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Smectic-A to -C phase transition in isotropic disordered environments
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We study theoretically the smectic-A to -C phase transition in isotropic disordered environments. Surprisingly,
we find that, as in the clean smectic-A to -C phase transition, smectic layer fluctuations do not affect the nature
of the transition, in spite of the fact that they are much stronger in the presence of the disorder. As a result, we
find that the universality class of the transition is that of the “random field XY model” (RFXY ).
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I. INTRODUCTION

The effect of quenched disorder on condensed matter
systems has been widely studied for many years [1–3], both
for practical reasons (because disorder is always present in
real systems) and fundamental ones. Disorder can destroy
many types of long-ranged order (e.g., ferromagnetic order in
systems with quenched random fields [4]), and it can radically
change the critical behavior of many phase transitions [3].

Such effects have been found in, e.g., superconductors
[5], charge density waves [6,7], Josephson junction arrays
[8], superfluid helium in aerogel [9], and ferromagnetic
superconductors [10].

Some of the most novel and dramatic effects of quenched
disorder are found in liquid crystals confined in random porous
media [11,12]. These intriguing systems exhibit a variety of
exotic “Bragg Glass” phases. They also undergo unique types
of phase transitions [13], one of which, the smectic-A to
smectic-C (hereafter, AC) transition [14,15], is the subject
of this paper.

In the high temperature phase (the “A” phase), the nematic
director n̂ (which points along the axis of alignment of the
constituent long molecules that make up the smectic material),
and the normal N̂ to the smectic layers, are parallel. In the low
temperature phase (the “C” phase), n̂ and N̂ tilt away from
each other.

The AC transition in clean systems was first considered by
deGennes [16], who showed that, if fluctuations of the smectic
layers could be neglected, the AC transition should be in the
universality class of the ferromagnetic XY model [17].

The effect of layer fluctuations on this result was considered
later by Grinstein and Pelcovits [14], who showed that
their effect on the AC transition can, in fact, be neglected,
and that, therefore, the AC transition in clean systems is

XY -like.
Unfortunately, for reasons not yet well understood, the

critical region of the AC transition in clean systems appears
to be extremely small; most experimental systems exhibit a
transition that is accurately described by mean-field theory
[18]. As a result, no definitive experimental test of the above
predictions has yet been made.

Recently the nature of the AC transition has been studied
for a liquid crystal confined in uniaxial [13] and biaxial [19]

disordered environments. In these systems, the anisotropy
essentially freezes the direction of the molecular axes, and
the AC transition can be described entirely in terms of the
configuration of the smectic layers [13,19].

In an isotropic quenched random environment (which can
be realized most simply by putting the smectic in aerogel [20]),
which we study in this paper, the problem is in many ways more
difficult, since now both fluctuations of the molecular direction
and those of the layers must be addressed. Indeed, it is not even
obvious that the two phases between which the transition we
wish to study occurs even exist in d = 3; the stability of the A

phase in the presence of even arbitrarily weak disorder remains
an open question both theoretically [12], and experimentally
[11]. Presumably, similar issues arise with the C phase.

However, if we assume that both the A and C phases are
stable, then we are able to completely determine the nature
of the transition between them. We find that, if this stability
assumption is correct, the layer fluctuations do not affect the
universality class of this transition, which proves to be just that
of the random field XY model [21,22].

This implies a substantial quantitative change in the univer-
sal critical exponents from their values in the clean problem. It
is known [21] that the coefficients in the ε = 6 − d expansion
for the critical exponents of the random field XY model are
exactly the same as those for the ε = 4 − d expansion of the
clean (i.e., no random field) problem. However, since ε = 3
in the physical case d = 3 for the random field problem, the
ε-expansion is not quantitatively reliable. It is clear, however,
that the exponents will be quite different from those for the
clean XY model, as even the first order in ε terms change by
a factor of 3.

From a quantitative standpoint, the most useful feature of
our result is that it connects the exponents of the AC transition
in an isotropic disordered environment to those of a random
field XY model, as can be experimentally realized in, e.g.,
antiferromagnets with substitutional disorder [23].

