy to quantify, looks much larger
than 7.6% [30]. The enhanced alignment of the liquid crystal
near confining surfaces along the field is expected to give an
additional contribution to the compression of the disclination
network. We present in Fig. 1(f) the isosurfaces of φ. The
isosurfaces are almost flat, indicating almost a uniform electric
field, though a closer inspection reveals that they deviate very
slightly from flat planes.

When a stronger field is applied, the topology of disclination
lines can no longer remain intact, and a significant change is
observed, as shown in Figs. 2(a) to 2(e) for E = 15 V/μm. The
complex reorganization of disclination lines is clearly visible,
and disclination lines are no longer straight but undulating and
confined in a thinner region around the midplane of the cell.
The orientation profile when the system is sufficiently relaxed
is given in Fig. 2(f). In contrast to the previous case of E =
10 V/μm [Fig. 1(e)], the electric field is strong enough to elim-
inate double-twist cylinders. In particular, near the confining
surfaces, the orientation profile is almost that of a cholesteric
phase of a single twist with its pitch axis being parallel
to the confining surfaces and to the plane of the page. A
perfect single twist does not allow disclination lines inside,
and therefore the disclination lines are localized around the
midplane. The structure observed here might be a metastable
state because a cholesteric-like single-twist order without
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. (Color online) (a–c) Time evolution of disclination lines when E = 10 V/μm is applied at t/τχ = 0. (d,e) Orientation profiles at
t/τχ = (d) 0 and (e) 396. For visibility, only a part of the system is shown, and disclination lines are drawn translucently. (f) Isosurfaces of
φ = mφ0/10 with m = 1,2, . . . ,9 at t/τχ = 396. (g–i) Time evolution of disclination lines after the field is switched off at t/τχ = 396. Here
and in Figs. 2 and 3, numbers indicate t/τχ after the field is switched on.

disclination is likely to be more energetically favorable.
However, the transition to a cholesteric phase is not observed
in our calculation. We also note that the applied field is not
strong enough to unwind the single-twist helical order of the
liquid crystal. All the structures mentioned above (the initial
structure [Fig. 1(a)], those sufficiently after the field is switched
on [Figs. 1(c) and 2(e)], and those sufficiently after the field is
switched off [Figs. 1(i) and 2(i)]) have p2 symmetry in two di-
mensions along the xy plane. (Note the absence of mirror sym-
metry because of the chirality. The absence of three-, four-, and
six-fold symmetry is also obvious from the presence of surface
defects.)

An even stronger field eventually removes the disclination
lines and the system ends up with a uniform alignment along
the field direction without any disclinations, as shown in
Figs. 3(a) to 3(f) for E = 20 V/μm. The process of the
annihilation of disclinations in response to the applied field

involves deformation [Fig. 3(b)] and the merging [Fig. 3(c)]
of disclination lines and is again quite complex.

In Fig. 4, we plot the time evolution of χzz. Though a
bulk BP before the application of the electric field would
yield χzz = 0 because of the cubic symmetry, in our cell
χzz before the application of the electric field is 0.082 �= 0
because confining surfaces breaks the cubic symmetry of a
bulk BP [22]. One can clearly see that χzz grows more rapidly
when the field is stronger. A closer inspection reveals the time
evolution of χzz for E = 15 V/μm is not smooth; kinks in the
graph signify the change in the topology of the disclination
network.

In Fig. 5 we show the time evolution of F’s for different
field strengths. In all cases, the abrupt drop ofF’s (in particular
Fgrad) just after the application of the electric field at t/τχ = 0
is attributed to the higher free energy of the initial condition
and its immediate relaxation because of the introduction of

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. (Color online) (a–e) Time evolution of disclination lines when E = 15 V/μm is applied at t/τχ = 0. (f) Orientation profiles at
t/τχ = 396. (g–i) Time evolution of disclination lines after the field is switched off at t/τχ = 396.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

(n)(l)

FIG. 3. (Color online) (a–e) Time evolution of disclination lines when E = 20 V/μm is applied at t/τχ = 0, 0.53, 3.96, 5.80, and 13.2.
(f) Orientation profiles at t/τχ = 13.2. (g–j) Time evolution of disclination lines after the field is switched off at t/τχ = 5.80. (k–n) Time
evolution of disclination lines after the field is switched off at t/τχ = 13.2.

