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Static fluctuations of a thick one-dimensional interface in the 1 + 1 directed polymer formulation
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Experimental realizations of a one-dimensional (1D) interface always exhibit a finite microscopic width
ξ > 0; its influence is erased by thermal fluctuations at sufficiently high temperatures, but turns out to be a crucial
ingredient for the description of the interface fluctuations below a characteristic temperature Tc(ξ ). Exploiting the
exact mapping between the static 1D interface and a 1 + 1 directed polymer (DP) growing in a continuous space,
we study analytically both the free-energy and geometrical fluctuations of a DP, at finite temperature T , with a
short-range elasticity and submitted to a quenched random-bond Gaussian disorder of finite correlation length ξ .
We derive the exact time-evolution equations of the disorder free energy F̄ (t,y), which encodes the microscopic
disorder integrated by the DP up to a growing time t and an endpoint position y, its derivative η(t,y), and their
respective two-point correlators C̄(t,y) and R̄(t,y). We compute the exact solution of its linearized evolution
R̄lin(t,y) and we combine its qualitative behavior and the asymptotic properties known for an uncorrelated disorder
(ξ = 0) to justify the construction of a “toy model” leading to a simple description of the DP properties. This model
is characterized by Gaussian Brownian-type free-energy fluctuations, correlated at small |y| � ξ , and of amplitude
D̃∞(T ,ξ ). We present an extended scaling analysis of the roughness, supported by saddle-point arguments on
its path-integral representation, which predicts D̃∞ ∼ 1/T at high temperatures and D̃∞ ∼ 1/Tc(ξ ) at low
temperatures. We identify the connection between the temperature-induced crossover of D̃∞(T ,ξ ) and the full
replica symmetry breaking in previous Gaussian variational method (GVM) computations. In order to refine our
toy model with respect to finite-time geometrical fluctuations, we propose an effective time-dependent amplitude
D̃t . Finally, we discuss the consequences of the low-temperature regime for two experimental realizations of
Kardar-Parisi-Zhang interfaces, namely, the static and quasistatic behavior of magnetic domain walls and the
high-velocity steady-state dynamics of interfaces in liquid crystals.
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I. INTRODUCTION

Effective one-dimensional (1D) interfaces can be spotted
in various experimental contexts, encompassing domain walls
(DWs) in ferromagnetic [1–3] or ferroic [4–6] thin films, frac-
tures in brittle materials [7] or paper [8], contact line in wetting
experiments [9,10]. The generic framework of the disordered
elastic systems (DES) [11] has been proven to provide a quite
successful modeling for such systems, describing them as
pointlike elastic strings living in a two-dimensional disordered
energy landscape. The competition between the elasticity
(the tendency to minimize their distortions) and the disorder
(the inhomogeneities of the underlying medium), blurred by
thermal fluctuations at finite temperature, accounts for the
resulting metastability and the consequent glassy properties
observed in such systems. Moreover, the value of the roughness
exponent ζ , which characterizes the scaling properties of a
self-affine manifold, is fully determined for a given DES once
the dimensionality, the type of elasticity, and of disorder are
chosen, thus promoting the value of ζ to a reliable signature of
the disorder universality class to which a given system might
belong.

The specific case of a 1D interface with a short-range elas-
ticity and a random-bond (RB) quenched Gaussian disorder
can actually be mapped on other statistical-physics models
in the Kardar-Parisi-Zhang (KPZ) universality class [12–14],
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including in particular the so-called 1 + 1 directed polymer
(DP) which has stimulated an increased activity lately, among
both statistical physicists [15–17] and mathematicians [18,19].
A large variety of results emphasizes the deep connection
which exists between the descriptions of a wide range of
systems up to random matrices [20,21], such as the Burgers
equation in hydrodynamics [22], roughening phenomena and
stochastic growth [23], last-passage percolation [24], dynam-
ics of cold atoms [25], and vicious walkers [15,26,27]. A
shared feature between those related models is the well-known
KPZ exponent ζKPZ = 2

3 , which characterizes the exact scaling
at asymptotically large length scales or “times,” generated
by the nonlinear KPZ evolution equation and assuming an
uncorrelated disorder [20,28–30].

Although of interest regarding the whole KPZ class
problems, there are two additional issues which turn out to
be relevant especially for the study of experimental interfaces:
on one hand, the characterization of the scaling properties
at finite length scales, with possibly different regimes and
crossover length scales regarding both the roughness exponent
and the amplitude of the geometrical fluctuations; on the other
hand, the consequences of the interplay at finite temperature
between thermal fluctuations and disorder. However, in order
to have then a complete realistic description, an additional
physical ingredient must be included in the DES model:
an experimental realization of interface always exhibits a
finite microscopic width ξ > 0, which translates equivalently
for a pointlike interface into a finite disorder correlation
length. Above a characteristic temperature Tc(ξ ) > 0, thermal
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fluctuations simply erase the existence of such a microscopic
width, whereas at sufficiently low temperature it becomes
relevant even for the macroscopic properties of the interface.
Those two temperature regimes can be hinted by simple
scaling arguments [11], which are reflected in the two opposite
functional-renormalization-group (FRG) regimes of high-
temperature [31] versus zero-temperature fixed points [32,33].
Their connection has already been addressed analytically
in a single computation in a Gaussian variational method
(GVM) approximation [11,34]. Its predictions for the low-
temperature regime turned out to be potentially accessible
and thus crucially relevant for ferromagnetic DWs in ultrathin
films [1–3]; these boundaries between regions of homogeneous
magnetization are believed to be the experimental realization
of precisely the 1D DES considered here, and actually exhibit
temperatures Tc(ξ ) (extracted from their dynamical response
to an external magnetic field) which are well above room
temperature [35].