The remainder of this paper is organized as follows: in
Sec. II, we introduce our model, and its “replicated”version.
In Sec. III, we develop a novel “partial renormalization group”
strategy, and use it to show that the AC transition in the
presence of isotropic disorder is in the random field XY

universality class. Finally, in Sec. IV, we summarize our
findings.
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II. THE MODEL AND ITS REPLICATION

Our starting model is a modification of the model for
clean smectics near a smectic-A–smectic-C transition [14],
the Hamiltonian H = Hu + Hc + Huc for which consists of
three parts:

Hu = 1

2

∫
ddr

[
K(∇2

⊥u)2 + B

(
∂zu − 1

2
| �∇u|2

)2 ]
,

Hc = 1

2

∫
ddr

[
K1( �∇ · �c)2 + K2( �∇ × �c)2

+K3

(
∂ �c
∂z

)2

+ Dc2 + 2vc4

]
,

Huc = 1

2

∫
ddr

[
g1c

2

(
∂zu − 1

2
| �∇u|2

)
+ g2(∇2

⊥u)

× ( �∇ · �c) + g3

(
∂ �c
∂z

)
· (∂z

�∇⊥u) + D(�c · �∇⊥u)2

]
,

where we have defined the direction parallel to the averaged
layer normal in the A phase as the ẑ axis, and the plane
perpendicular to ẑ as ⊥. Here �c, which is roughly the projection
of n̂ onto the layers, is the order parameter for the transition.
More precisely, it has only two nonzero components [i.e.,
cz(�r) = 0], given by

c⊥
i (�r) = [δij − Ni(�r)Nj (�r)]nj (�r), i ∈⊥ , (1)

where N̂ (�r) denotes the unit vector along the layer normal,
given by N̂ = ẑ−�∇u

|ẑ−�∇u| . Note that all terms in the Hamiltonian
are rotation invariant. This is because the environment is
isotropic and rotating the smectic does not cost energy. The
pieces Hu and Hc are, respectively, just the elastic energies for
smectic layer fluctuations and molecular reorientations, while
Huc couples u and �c.

The fourth term in Hc and the last term in Huc, which come
from a term D(T )|N̂ − n̂|2, induce the AC transition via a sign
change in the temperature T -dependent coefficient D(T ). For
T > TAC , D > 0, and the free energy is minimized at �c = �0,
so the system is in the A phase. For T < TAC , D < 0, and the
free energy is minimized at �c �= �0, so the system is in the C

phase.
Now we include disorder. The aerogel exerts a variety of

random forces on the molecular axes and the smectic layers
[12,13]; the most important of them are [12,13] the “random
tilt fields”, which tend to align the local molecules and the local
normals with the random aerogel strands. The contribution of
these random effects to the free energy can be written as [12,13]∫

ddr[�h(�r) · �∇⊥u + �hc(�r) · �c], (2)

where the quenched random fields �h(�r) and �hc(�r) are taken
to have Gaussian distributions of zero mean, with isotropic
short-ranged correlations:

hi(�r)hj (�r ′) = �δ⊥
ij δ

d (�r − �r ′), (3)

hc
i (�r)hc

j (�r ′) = �cδ
⊥
ij δ

d (�r − �r ′), (4)

hc
i (�r)hj (�r ′) = �′δ⊥

ij δ
d (�r − �r ′). (5)

The first term in Eq. (2) has been treated in the earlier work [12]
on the smectic-A phase in isotropic disordered environments,
where it leads to strong power-law anomalous elasticity [12].
The second term is just the random field disorder present in
the RFXY model [4,22].

To cope with the quenched disorder we employ the replica
trick [2]. We assume that the free energy of the system for
a specific realization of the disorder is the same as that
averaged over many realizations. To calculate the averaged
free energy F = ln Z, where Z is the partition function,
we use the mathematical identity ln Z = limn→0

Zn−1
n

. When
calculating Zn, we can first compute the average over the
random fields �h(�r), whose statistics have been given earlier.
Implementing this procedure gives a replicated Hamiltonian
Hr = Hr

u + Hr
c + Hr

uc with the effect of the random fields
transformed into couplings between n replicated fields, with
the limit n → 0 corresponding to the original quenched
disorder problem:

Hr
u = 1

2

∫
ddr

n∑
α=1

[
B

(
∂zuα − 1

2
| �∇uα|2

)2

+ K(∇2
⊥uα)2

]

− �

2kBT

∫
ddr

n∑
α,β=1

�∇⊥uα · �∇⊥uβ, (6)

Hr
c = 1

2

∫
ddr

n∑
α=1

[
K1( �∇ · �cα)2 + K2( �∇⊥ × �cα)2

+K3

(
∂ �cα

∂z

)2

+ Dc2
α + 2vc4

α

]