randomness as mentioned at the end of Sec. II. It can be seen
that the variation of Ftotal is dominated by that of Fgrad and FE

(note the scale of vertical axes). In the case of E = 10 V/μm
[Fig. 5(a)], the variation of Flocal is almost invisible except at
the beginning, while in the cases of stronger field [Figs. 5(b)
and 5(c)], the notable change of Flocal can be found, which
reflects the disappearance of the disclination lines shown in
Figs. 2 and 3. The reorganization of disclination networks
marks a small kink in the time evolution of Fgrad as in that of
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FIG. 4. (Color online) Time evolution of χzz for E = 10, 15, and
20 V/μm from bottom to top. Inset shows the initial stage from
t/τχ = 0 to 20.

χzz. We also note that the value ofFs after sufficient relaxation
is smaller for larger E. This is because the normal alignment
of the liquid crystal by the electric field is favorable to the
surfaces imposing normal anchoring. For E = 20 V/μm, Fs

becomes almost zero because of the disappearance of surface
disclinations (Fig. 3).

B. Dynamics after the field is switched off

It is also interesting how the liquid crystals behave when
an electric field is switched off. In Figs. 1(g) to 1(i), we show
the relaxation of the system when the field E = 10 V/μm is
switched off from the state presented in Fig. 1(c). As expected,
the compressed disclination network expands and its final
profile is the same as the initial profile before the application
of the field.

On the other hand, in the case of E = 15 V/μm, the
disclination profile sufficiently relaxed after the field is
switched off is no longer the initial one, but slight dilations
of the disclination network around the midplane are observed
as shown in Figs. 2(g) to 2(i). In additional calculations not
shown here, we find that when the same field E = 15 V/μm is
applied to the profile of Fig. 2(i), the liquid crystal recovers the
profile of Fig. 2(e) without an appreciable topological change
in the disclination lines. Therefore the two states are reversibly
switchable to each other, though the one shown in Fig. 2(i) is
metastable as shown below.

In Figs. 3(g) to 3(n), we show how the relaxation process
depends on when the field is switched off in the case of
E = 20 V/μm. When the field is switched off at t/τχ = 5.80
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FIG. 5. (Color online) Time evolution of the total free energy per unit area F/A (labeled by “total”), and each contribution from the local
(Flocal/A, “local”), gradient (Fgrad/A, “grad”), electrostatic (FE/A, “electric”), and anchoring (Fs/A, “anchoring”) energies for E = (a) 10,
(b) 15, and (c) 20 V/μm. Only the range of t/τχ where these energies show notable changes is shown.

before the liquid crystal attains a uniform profile [see
Fig. 3(d)], the disclination lines of square appearance emerge
just after the cessation of the field [Fig. 3(g)], and then we
see undulating disclination lines near the cell surfaces and
those of a winding form around the midplane [Fig. 3(h)].
The winding disclination lines widen, become helical, and
eventually merge [Fig. 3(i)] and form a highly entangled
disclination network [Fig. 3(j)]. We also note that the shape of
the surface defects is different from that of the initial profile
before the application of an electric field. If the field is switched
off at t/τχ = 13.2 when the orientational order of the liquid
crystal is almost uniform [see Fig. 3(e)], the relaxation process
is quite different: loop disclinations suddenly appear after
some incubation time [Fig. 3(k)], and then they expand and
form helical order locally as the time elapses [Fig. 3(l)]. The
disclinations are nucleated from small fluctuations that exist in
the initial conditions and remain even after their suppression
by the strong field. The creation of loop disclinations reminds
us of the formation of ring-like disclinations in a thin cell
of a chiral liquid crystal where frustrations are introduced
by confining surfaces imposing strong planar anchoring [24].
These helical defects merge, and again eventually form highly

entangled disclinations [Figs. 3(m) and 3(n)]. In contract to
the previous case, the disclination lines reach the cell surfaces,
which is allowed in our case of finite surface anchoring. In our
calculation, the system does not recover the BP-I-like regular
network of disclination line that would require much longer
time. In numerical calculations based on the discretization
of continuum equations, it is quite difficult to achieve a
periodic structure with no irregularity without preparing an
appropriate initial condition. Adding a thermal fluctuation term
in the dynamical equation does not facilitate the formation of
perfectly regular structures, as demonstrated in Ref. [31] where
the dynamics of microphase separation in block copolymers
was discussed.