Unfortunately, the GVM computation does not allow us
to grasp directly the correct asymptotic fluctuations of the 1D
interface, as it predicts ζ = 3

5 instead of ζKPZ, thus jeopardizing
its predictions for the scaling in temperature of the roughness
[11,34]. In order to circumvent this known GVM artifact, we
have actually performed in Ref. [34] a GVM computation
on an effective “toy model” of the interface free energy
in a 1 + 1 DP formulation. Following Mézard and Parisi
footsteps [36], we essentially assumed Gaussian fluctuations
of the DP free energy, as of a Brownian-walk type, but in
addition including explicitly a finite correlation length ξ̃ ≈ ξ .
A central and physically meaningful quantity in this model
is the adjustable amplitude of the free-energy fluctuations,
denoted D̃∞, which turns out to control also the
amplitude of the geometrical fluctuations, along with its
characteristic crossover length scales such as its Larkin length
[37]. At high temperatures (or equivalently ξ = 0), it is known
that D̃∞ ∼ 1/T [29], whereas at low temperatures we expect
by scaling arguments [11] a saturation to D̃∞ ∼ 1/Tc(ξ )
that cures what would otherwise have been an unphysical
divergence in the zero-temperature limit. However, a proper
justification of our DP toy-model assumptions was needed
in order to assess the validity of its GVM predictions for
the roughness [11,34]. Moreover, an analytical prediction for
the full temperature-induced crossover of D̃∞(T ,ξ ) itself,
although crucially relevant, was still missing, and has thus
been our focus in this study.

In this paper, using the exact mapping between the static
1D interface and a 1 + 1 DP growing in a continuous two-
dimensional (2D) space, we study analytically the temperature
dependence of the free-energy fluctuations in a spatially
correlated random potential, as a function of length scale or
DP growing time t , and its consequences on the geometrical
fluctuations. In order to dissociate the effects due to disorder
from the pure thermal ones, which hide them at small length
scales and actually blur the physical picture, we focus on the
disorder free energy F̄ (t,y) of the DP endpoint, a quantity
that integrates all the microscopic disorder explored by the
DP up to its endpoint position y at a fixed time. For an
uncorrelated disorder (ξ = 0), the universal distribution of
its fluctuations has recently been completely elucidated at all
times [18,38–40], whereas for a correlated disorder (ξ > 0)

such a universal distribution is believed to be jeopardized by
the specificity of the microscopic disorder correlation. As a first
step, we have addressed in Ref. [41] a generalized correspon-
dence between the geometrical and free-energy fluctuations
at large y via their respective two-point correlators and an
adjustable amplitude assimilable to D̃∞. Here, we complete
this study by focusing on the fluctuations of ∂yF̄ (t,y), whose
two-point correlator at fixed t and small y allows us to
follow, in the KPZ language, how the interplay between the
disorder correlation and the feedback of the KPZ nonlinearity
controls the universal scaling in temperature of the amplitude
D̃∞(T ,ξ ).

The plan of the paper is as follows. In Sec. II, we define
the full model of the static 1D interface in the 1 + 1 DP
formulation, along with the quantities of interest for the char-
acterization of its geometrical and free-energy fluctuations at a
given length scale r of the 1D interface or growing time t of the
DP. Then, in Sec. III, we recall the exact properties of the model
at asymptotically large times or in its “linearized” version,
obtained by neglecting the KPZ nonlinearity, and use them to
justify the construction of our DP toy model. In Sec. IV, exten-
sive scaling arguments are given in order to tackle the opposite
low- versus high-temperature regimes and their connection,
and the underlying scaling assumptions are actually made
explicit using saddle-point arguments; these arguments allow
us to reinterpret previous GVM computations with full replica
symmetry breaking (full-RSB) as a quantitative interpolation
of D̃∞(T ,ξ ) between these two opposite asymptotics. In
Sec. V, we combine our analytical arguments in a synthetic
outlook and we derive from it in Sec. VI an analytical
prediction for an effective time-dependent amplitude D̃t , as a
refinement of our DP toy model. We finally discuss in Sec. VII
our results with respect to two experimental systems, namely,
the domain walls in ultrathin magnetic films and interfaces in
liquid crystals, and we conclude in Sec. VIII.