− �c

2kBT

∫
ddr

n∑
α,β=1

�cα · �cβ, (7)

Hr
uc = 1

2

∫
ddr

[
n∑

α=1

(
g1c

2
α

(
∂zuα − 1

2
| �∇uα|2

)

+ g2(∇2
⊥uα)( �∇ · �cα) + g3

(
∂ �cα

∂z

)
· (∂z

�∇⊥uα)

+ D(�cα · �∇⊥uα)2

)]
. (8)

III. RENORMALIZATION GROUP ANALYSIS
OF THE MODEL

If we set uα = 0, the entire Hamiltonian reduces to Eq. (7),
which reduces to the RFXY model if K1 = K2 = K3. An
RG analysis shows that departures from this “one constant
approximation” (i.e., K1,2,3 = K) are irrelevant [24]; hence,
in the absence of the u field, the transition is in the RFXY

universality class.
The piece Hr

u Eq. (6) of H which involves u alone is
precisely the model for smectics A in isotropic aerogel studied
in Ref. [12]. From the analysis of that reference, we know that
the critical dimension of Eq. (6), below which the anharmonic
terms in Eq. (6) become important, is 5. On the other hand,
the critical dimension of Hr

c Eq. (7) is well known [4,21,22]
to be 6. Because of this discrepancy between the two critical
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dimensions, a standard ε-expansion study of the entire model
Eqs. (6)–(8) is impossible. Our solution to this quandry is to
integrate out only the uα fields perturbatively in a momentum
shell RG approach, which is controlled in an ε = 5 − d

expansion, to obtain an effective model that only involves �cα .
While unorthodox, this approach is very much in the spirit of
more conventional RG’s: We are performing a partial trace
over some degrees of freedom to obtain a more tractable
Hamiltonian in terms of the degrees of freedom remaining
after the trace.

The momentum shell RG procedure consists of tracing over
the short wavelength Fourier modes of uα(�r) followed by
a rescaling of the length. We initially restrict wave vectors
to lie in a bounded Brillouin zone which we take to be
the infinite cylinder 0 < |�q⊥| < �, −∞ < qz < ∞, where
� ∼ 1/a is an ultraviolet cutoff, and a is the smectic layer
spacing. The displacement field uα(�r) is separated into high
and low wavevector parts uα(�r) = u<

α (�r) + u>
α (�r), where u>

α (�r)
has support in the thin wave vector shell �e−d	 < |�q⊥| < �,
−∞ < qz < ∞. Here d	 is a differential parameter d	 � 1.

We first integrate out u>
α (�r). This integration is done

perturbatively in the anharmonic terms in H Eqs. (6)–(8). After
this perturbative step, we anisotropically rescale lengths, with
�r⊥ = �r ′

⊥e	, rz = r ′
ze

ω	, so as to restore the UV cutoff back to
�. This is then followed by rescaling the long-wavelength
part of the field with u<

α (�r) = u′
α(�r ′)eχ	. The underlying

rotational invariance insures that the graphical corrections
preserve the rotationally invariant operator ∂zuα − 1

2 ( �∇uα)2,
renormalizing it as a whole. It is therefore convenient to choose
the dimensional rescaling that also preserves this operator,
which is χ = 2 − ω.

After this procedure we obtain the following RG flow
equations to one-loop order, ignoring the term D(�cα · �∇⊥uα)2,
since we are interested in the critical point where D vanishes:

dB

d	
=

(
d + 3 − 3ω − 3

16
g

)
B, (9)

dK

d	
=

(
d − 1 − ω + 1

32
g

)
K, (10)

d�

d	
=

(
d + 1 − ω + 1

64
g

)
�, (11)

dg1

d	
=

(
d + 1 − ω − 3

16
g

)
g1, (12)

dv

d	
=

(
d − 1 + ω − 3g

128

g2
1

Bv

)
v, (13)

where g is a dimensionless coupling:

g ≡ �

(
B

K5

) 1
2

Cd−1�
d−5, (14)

with Cd the surface area of a d-dimensional sphere with radius
one divided by (2π )d .