In Fig. 6, we show the time evolution of χzz after the field is
switched off. In the cases of E = 10 and 15 V/μm, χzz exhibits
a sharp but continuous drop followed by a gradual decrease
towards an equilibrium value. The smooth variation of χzz

without kinks reflects the absence of topological change in
the disclination network. In the former case, the equilibrium
value of χzz is exactly the same as the initial value 0.082,
consistent with the fact that the disclination network recovers
its original profile sufficiently after the field is switched off.
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FIG. 6. (Color online) Time evolution of χzz for E = (a) 10, (b) 15, and (c) 20 V/μm before and after the field is switched off. The time
when the field is switched off is indicated by an arrow. Two curves in (c) correspond to the time evolutions presented in Figs. 3(g) to 3(j) and
Figs. 3(k) to 3(n). Inset in (c) shows the initial stage from t/τχ = 0 to 200.
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FIG. 7. (Color online) Time evolution of the total free energy per unit area F/A (labeled by “total”), and each contribution from the local
(Flocal/A, “local”), gradient (Fgrad/A, “grad”), and anchoring (Fs/A, “anchoring”) energies for the field E = (a) 10, (b) 15, and (c,d) 20 V/μm
before and after the field is switched off. The discontinuity of F/A marks the time when the field is switched off [t/τχ = 396 for (a,b), 5.80
for (c), and 13.2 for (d)]. Only the range of t/τχ where these energies show notable changes is shown.

In the latter case, a small change in the topology of the
disclination network in Fig. 2 manifests itself in a relatively
rapid approach of χzz to the equilibrium value compared to
the case of E = 10 V/μm. Time evolution of χzz is more
complex in the cases of E = 20 V/μm. Again kinks in
the time evolution of χzz [Fig. 6(c)] for the case of earlier
cessation of the field [the time evolution of the disclination
profile given in Figs. 3(g) to 3(j)] reflect the change in the
topology of the disclination networks. In the case of later
cessation [corresponding to Figs. 3(k) to 3(n)], one can clearly
see a metastable state with large χzz, followed by a sudden

decrease initiated by the nucleation of defects [Fig. 3(k)].
It is interesting that χzz becomes negative after the sudden
decrease. The profile in Fig. 3(l) contains an irregular array
of disclinations of helical form. In a preliminary calculation
for negative εa now shown here, we find that a regular array
of helical disclination with negative χzz. Therefore, a negative
χzz in the case of Fig. 6(c) could be attributed to the formation
of helical disclinations.

In Fig. 7, we show the time evolution of F/A, Flocal/A,
Fgrad/A, and Fs/A before and after the field is switched
off (FE/A is not shown because FE/A = 0 after the field

(a) (b) (c)

(d) (e) (f)

FIG. 8. (Color online) (a–c) Time evolution of disclination lines when the field E = 10 V/μm is applied to the profile of Fig. 3(n) at
t/τχ = 0. (d–f) Time evolution of disclination lines after the field is switched off at t/τχ = 1319. Here and in Figs. 9 and 10 the numbers
indicate t/τχ after the field is switched on.
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(a) (b) (c)

(d) (e) (f)

FIG. 9. (Color online) (a–c) Time evolution of disclination lines when the field E = 15 V/μm is applied to the profile of Fig. 3(n) at
t/τχ = 0. (d–f) Time evolution of disclination lines after the field is switched off at t/τχ = 1319.

is switched off). As in the previous case under an applied field
(Fig. 5), the variation of the elastic energy Fgrad dominates that
of the total energy (again note the scale of the vertical axes).
Moreover the variation of F’s synchronizes that of χzz shown
in Fig. 4 [the synchronization is more clearly visible in Fgrad,
and in the cases of E = 20 V/μm in Figs. 7(c) and 7(d)].
The abrupt but continuous increase of Fs just after the field is
switched off for E = 10 and 15 V/μm [Figs. 7(a) and 7(b)]
arises from the widening of surface disclinations (see Figs. 1
and 2). In the cases of E = 20 V/μm in Figs. 7(c) and 7(d), one
can notice, by comparing Figs. 3, 7(c), and 7(d) that Fs starts
to increase when the disclinations reach the confining surfaces.
Although the time evolution of Flocal is not easy to understand
intuitively, the cessation of the electric field brings about the
overshoot ofFlocal. In the case of E = 10 V/μm [Fig. 7(a)], the
expansion of the disclination line network causes an increase
of Flocal. For E = 20 V/μm [Figs. 7(c) and 7(d)], the overshot
Flocal seems to be relaxed by the emergence and evolution of
disclination lines.