For completeness, most of the technical details of the paper
have been gathered in the Appendices. For the convenience
of the reader interested in a specific issue, we list thereafter
the content of the different Appendices. Associated to the
definition of the full model of the static 1D interface of
Sec. II, Appendix A first recalls briefly previous GVM
predictions for the corresponding roughness of this model,
predictions that will be revisited and reinterpreted in re-
gards of our actual understanding of the physics at stake;
Appendix B is devoted to the STS, central to the definition of
the disorder free energy; Appendix C gives the starting point of
the Feynman-Kac time-evolution equations of the free energy,
namely, the stochastic heat equation with a careful treatment
of its normalization issues; Appendix D finally details the
derivation via the Itō formula of the time evolution of averaged
quantities such as the two-point correlators C̄(t,y) and R̄(t,y).
Associated to the construction of the DP toy model in Sec. III,
the exact two-point correlators for the linearized dynamics
of F̄V (t,y) are derived in Appendix E and the steady-state
solution of the Fokker-Planck equation for the disorder free
energy is examined in Appendix F. Finally, Appendix G dis-
cusses the specific case of a temperature-dependent elasticity,
a convention widely considered in the mathematics literature
since it is equivalent to taking a temperature-independent
Wiener measure for the DP trajectories.
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FIG. 1. (Color online) Left: 1D interface configuration of dis-
placement field u(z) with respect to the z axis; definition of its relative
displacement �uz(r) at a length scale r with respect to the internal
coordinate z. Right: Focus on all the segments of the 1D interface
starting from (0,0) and ending at [t,y(t)]; definition of the DP’s
endpoint position y(t) after a growing time t . The translation table
between those two representations is given by (z,x) ↔ (t ′,y ′) for the
coordinates, u(z) ↔ y(t ′) for the trajectory, P[�u(r)] ↔ P(t,y) for
the geometrical PDF, and B(r) = 〈�u(r)2〉 ↔ 〈y(t)2〉 = B(t) for the
roughness function.

II. 1 + 1 DIRECTED-POLYMER FORMULATION OF THE
STATIC 1D INTERFACE

A. DES model of a 1D interface

We consider a 1D interface, living in an infinite and
continuous 2D space of, respectively, internal and transverse
coordinates (z,x) ∈ R2. Restricting the model to the case
where the interface has no bubbles or overhangs, each possible
configuration is described by a univalued displacement field
u(z) ∈ R with respect to a flat configuration defined by
the z axis (cf. Fig. 1, left). In the elastic limit of small
distortions and for a short-range elasticity, the energetic cost
of elastic distortions is given by the elastic Hamiltonian
Hel[u] = c

2

∫
R dz [∇zu(z)]2 with c the elastic constant.

Assuming that we have a quenched disorder, accounting
typically for a weak collective pinning of the interface by
many impurities, the microscopic disorder is described by
a random potential V (z,x) with the corresponding energy
Hdis[u,V ] = ∫R dz V [z,u(z)]. The disorder average O of an
observable at fixed disorder OV is then defined with respect
to the probability distribution of the disorder configurations
P̄[V ], which is assumed to be Gaussian, i.e., fully defined by
its mean and its two-point disorder correlator:

V (z,x) = 0, V (z,x)V (z′,x ′) = Dδ(z − z′)Rξ (x − x ′) (1)

with D the strength of disorder, which quantifies the typical
amplitude of the random potential. The disorder should be
statistically translational invariant in space, and it is actually
assumed to be uncorrelated along its internal direction z

and correlated on a typical length ξ > 0 along its transverse
direction x. Finally, we consider the specific case of a random-
bond (RB) disorder, i.e., with a symmetric function Rξ (x)
decreasing sufficiently fast to encode a short-range disorder
and with the chosen normalization

∫
R dx Rξ (x) ≡ 1.

At equilibrium and for a given disorder configu-
ration, the statistical average over thermal fluctuations

〈O〉V is then defined with respect to the normal-
ized Boltzmann weight PV [u] ∝ e−H[u,V ]/T of Hamiltonian
H[u,V ] = Hel[u] + Hdis[u,V ] (the Boltzmann constant is
fixed once and for all at kB = 1 so that the temperature has
the dimensions of an energy). For a self-averaging disorder,
a given observable must be averaged analytically first over
thermal fluctuations and second over disorder 〈O〉, recovering
in particular a translational invariance in space.

The choice of those different assumptions is explained in
detail in Ref. [11]. In order to compute the GVM roughness
of such a static 1D interface, Rξ (x) was chosen in Ref. [34] to
be a normalized Gaussian function of variance 2ξ 2, encoding
thus the typical width ξ as the single feature of this correlator
function (cf. Appendix A).

B. Mapping of the 1D interface on the 1 + 1 directed polymer

The characterization of the geometrical fluctuations of
the static 1D interface goes through the determination of
the probability distribution function (PDF) of the relative
displacements P[�u(r)] at a given length scale r , with
�uz(r) ≡ u(z + r) − u(z). The contribution of the combined
PDF of thermal fluctuations PV [u] and of disorder P̄[V ] can
be disconnected by focusing directly on the fluctuations of
segments of length r on the interface. As defined in Fig. 1,
such a segment can be mapped on the trajectory of a directed
polymer starting from (0,0) and growing in time t in the 2D
disordered energy landscape described by the random potential
V (t,y). The fluctuations of the DP endpoint y(t) at a time t , of
PDF P(t,y), encode thus precisely the translational invariant
P[�u(r)] at the length scale r .