Note that the graphical corrections inside the parenthesis in
Eqs. (9) and (12) are the same. This is not just an approximation
to one-loop order, but exact to arbitrary loop order. This can be
easily understood by analyzing the structures of the Feynman
graphs. In Fig. 1 the upper graph summarizes all the possible

FIG. 1. Schematic representation of all Feynman graphs that
renormalize B (top diagram) and g1 (bottom diagram). In each
case the gray box represents all possible ways of connecting the
portions of the Feynman graphs shown. These are identical for
both graphs; as a result, the graphical corrections to B and g1

obey (dB/dl)graph = (dg1/dl)graph(g1/B). This in turn implies that the
anomalous elasticity for g1 (see text) is identical, up to a multiplicative
constant, to that for B.

graphical corrections to (∂zuα)| �∇⊥uα|2; the lower one does for
(∂zuα)c2

α . The parts inside the two square boxes are the same
no matter how complicated they are and how many loops they
have.

There are no graphical corrections to (∇2
⊥uα)( �∇ · �cα), which

is also exact to arbitrary-loop order. This is because both terms
have one power of cα while all anharmonic terms have even
powers of cα . Therefore, under renormalization both g2,3 flow
only as a result of length and field rescaling.

The recursion relations for B, K , and � are identical with
those found for a smectic A in an isotropic disordered medium
in Ref. [12]. This is also exact to all orders, since we have
not, in our unusual approach, integrated out the �c fluctuations.
This means that all of the results obtained in [12] for the
long-wavelength behavior of these quantities also hold here.
We will also make use of this fact later.

To analyze these flow equations we introduce an addi-

tional dimensionless coupling: g4 ≡ g2
1

Bv
. Combining the flow

Eqs. (9)–(13) with the definitions of g and g4 we find
dg

d	
= εg − 5

32
g2, (15)

dg4

d	
= 3g

128
(−8 + g4)g4, (16)

where ε = 5 − d. These flow equations have four fixed points:
g∗ = 0 or 32

5 ε,g∗
4 = 0 or 8. The RG flows of g and g4 around

these fixed points are illustrated in Fig. 2. Note that g∗
4 = 8

corresponds to the stability limit of the system. Linearizing
Eqs. (15) and (16) around the only stable fixed point g∗ =
32
5 ε, g∗

4 = 0, we find the graphical corrections to v vanish
exponentially as 	 → ∞. This implies that integrating out uα

only gives a finite correction to v, even at arbitrarily long
wavelengths. Hence, these corrections to v coming from the
uα fields do not affect the nature of the AC transition.

During each RG cycle the integration over u>
α also generates

terms which do not exist in Hr
c . The most relevant ones are

produced in the second cumulant by (∂zuα)c2
α and (∇2

⊥uα)( �∇ ·
�cα). Elementary power counting shows that the terms generated
by ( ∂ �cα

∂z
) · (∂z

�∇⊥uα) are less relevant.
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FIG. 2. RG flows of the dimensionless couplings g and g4 from
Eqs. (15) and (16). All initial models starting to the left of the stability
limit g4 = 8 flow into the g = g∗, g4 = 0 fixed point, which therefore
controls the AC transition. All models starting to the right of the
stability limit are unstable.

We will now show that these terms also do not affect the
nature of the AC transition. We start with the terms generated
by (∂zuα)c2

α:

n∑
α,β

∑
�q1,2 �k

g2
1(�k)

[
kBT k2

zG(�k)δαβ + �(�k)k2
z k

2
⊥G2(�k)

]

× cα,i(�q1)cα,i(−�q1 + �k)cβ,i(�q2)cβ,i(−�q2 − �k), (17)

where G(�k) ≡ 1/[B(�k)k2
z + K(�k)k4

⊥]. The �k dependencies of
B, K , �, and g1 arise due to the nonzero graphical corrections
in the recursion relations Eqs. (9)–(12). Because, as mentioned
earlier, Eqs. (9)–(11) are identical, to all orders, with those for
a smectic A in an isotropic disordered environment, we can
simply use the results of [12] for the wave-vector dependencies
of these quantities. Furthermore, since, as noted earlier, there
is an exact relation between the renormalization of g1 and that
of B, the wave-vector dependence of g1 is identical to that of
B, up to an overall multiplicative constant.