The total free energy of the system per unit area F/A

sufficiently after the field is switched off is, in the rescaled
units presented in Sec. II, −30.44, −29.99 for the cases
of E = 10 and 15 V/μm, respectively. For the cases of
E = 20 V/μm, F = −30.23 and −30.12 when the field
is switched off at t/τχ = 5.80 and 13.2, respectively. The
value F/A = −30.44 is exactly the same as that of the
initial condition before the introduction of randomness.
The free energy difference �F/A = 1 corresponds to
�F/A � 1.5 × 10−4 Jm−2 � 3.6 × 1016kBT m−2 in dimen-
sional units [26], where kB is the Boltzmann constant and
T � 300 K is the absolute temperature. The dimension of the
repeating unit of the disclination network is roughly equal to
p = 161 nm. Therefore, when �F/A = 1, the free energy
difference per area of the repeating unit is (�F/A)p2 �

0.94 × 103kBT . We thus conclude that the free energy of
the structures equilibrated after the field of strength 15 or
20 V/μm is switched off is sufficiently larger than that of the
initial profile (or, equivalently, that equilibrated after the field
of 10 V/μm is switched off); the difference is about 200kBT

or even more per area of the repeating unit. We note that
in numerical calculations based on continuum descriptions,
the estimation of the energy barrier between two (meta)stable
states is highly complex and demanding because of the large
number of degrees of freedom, and therefore is beyond the
scope of the present work.

C. Response of the entangled disclination network

One might wonder how the entangled disclination network
after the cessation of a strong electric field (shown in Fig. 3)
behaves when the electric field is switched on again. We carry
out simulations to figure out the response of the profile of
Fig. 3(n) to the application and cessation of the field. These
simulations correspond to cycling the field more than once. In
this section, the time t is measured so that the field is applied
to the entangled disclination network at t = 0.

In Fig. 8, we show the time evolution of the disclination
profile when an electric field E = 10 V/μm is applied, and
later switched off. Under an electric field, the disclination
network shrinks towards the midplane of the cell [note the
presence of more vacancies of disclination lines in Fig. 8(c)],
though the disclination lines reach the cell surfaces and
the entangled nature of the disclination network remains
unchanged; as in the case of Fig. 1, the field is not strong
enough to reorganize the disclinations drastically. After the
field is switched off, the disclination network expands towards
the cell surfaces. The behavior of the disclination lines is
almost the same when the field strength is E = 15 V/μm

(a) (b) (c)

(d) (e) (f)

FIG. 10. (Color online) (a–c) Time evolution of disclination lines when the field E = 20 V/μm is applied to the profile of Fig. 3(n) at
t/τχ = 0. (d–f) Time evolution of disclination lines after the field is switched off at t/τχ = 13.2.
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FIG. 11. (Color online) Time evolution of χzz for E = (a) 10, (b) 15, and (c) 20 V/μm. Solid lines are the results when the field is applied to
the entangled disclinations [Fig. 3(n)], and dashed lines are those given in Fig. 4 (electric field is applied to the BP-I-like regular disclinations).
Here χzz is subtracted by χzz(t = 0), which is 0.0088 for the former case (solid lines), or 0.082 for the latter case (dashed lines).

(Fig. 9), though the density of the disclination lines becomes
smaller when the field is applied.

As in the case of Fig. 3, a stronger field of E = 20 V/μm
can align the liquid crystal along the field to eliminate
disclination lines. We show the dynamics of the disappearance
of the disclination lines in Fig. 10. Again when the field
is switched off, disclination rings first appear after some
incubation time, and then they evolve to form an entangled
disclination network, as in the dynamics shown in Fig. 3.