The energy of a segment of length scale r ↔ t1, of
trajectory y(t) connecting (0,0) to (t1,y1), is given by the partial
Hamiltonian

H[y,V ; t1] =
∫ t1

0
dt

[
c

2
[∂ty(t)]2 + V (t,y(t))

]
(2)

with the disorder distribution defined by (1). Integrating over
the thermal fluctuations at fixed disorder V , the unnormalized
Boltzmann weight of a DP ending at (t1,y1) is then given by
the path integral

WV (t1,y1) =
∫ y(t1)=y1

y(0)=0
Dy(t) e−H[y,V ;t1]/T (3)

with the underlying four DES parameters {c,D,T ,ξ}. The
connection between this continuous formulation of the DP,
well known among physicists, and its discretized version
on a lattice with the solid-on-solid constraint has recently
been properly established [42]. The corresponding free energy
FV (t,y), which will be defined in the next section with the
proper normalization by WV (t,y) ∝ e−FV (t,y)/T , follows a KPZ
evolution equation and thus connects our study of the static
1D interface to the broader 1D KPZ universality class, via the
present mapping on the growing 1 + 1 DP.

We restrict our study to the case where the polymer is
attached in y = 0 at initial time. This choice corresponds to
the so-called “sharp-wedge” initial conditions [17] of the KPZ
equation as opposed, e.g., to the “flat” ones where the initial
position would be integrated upon.
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C. Geometrical and free-energy fluctuations

We start with the definition of the relevant quantities
for the characterization of the geometrical and free-energy
fluctuations. With the following normalization at fixed time t ,

W̄V (t) ≡
∫ ∞

−∞
dyWV (t,y), (4)

we can define the PDF of the DP endpoint, respectively, at
fixed disorder V and after the disorder average

PV (t,y) ≡ WV (t,y)

W̄V (t)
, P(t,y) = PV (t,y) (5)

and use them for the computation of averages for any
observable O which depends on the sole DP endpoint position
y(t) [and not on its whole trajectory y(t ′), with t ′ ∈ [0,t]]:

〈O[y(t)]〉V =
∫ ∞

−∞
dy O[y(t)]PV (t,y), (6)

〈O[y(t)]〉 =
∫ ∞

−∞
dy O[y(t)]P(t,y), (7)

and in particular the different moments of the PDF (5):

〈y(t)k〉V =
∫ ∞

−∞
dy y(t)kPV (t,y). (8)

〈y(t)k〉 =
∫ ∞

−∞
dy y(t)kP(t,y). (9)

Actually, the PDF P(t,y) is known to be fairly Gaussian
(although the study of its small non-Gaussian deviations
encodes relevant physics [23,43–46]), in the sense that

P(t,y) ≈ e−y2/[2B(t)]

√
2πB(t)

(10)

with its main feature being summarized in its second moment,
namely, the roughness function B(t) and its corresponding
roughness exponent ζ (t):

B(t) ≡ 〈y(t)2〉 , ζ (t) ≡ 1

2

∂ ln B(t)

∂ ln t
(11)

a proper exponent ζ being defined only if a power law can
be identified on a certain range in t ; this is typically the
case at large length scales, the beginning of this asymptotic
regime defining the so-called Larkin length [37] Lc. In
absence of disorder, the DP is a Brownian random walk
whose PDF Pth(t,y) is then exactly a Gaussian function
of thermal roughness Bth(t) = T t

c
. In presence of a short-

range RB disorder, there is a crossover from this thermal
roughness at small length scales to an asymptotic roughness
BRM(t) ∼ t4/3 in the random-manifold (RM) regime of large
length scales. A 1D interface is thus a self-affine manifold in
these two length-scales regimes, its geometrical fluctuations
being characterized by the scaling y(t)2 ∼ A(c,D,T ,ξ ) t2ζ

with the diffusive exponent ζth = 1
2 at sufficiently small length

scales (extended at all length scales in absence of disorder),
and the superdiffusive exponent ζRM = 2

3 at asymptotically
large length scales (obtained in Refs. [20,28–30] assuming
ξ = 0). Actually, the existence of a finite width ξ > 0 strongly
modifies the scaling of the prefactor A(c,D,T ,ξ ) and the
roughness crossover, with in particular a whole intermediate

Larkin-modified length-scale regime for temperatures below
Tc(ξ ) = (ξcD)1/3 (cf. Refs. [11,34] or Appendix A).

The PDF P(t,y) and its roughness B(t) are precisely
the quantities accessible experimentally via an analysis of
a “snapshot” of an interface configuration (defined as in
Fig. 1); however, only a single roughness regime has been
observed up to now in ferromagnetic DWs, which are believed
to be the prototype of our idealized 1D interface (e.g.,
ζ = 0.69 ± 0.07 in Ref. [1]). From an analytical point of view,
additional information can be extracted from the fluctuations
of the probability PV (t,y) itself or, alternatively, from its
corresponding pseudo-free energy FV (t,y) defined at fixed
disorder by

WV (t,y)

W̄V ≡0(t)
≡ exp

[
− 1

T
FV (t,y)

]
, (12)

FV (t,y) = FV ≡0(t,y) + F̄V (t,y) (13)

with the following conventions:

FV ≡0(t,y) = Fth(t,y) + T ln W̄V ≡0(t), (14)

Fth(t,y)

T
= 1

2

y2

Bth(t)
⇔ Fth(t,y) = cy2

2t
, (15)