Using the just noted connections to the work of [12], we
can simply quote �k dependencies of B, K , �, and g1:

B(�k),g1(�k) ∝
{

k
ηB

⊥ , kz � k
ζ

⊥,

k
ηB/ζ
z , kz � k

ζ

⊥,
(18)

K(�k),�(�k) ∝
{

k
−ηK,�

⊥ , kz � k
ζ

⊥,

k
−ηK,�/ζ
z , kz � k

ζ

⊥,
(19)

where the anisotropy scaling exponent ζ = 2 − ηB+ηK

2 , and
ηB,K,� > 0. Another result of [12] is that the exponents ηB,K,�

are not fully independent, but connected by the exact scaling
relation:

5 − d + η� = ηB

2
+ 5

2
ηK, (20)

which is implied by the fact that g flows to a nonzero stable
fixed point [12]. Furthermore, there are certain bonds on the
values of ηB,K that must be satisfied in order for the smectic A

phase in an isotropic random environment to be stable, which

is a prerequisite condition for the existence of a sharp smectic
A-C transition [12] in such environments. It is only meaningful
within these bounds to discuss the relevance of the terms in
formula (17). These bounds are

ηK + ηB < 2, ηK < 1, ηB + 5ηK > 4. (21)

The first two bounds come from the requirement of long-
ranged orientational order and the condition for dislocations
to remain confined, respectively. The third bound is obtained
by combining η� > 0 with the exact scaling relation (20) in
d = 3.

Using expressions (18) and (19) we can write Eq. (17) in a
scaling form:

n∑
α,β

∑
�q1,2 �k

[
k

ηB

⊥ f1

(
kz

k
ζ

⊥

)
δαβ + k

(ηB−3ηK )/2
⊥ f2

(
kz

k
ζ

⊥

)]

× cα,i(�q1)cα,i(−�q1 + �k)cβ,i(�q2)cβ,i(−�q2 − �k), (22)

where f1,2(x) are scaling functions. Clearly, as �k → �0 the
replica-diagonal term (i.e., the one which contains δαβ) in (22)
is irrelevant compared to the quartic (v) term in Hr

c , since its
coefficient vanishes like k

ηB

⊥ .
To decide whether the off-diagonal piece is relevant, we

treat it as a perturbation and calculate its contributions to D:

δD =
∫

ddk k
(ηB−3ηK )/2
⊥ f2

(
kz

k
ζ

⊥

)
1

ck2 + D

≈
∫

ddk k
(ηB−3ηK )/2
⊥ f2

(
kz

k
ζ

⊥

)
1

ck2

(
1 − D

ck2

)
.

It is readily shown that this integral converges for d near 6
if the exponents ηB,K satisfy the bounds (21). Therefore, this
off-diagonal piece is also irrelevant.

Now we discuss the terms generated by (∇2
⊥uα)( �∇ · �cα),

which also have a diagonal and an off-diagonal part:

n∑
α,β

∑
�q

g2
2[kBT q4

⊥G(�q)δαβ + �(�q)q6
⊥G2(�q)]

× qiqj cα,i(�q)cβ,j (−�q). (23)

Here, unlike g1, g2 has no dependence on �q since there are no
graphical corrections to (∇2

⊥uα)( �∇ · �cα). Again we can rewrite
Eq. (23) in a scaling form:

n∑
α,β

∑
�q

g2
2

[
q

ηK

⊥ f3

(
qz

q
ζ

⊥

)
δαβ + q

−(ηB+3ηK )/2
⊥ f4

(
qz

q
ζ

⊥

)]

× qiqj cα,i(�q)cβ,j (−�q), (24)

where f3,4(x) are scaling functions similar to f1,2(x). Clearly,
both terms are subdominant to the quadratic terms in Hr

c as
q → 0 provided that ηB,K are within the stability bounds.

Therefore, we conclude that integrating out uα only gives
minor corrections to Hr

c , which do not affect the nature of the
transition. Therefore, the universality class of the transition is
just that of the random field XY model, as it would be were
the full Hamiltonian just Hr

c .
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IV. CONCLUSION

In summary, in this paper we have studied the smectic-A to
-C phase transition in isotropic disordered environment. Our
analysis shows that if the smectic phases are stable against
fluctuations and unbinding of dislocations, the universality
class of the transition is that of the “random field XY

model”. Surprisingly, in spite of the fact that the smectic layer
fluctuations are large due to the disorder, they have no effect on
the nature of the transition; that is, if the layers can be frozen
by some experimental means the universality class of the tran-
sition still remains the same. During this study we developed
a “partial renormalization group” strategy which proves to be
very successful. We expect this strategy to be useful in dealing
with many problems with anharmonic Hamiltonians which
involve multiple fields with different critical dimensions.
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