In Fig. 11, we show the time evolution of χzz from
the entangled disclinations just after the field is applied to
compare it to the time evolution shown in Fig. 4, that is,
the response of a BP-I-like network of disclinations. For
all cases with different E’s, the initial evolution of χzz

looks almost the same irrespective of the initial condition.
However, the evolution of χzz is saturated later for the case
of initial entangled disclinations, which results in larger final
values of χzz; for E = 10 V/μm, χzz = 0.307 and 0.287
for entangled and regular initial conditions, respectively, and
for E = 15 V/μm, χzz = 0.632 and 0.536. On the other
hand, when E = 20 V/μm, χzz = 0.963 irrespective of the
initial condition because in both cases the liquid crystal is
uniformly aligned in the final state. The reason for larger χzz

might be that entangled disclinations respond more easily to
an applied field than BP-I-like regular disclinations because
of their metastability with regions with larger local free
energies.

Figure 12 presents the time evolution of χzz after the electric
field is switched off, together with, for reference, the time
evolution shown in Fig. 6 where the initial electric field was
applied to BP-I-like regular disclinations. In the cases of E =
10 and 15 V/μm, the time evolution of χzz is slower than
that given in Fig. 6, although the difference is small. This is
because entangled disclinations relax inhomogeneously owing
to their nonuniform structures, while the liquid crystal profiles
in the previous cases (Figs. 1, 2, and 6), retains regularity,
or spatial periodicity, and the relaxation of the system can
be almost homogeneous and fast. Figure 12(c) demonstrates
the time evolution of χzz quite similar to that in Fig. 6(d) when
the field E = 20 V/μm is switched off. This is natural because
in both cases the profile of the liquid crystal just before the
cessation of the field is uniform.

The time evolution of free energy contributions after the
field is applied is given in Fig. 13. In the case of E = 10 V/μm,
the comparison between Figs. 13(a) and 5(a) reveals that
the relaxation of the free energy is considerably slower for
entangled disclinations, which was not clearly visible in the
time evolution of χzz [Fig. 11(a)]. As in the previous case
shown in Fig. 5, the relaxation of the total energy is dominated
by those of FE and Fgrad, and the slower relaxation is clearly
visible in these two contributions as well as in Flocal. The
results in Figs. 11(a) and 13(a) indicate that the entangled
disclination lines allow larger variation of χzz and hence larger
birefringence, although the dynamics under the field is slow
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FIG. 12. (Color online) Time evolution of χzz when the field E = (a) 10, (b) 15, and (c) 20 V/μm is switched off at t/τχ = 0. Solid lines
are the results when the field is first applied to the entangled disclinations [Fig. 3(n)], and dashed lines are those given in Fig. 6 (electric field is
first applied to the BP-I-like regular disclinations and switched off). In (c), the value of χzz just before the cessation of the field (0.963 in both
cases) is highlighted by a short horizontal line.
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FIG. 13. (Color online) Time evolution of the total free energy per unit area F/A (labeled by “total”), and each contribution from the local
(Flocal/A, “local”), gradient (Fgrad/A, “grad”), electrostatic (FE/A, “electric”), and anchoring (Fs/A, “anchoring”) energies for E = (a) 10,
(b) 15, and (c) 20 V/μm when the field is applied to the profile given in Fig. 3(n). Only the range of t/τχ where these energies show notable
changes is shown.

because the field has to act on irregular disclination lines. On
the other hand, in the case of E = 15 V/μm, F’s in Fig. 13(b)
do not exhibit considerable slow relaxation compared with that
of Fig. 5(b). However, the kinks in Fig. 5(b) characterizing the
rearrangement of disclination lines cannot be seen in Fig. 13(b)
because the reorganization of entangled disclination lines
occurs continually everywhere in the system, which smears
out the kinks in the time evolution of F’s. It is interesting to
find that the result given in Fig. 13(c) for E = 20 V/μm is
almost indistinguishable from that in Fig. 5(c) for a BP-I-like
initial profile, except for the time evolution of Flocal in the
very initial stage. Under this strong field, the liquid crystal
is eventually oriented along the field direction leading to the
disappearance of disclination lines, and the process of this
strong alignment is insensitive to initial conditions.

In Fig. 14, we show how F’s evolve after the electric field
is switched off. As in the previous case shown in Fig. 7, the

temporal variation of Fgrad dominates that of the total free
energy for all E’s. For E = 10 V/μm, a comparison between
Figs. 14(a) and 7(a) does not reveal a significant difference,
although after the relaxation Fgrad is smaller for the latter
case, which is attributable to entangled disclinations in the
former case. For the case of E = 15 V/μm as well, the slower
relaxation of Fgrad and Fs for entangled disclinations is visible
from the comparison between Figs. 14(b) and 7(b). As in the
time evolution of χzz shown in Fig. 12(c), the time evolution of
F’s after the field E = 20 V/μm is switched off in Fig. 14(c)
is quite similar to that given in Fig. 7(d).