W̄V ≡0(t) =
√

2πBth(t) =
√

2π
T t

c
. (16)

The decomposition of (13) defines the disorder free energy
F̄V (t,y), which fully encodes the integrated disorder encoun-
tered by the DP up to a time t . This is the central quantity that
we study throughout this paper, as it allows us to examine
in a systematic way the role of disorder as a function of
the length scale or growing time. This contribution can be
dissociated from the pure thermal free energy Fth(t,y) because
of the statistical tilt symmetry (STS) of the model, the different
incarnations of which are discussed in Appendix B. Indeed,
with the particular form of the short-range elasticity c

2 [∂ty(t)]2

in (2) and y being a continuous variable, the effective disorder
F̄V (t,y) inherits the statistical translation invariance of the
microscopic disorder P̄[V (t,y)] defined by (1). Its PDF at fixed
time [and similarly any functional of F̄V (t,y)] thus satisfies

P̄[F̄V (t,y + Y )] = P̄[F̄V (t,y)]. (17)

Note that the decomposition (13) is specific to the sharp-wedge
initial condition of the KPZ equation. It allows us to work
with a translation-invariant quantity, broken otherwise by the
thermal contribution FV ≡0(t,y) [contrarily to the flat initial
condition where we would have FV ≡0(t,y) ≡ 0]. In order to
single out the y-dependent additive contribution of F̄V (t,y), we
also define the random phase ηV (t,y) in a kind of random-field
formulation of the disorder free energy:

ηV (t,y) ≡ ∂yF̄V (t,y),
(18)

F̄V (t,y) = 1

2

(∫ y

−∞
−
∫ ∞

y

)
dy ′ ηV (t,y ′) + cteV (t),

where cteV (t) is a y-independent constant. Note that the STS
implies that P̄[ηV (t,y + Y )] = P̄[ηV (t,y)].
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We may assume that the scaling of the distribution P̄[F̄ ,t]
and P̄[η,t] is in large part controlled by their two-point
disorder correlators, on which we focus our interest:

C̄(t,|y1 − y2|) ≡ [F̄V (t,y1) − F̄V (t,y2)]2, (19)

R̄(t,|y1 − y2|) ≡ ηV (t,y1)ηV (t,y2), (20)

which reflect explicitly the translation invariance, and are
related by

C̄(t,y) =
∫ y

0
dy1

∫ y

0
dy2R̄(t,|y1 − y2|) (21)

or alternatively by ∂2
y C̄(t,y) = 2R̄(t,y) using their parity.

Note that the second moment C̄(t,y) is equal to the second
cumulant of the total free energy [FV (t,y1) − FV (t,y2)]2

c
, but

that this direct equivalence breaks down for higher n-point
correlation functions. It is then more transparent to focus
on the fluctuations of the disorder free energy F̄V (t,y), the
distribution of which is translation invariant as stated by (17).

The connection between the fluctuating disorder free energy
F̄V (t,y) and the PDF P(t,y) with its moments 〈y(t)k〉 can
formally be defined as

〈y(t)k〉 =
∫

DV P̄[V ]

∫
dy yk e−FV (t,y)/T∫
dy e−FV (t,y)/T

=
∫

DF̄ P̄[F̄ ,t]

∫
dy yk e−[Fth(t,y)+F̄V (t,y)]/T∫
dy e−[Fth(t,y)+F̄V (t,y)]/T

, (22)

where only the y-dependent part of the pseudo-free energy,
i.e., the information encoded in the random phase ηV (t,y)
actually matters. However, even the roughness B(t) can not
be computed straightforwardly through the disorder average;
this would require, e.g., the introduction of replicas in a GVM
framework [34,36,41] (cf. Appendix A).

In order to determine the quantities introduced in this
section and that characterize the 1D interface, one can either
perform analytical studies, which is the object of this paper,
or numerical ones that will be the object of the separate
publication (Ref. [47]).

D. Feynman-Kac evolution equations

Since we work with a one-dimensional object (the 1D
interface, likewise the DP), explicit evolution equations can
be written for WV (t,y), FV (t,y), F̄V (t,y), and ηV (t,y) [29].
We can thus follow the evolution with continuous time or
length scale t of the effective PDF-related quantities at fixed
disorder, and also of the mean values F̄V (t,y) and ηV (t,y).

However, no such closed equation for the correlators C̄(t,y)
and R̄(t,y), the normalized PDF P(t,y), nor the roughness
B(t), of course, are available. This limitation in the length-
scale renormalization of the disorder-average quantities is
conceptually similar to the fact that the FRG flow equations
[32,33,48,49] of the disorder correlator Rξ (x) (1) are truncated
in a perturbative expansion in ε = 4 − d (with the dimension
d = 1 for the 1D interface), an exact analytical description at
all length scales remaining thus unsolved.