The total free energy per unit area F/A sufficiently after
the field is switched off is −30.20, −30.17, and −30.12
for E = 10, 15, and 20 V/μm, respectively, while that of
the initial state with entangled disclination is −30.12 (see
Sec. III B). According to the discussion in Sec. III B, the free
energy difference between the initial state (F/A = −30.12)
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FIG. 14. (Color online) Time evolution of the total free energy per unit area F/A (labeled by “total”), and each contribution from the local
(Flocal/A, “local”), gradient (Fgrad/A, “grad”), and anchoring (Fs/A, “anchoring”) energies for the field E = (a) 10, (b) 15, and (c) 20 V/μm
before and after the field is switched off, when the field is initially applied to the profile given in Fig. 3(n). The discontinuity of F/A marks the
time when the field is switched off [t/τχ = 1319 for (a,b) and 13.2 for (d)]. Only the range of t/τχ where these energies show notable changes
is shown.
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and the final state per unit area of a repeating regular
disclination network (∼p2) is a few tens of kBT for E = 10
and 15 V/μm. Although this difference is smaller than that
between a regular disclination network and an entangled
one, this result indicates that apparently indistinguishable
entangled disclination networks can have sufficiently different
free energies. In the case of E = 20 V/μm, the free energy
after the relaxation is almost identical for the two simulations,
which is reasonable because in both simulations the liquid
crystal is uniformly aligned when the field is switched off.

IV. CONCLUSION

We investigated the dynamics of a cholesteric blue phase
cell made up of a chiral liquid crystal confined by parallel
surfaces, by numerical calculations based on a Landau–de
Gennes theory describing the orientational order by a second-
rank tensor order parameter. We focused on its response to
an electric field applied between the confining cell surfaces.
We demonstrated that the dynamics of the disclination lines
in the liquid crystal depends sensitively on the field strength
and the history of the application of the electric field. When
the field is not strong, the disclination network inherent in a
cholesteric blue phase just shrinks along the field direction
without its topology being changed. However, stronger field
brings about complex reorganization processes of disclination
lines, and the final profile can be disclination lines of different
shape localized around the midplane of the cell, or a uniform
alignment along the field direction with no disclination lines.

We also studied the relaxation dynamics of the cell when
the field is switched off. Again the relaxation process and the
resulting profile strongly depend on the initial profile of the cell
just before the cessation of the field. A compressed disclination
network of BP I in the case of weak field (E = 10 V/μm)
simply recovers the original profile, exhibiting reversible
switching between two states. Also a switching between
metastable states was found in the case of E = 15 V/μm.
However, the orientation profiles strongly influenced by a
stronger field (E = 20 V/μm) exhibit nontrivial and complex
reorganization processes, depending sensitively on the initial
profile of the relaxation. In particular, we found the sponta-
neous formation of an entangled disclination network when the
field is switched off from a liquid crystal uniformly aligned
by a strong field. The complexity of the relaxation processes
manifested itself also when the entangled disclination lines
mentioned above are used as an initial condition. We found
the relaxation of entangled disclinations slower than that
of regular BP-I-like ones, which is natural considering the
irregular profile of entangled disclinations.

We believe that we have succeeded in demonstrating rich
behaviors of a cholesteric blue phase cell in response to an
applied electric field. Some of them, including the compression
of the disclination network due to the enhanced normal
alignment of the liquid crystal near the confining surfaces, and
the nucleation of disclinations near the surface when the field is
switched off, are specific to a cell and not observed in the bulk.
Although direct experimental observation of the real-space
orientation profile of blue phase materials still remains a
challenge, a successful observation of the lattice structures

of BP I using confocal microscopy was recently reported
[32]. Therefore we hope that the present study will stimulate
further experimental study aiming at direct observation of the
dynamics of cholesteric blue phases in a planar cell. The great
advantage of our numerical scheme is that the electric field is
calculated by the Poisson equation with the spatial distribution
of the dielectric tensor taken into account explicitly, instead
of an assumption of a uniform field in previous studies on
the same subject. Though in the present study the profile of
the electric field is almost uniform and thus this advantage
is of minor importance, our scheme will be quite powerful
when the electric field is far from uniform because of the
design of electrodes. Considering the recent growing interest
in the application of a cholesteric blue phase to fast-switching
displays, we believe that our scheme will help investigate the
dynamics of a cholesteric blue phase cell and propose designs
of a cell for a more efficient use of the properties of cholesteric
blue phases.

ACKNOWLEDGMENTS

J.F. thanks Professor Hirotsugu Kikuchi for valuable
discussions and encouragement. We appreciate the support
of the Slovenian Research Agency (ARRS research program
P1-0099 and project J1-2335), and the Center of Excellence
NAMASTE, which enabled J.F. to stay at the University of
Ljubljana and carry out part of this work there. J.F. is also
supported by KAKENHI for Young Scientists (23740324)
from Japan Society for the Promotion of Science, and the
Cooperative Research Program of “Network Joint Research
Center for Materials and Devices.”

APPENDIX: RESCALING OF THE VARIABLES

Here we present how relevant parameters are rescaled.
The rescaling of flocal and fgrad is exactly the same as that
presented in Ref. [1]. The rescaled free energy densities and
order parameter read ϕlocal,grad ≡ (a3/b4)flocal,grad, and χαβ ≡
(a/b)Qαβ . The lengths are measured in units of (2q0)−1 and the
rescaled spatial derivative reads ∇ = (2q0)−1∇. We also have
the relations τ ≡ (a/b2)c, κ ≡ √

aK1q
2
0/b2 and η ≡ K0/K1.

τ is now assumed to depend linearly on temperature, and thus
safely called the rescaled temperature. Though κ is closely
related to the elastic constant, it is proportional to q0 and
thus measures the strength of chirality. For the rescaling of
ϕs to be consistent, the rescaled anchoring strength should be
w ≡ 2q0(a/b2)W . We employ the following typical values
for the material parameters [23]; a � 8 × 104 Jm−3, b �
5 × 104 Jm−3, K1 � 10 pN, and c = c̃(T − T ∗) with c̃ = 3 ×
104 Jm−3 K−1, T being the temperature of the liquid crystal in
Kelvin and T ∗ being the temperature below which an isotropic
state becomes unstable with respect to small perturbations.
Then the rescaled temperature becomes τ � 1 × (T − T ∗),
and the cholesteric pitch becomes 2π/q0 � 113/κ nm. The
anchoring strength is W � w × 4 × 10−4 Jm−3. We note that
other choices of a, b, c̃, K1 yield different relations between
q0 and κ , between T and τ , and between W and w.
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We employ the same rescaling for the electrostatic en-
ergy density so that ϕE ≡ (a3/b4)fE . When we consider
a uniaxial nematic with the director n so that εαβ is also
uniaxial with its symmetry axis being n, εαβ is written
as εαβ/ε0 = (ε|| − ε⊥)nαnβ + ε⊥δαβ , with ε|| and ε⊥ being
the component of εαβ along and perpendicular to n, re-
spectively. ε0 is the vacuum permittivity. The part of the
electrostatic free energy density dependent on n is now given
by [27]

fE = − 1
2ε0εa(E · n)2, (A1)

where we have defined εa ≡ ε|| − ε⊥. When we adopt a uniax-
ial form of the order parameter, χαβ = χ0(nαnβ − (1/3)δαβ),
and compare Eqs. (A1) and (8), we have

E =
√

(a3/χ0b4)ε0E. (A2)

When we assume χ0 � 1 and measure E in units of V/μm,
we arrive at Eq. (11). Note also that when χ0 = 1, εiso =
(ε|| + 2ε⊥)/3.

The values εiso and εa strongly depend on materials, and
in our calculation we set εiso = 10, and εa = 10. Information
on the values of ε|| and ε⊥ for blue phase materials was not
available, and therefore we employed ε|| � 17 and ε⊥ � 7 for
a typical nematic liquid crystal 5CB [33,34]. A typical value
of εa for blue phase materials is εa � 7 [35], and therefore the
above choice of εiso and εa is reasonable. We also note that
as long as εisoE

2 and εaE
2 remain the same, the dynamics

presented in the main text remains unaltered irrespective of
the choice of εiso and εa .

When the absolute value of the negative eigenvalue of
χαβ is extremely large, the electrostatic energy ϕE is not
positive definite. In our calculations we do not encounter such
situations.
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