At fixed microscopic disorder, in a continuous-time limit
and at finite temperature, the so-called “Feynman-Kac”

formula [50–52] for WV (t,y) is a continuum stochastic heat
equation with multiplicative noise [29,42,53,54]

∂t

[
WV (t,y)

W̄V ≡0(t)

]
=
[

T

2c
∂2
y − 1

T
V (t,y)

][
WV (t,y)

W̄V ≡0(t)

]
, (23)

where the normalization W̄V ≡0(t) is usually hidden in the
functional integration

∫
Dy(t) of (3). In order to clarify

the normalization issues that arise due to the disorder, this
last equation is rederived in Appendix C both in continuous
and discretized time. In absence of disorder, we recover the
standard heat equation

∂tPV ≡0(t,y) = T

2c
∂2
yPV ≡0(t,y), (24)

whose solution at fixed time is the thermal PDF PV ≡0(t,y) =
Pth(t,y), i.e., a Gaussian function of zero mean and variance
Bth(t) = T t

c
.

Moving in on the pseudo-free energy FV (t,y) defined by
(12) yields a KPZ equation with an additive noise [12,14]

∂tFV (t,y) = T

2c
∂2
yFV (t,y) − 1

2c
[∂yFV (t,y)]2 + V (t,y).

(25)

So, the free-energy landscape seen by the DP endpoint is a
KPZ growing surface, whose disorder correlation length ξ lies
along the internal direction of the surface, whereas ξ has been
initially defined as a microscopic disorder correlation along
the transverse direction of the 1D interface or growing DP.

As for the disorder free energy F̄V (t,y) (13), it evolves with
a tilted KPZ equation

∂t F̄V (t,y) = T

2c
∂2
y F̄V (t,y) − 1

2c
[∂yF̄V (t,y)]2

− y

t
∂yF̄V (t,y) + V (t,y) (26)

with the new additive term stemming from
− 1

c
[∂yFth(t,y)][∂yF̄V (t,y)] = − y

t
ηV (t,y). One advantage

of focusing on the disorder free energy is precisely the
decomposition of the KPZ nonlinearity 1

2c
[∂yFV (t,y)]2 into

two contributions: the remaining nonlinearity 1
2c

[∂yF̄V (t,y)]2

and the tilt term y

t
∂yF̄V (t,y). Neglecting the nonlinearity

in (25) yields the well-studied Edward-Wilkinson (EW)
equation [55], whereas the linearized version of (26) goes one
step further than the EW equation: it still contains a part of
the initial KPZ nonlinearity via the tilt term, while remaining
solvable as we will show in Sec. III A.

Applying ∂y on (26) yields finally the evolution equation of
the random phase ηV (t,y) (18) itself:

∂tηV (t,y) = T

2c
∂2
yηV (t,y) − 1

2c
∂y[ηV (t,y)]2

− ∂y

[
y

t
ηV (t,y)

]
+ ∂yV (t,y). (27)

The disorder free energy and its random phase encode all
the information concerning the effects of disorder, so both
F̄V ≡0(t,y) and ηV ≡0(t,y) are zero. In presence of disorder,
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Fth(t, y) + F̄V (t, y)

t

y

≈ Fth(t, y)

≈ F̄V (t, y)

t

y

∂yFV (t, y)

≈ ηV (t, y)

≈ ∂yFth(t, y)

FIG. 2. (Color online) Free-energy landscape seen by the DP
endpoint as a function of time or length scale t . Top: Graph of
Fth(t,y) + F̄V (t,y) [imposing F̄V (t,y) ≡ 0 for simplification]: the

thermal parabola Fth(t,y) = cy2

2t
flattens and unveils the disorder

fluctuations F̄V (t,y), which sketches a KPZ surface in its steady state
at asymptotically large times. Bottom: Alternative point of view with
the graph of ∂yFV (t,y) = cy

t
+ ηV (t,y), where the random phase is

progressively revealed with increasing length scale.

those quantities are moreover completely hidden at small times
by thermal fluctuations:

FV (t,y)
t→0≈ FV ≡0(t,y) ⇒ F̄V (t,y) ≈ 0, ηV (t,y) ≈ 0, (28)

whereas they completely dominate the large-length-scales
behavior [FV (t,y) ≈ F̄V (t,y) + cte(t)], the evolution equa-
tions (25) and (26) thus sharing the same statistical steady
state at asymptotically large times. Those disorder-induced
quantities can be properly defined at all times (cf. Fig. 2),
yielding in particular the following initial conditions:

PV (t = 0,y) = δ(y), (29)

F̄V (t = 0,y) ≡ 0, (30)

ηV (t = 0,y) ≡ 0. (31)

For the total free energy, this initial condition corresponds to
the sharp-wedge limt→0 FV ≡0(t,y), as defined in (14) and (15),
which nontrivially yields back the Dirac δ function (29) of the
DP fixed endpoint.

Considering at last the evolution of the mean values
F̄V (t,y) and ηV (t,y), at first the translation invariance by

STS [Eq. (17)] trivially implies that F̄V (t,y) = cte(t) [and
〈y(t)〉 = 0]. Exchanging the disorder average and the partial
derivatives ∂y,t , on the definitions (18) and (26), respectively,
we obtain

ηV (t,y) = ∂yF̄V (t,y) = 0, (32)

∂t F̄V (t,y) = − 1

2c
[ηV (t,y)]2 = − 1

2c
R̄(t,y = 0), (33)

whereas (27) simply yields the consistency check
∂yR̄(t,y = 0) = 0. So, the evolution of the mean disorder free
energy is directly given by the sole two-point correlator of
ηV (t,y) in y = 0 at a given time t .

As we will discuss at length in the next section, the behavior
of R̄(t,y) at small |y| corresponds to the curvature of the
disorder free-energy correlator C̄(t,y) around y = 0 which
fully determines the amplitude of the geometrical fluctuations
characterized by the roughness prefactor A(c,D,T ,ξ ). R̄(t,y)
has essentially a symmetrical peak centered at y = 0, whose
maximum is well defined for a finite correlation length ξ but
diverges in the limit ξ → 0 (corresponding equivalently to
the high-temperature regime). The connection between this
regularization at ξ > 0 and the time evolution of the peak
main features, i.e., its typical width ξ̃t and amplitude D̃t , will
be the two ingredients of the DP toy model constructed in the
next section.

E. Time-evolution equations for the two-point correlators
R̄(t, y) and C̄(t, y)

There are no closed equations for ∂t R̄(t,y) and ∂t C̄(t,y),
but the combination of the Feynman-Kac equations (26) and
(27) with the Itō’s formula yields nevertheless, as presented in
details in Appendix D,

∂t R̄(t,y) = T

c
∂2
y R̄(t,y) − 1

t
{R̄(t,y) + ∂y[yR̄(t,y)]}

− 1

c
∂yR̄3(t,y) − DR′′

ξ (y), (34)

∂t C̄(t,y) = T

c
∂2
y [C̄(t,y) − C̄(t,0)] − y

t
∂yC̄(t,y)

− 1

c
C̄3(t,y) − 2D[Rξ (y) − Rξ (0)], (35)

which would be closed but for the presence of the three-point
correlators

R̄3(t,y) ≡ η(t,y)2η(t,0), (36)

C̄3(t,y) ≡ −2[F̄ (t,y) − F̄ (t,0)][∂yF̄ (t,0)]2. (37)

Neglecting the nonlinear KPZ term in the evolution
equation (26) for F̄V (t,y) is equivalent to neglecting those
three-point contributions. The solution for the corresponding
linearized correlator R̄lin(t,y) for a generic RB disorder
correlator Rξ (y) is given in the next section, and its complete
derivation is detailed in Appendix E. It will be used in the next
section in order to discuss on one hand the expected qualitative
behavior of the correlator R̄(t,y), and to identify on the other
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hand the role of the KPZ nonlinearity in the short versus large
times and the low- versus high-T regimes.

III. EXACT PROPERTIES AND CONSTRUCTION
OF A DP TOY MODEL

The DP free-energy fluctuations for a RB uncorrelated
disorder and the sharp-wedge initial condition (29) have
been progressively elucidated, first at infinite time [29], then
at asymptotically large time [56], and finally recently at
all times [18,38–40], using a wide range of different map-
pings and techniques which strongly rely on the assumption
ξ = 0.

In this section, we first recall the analytical results for
the asymptotically large-times DP fluctuations, exact for
an uncorrelated disorder (ξ = 0), and we discuss their
possible generalization for a correlated disorder (ξ > 0):
we examine in particular the connection between the KPZ
nonlinearity and the non-Gaussianity of the free-energy fluc-
tuations in the Fokker-Planck approach. Then, we present the
complete solution of the linearized equation for ∂t F̄V (t,y)
[Eq. (26)], obtained for a generic RB disorder correlator
Rξ (y) and at all times, and we use it as a qualitative bench-
mark for the time-dependent phenomenology summarized by
Fig. 3.

Merging the intuition gained from these considerations of
both the asymptotic properties and the linearized solution, we
define a DP toy model for the disorder free-energy fluctuations,

y

y

P(t, y)

C̄(t, y)
R̄(t, y)

≈ D∞|y|

t− t ∼ ξ̃

B(t)− B(t)

FIG. 3. (Color online) Top: Schematic graphs of the two-point
correlators C̄(t,y) and R̄(t,y) (respectively in full and dashed curves)
at fixed time t > tsat, which suggest the generic decomposition (44)–
(46); they display the two characteristic length scales ξ̃ and 
t in the
y direction; the dashed area below the central peak of R̄ corresponds
roughly to the saturation amplitude D̃∞ and translates into the slope
of the intermediate linear behavior of C̄ [since ∂2

y C̄(t,y) = 2R̄(t,y)
by (21)]. Bottom: Corresponding PDF P(t,y), whose variance is
the roughness B(t); the dashed area emphasizes the most probable
positions of the DP endpoint, which exclude the large y and thus the
saturation wings of C̄ or the negative bumps of R̄.

valid by construction for times larger than a characteristic
scale tsat (bounded above by the Larkin length Lc) and
aimed at grasping the temperature dependence of the DP
fluctuations.

A. Free-energy fluctuations at asymptotically large times
and ξ = 0

At infinite time and in an uncorrelated disorder (ξ = 0), the
distributions P̄[F̄ ] and P̄[η] are Gaussian and their two-point
correlators are exactly known:

C̄ξ=0(∞,y) = D̃∞|y| , R̄ξ=0(∞,y) = D̃∞Rξ=0(y) (38)

with D̃∞ = cD/T and Rξ=0(y) = δ(y). The Dirac δ function
of R̄ encodes the infinite-time amnesia of the DP with respect
to the remoteness of its initial condition t = 0, and the absolute
value of C̄ encodes the scale invariance of this steady state
characterized by the scaling in distribution F̄ (y) ∼ y1/2. This
steady-state solution of the KPZ equations (25) and (26) for a
δ correlated V (t,y) actually yields the prediction ζKPZ = 2

3 for
the asymptotic roughness exponent [29] (as discussed later in
Sec. IV B).

Actually, at ξ = 0 the distribution of the total free energy
FV (t,y) itself, given by the KPZ equation with sharp-wedge
initial condition, is exactly known at all times in terms of
a Fredholm determinant with an Airy kernel [18,38–40,57].
It is non-Gaussian and at asymptotically large times it
tends to the Gaussian-unitary-ensemble (GUE) Tracy-Widom
distribution [18,58], but at strictly infinite time it eventually
yields back a Gaussian distribution. Its second cumulant cor-
responds to our correlator C̄(t,y) [for F̄V (t,y)] and is exactly
known asymptotically as the correlator of an Airy2 process
[56].

Schematically, the asymptotic C̄ξ=0(t,y) displays addi-
tional saturation “wings” compared to the absolute value (38)
as pictured in Fig. 3. These wings appear when y2 ∼ 〈y(t)2〉,
i.e., where the transverse displacement is defined by the
roughness B(t) at a given time t [41].

At finite time and/or in a correlated disorder (1) with ξ > 0,
the distributions P̄[F̄ ,t] and P̄[η,t] are thus a priori not
Gaussian, but we can still focus on the two-point correlator
R̄(t,y) properties. We know in particular that its integral must
be a constant at all finite times and as it is initially zero by
R̄(0,y) ≡ 0, we have [41]∫

R
dy R̄(t,y) = 0 (39)

with the exception of strictly infinite time∫
R

dy R̄(∞,y) ≡ D̃∞ > 0. (40)

These exact properties of its curvature R̄(t,y) = 1
2∂2

y C̄(t,y)
actually require the existence of saturation wings of the
asymptotic C̄ξ=0(t,y), which are pushed to y → ±∞ as
t → ∞.

The infinite-time solution (38) was obtained in Ref. [29]
as defining the steady-state solution of the Fokker-Planck
(FP) equation. However, as detailed in Appendix F 2, the
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steady-state solutions of the FP equation for ∂t P̄[F̄ ,t] and
∂t P̄[η,t] at ξ = 0 are Gaussian distributions with the cor-
relators (38) only at strictly infinite time, and by imposing
D̃∞ = cD/T and the boundary conditions ηV (t,y)|y=±∞ = 0.
The correlator R̄(∞,y) of the random phase (20) then coin-
cides with the transverse correlator Rξ=0(y) of the microscopic
disorder (1), up to the overall amplitude D̃∞. Note that the
KPZ nonlinear term − 1

2c
[∂yF̄V (t,y)]2 in (26) plays no role

in the determination of this asymptotic amplitude since its
contribution disappears completely with the chosen boundary
conditions.

We now transpose this FP scheme from the uncorrelated
case (ξ = 0) to the correlated case (ξ > 0): we assume a
Gaussian P̄G[F̄ ,t] of correlator R̄lin(t,y), and we impose
D̃∞ = cD/T and the boundary condition ηV (t,y)|y=±∞ = 0.
Using this set of assumptions, we show in Appendix F 3 that
at infinite time the correlator

R̄lin(∞,y) = D̃∞Rξ (y) , D̃∞ = cD

T
(41)

defines a steady-state solution but for the linearized FP
equation, where the KPZ nonlinear term − 1

2c
[∂yF̄V (t,y)]2

has been neglected. This result is compatible with (40)
and coincides remarkably with the exact solution for the
uncorrelated case (38). It emphasizes that any non-Gaussianity
in the steady state can only stem from the KPZ nonlinearity in
∂t F̄V (t,y) [Eq. (26)].

B. Solution of the linearized tilted KPZ equation
for a generic Rξ=0( y)

The steady state of the FP equation, which we have
discussed in the previous section, characterizes the infinite-
time properties of the DP (hence the macroscopic length
scales for the static 1D interface). We now consider its
finite-time properties by computing exactly the full solution
of the linearized correlator R̄lin(t,y) [first introduced in (41)]
for a generic RB disorder correlator Rξ (y) and its complete
derivation can be found in Appendix E.

As discussed after the Feynman-Kac evolution equa-
tion ∂t F̄V (t,y) [Eq. (26)], linearizing this tilted KPZ
equation is not equivalent to the EW equation [55]
because it still contains a contribution stemming from
the KPZ nonlinearity 1

2c
[∂yFV (t,y)]2 via the (linear) tilt

− y

t
∂yF̄V (t,y). This approximation is physically correct at

least for sufficiently short times, for which the nonlinearity
1
2c

[∂yF̄V (t,y)]2 can be neglected compared to the tilt. At
larger times, however, this approximation eventually breaks
down. The linearized correlator will then bear a trace
of the short-time diffusive behavior, as an artifact of the
linearization.

The disorder free-energy distribution P̄lin[F̄ ,t] is pre-
dicted to be Gaussian, consistently with the assumption
needed for the derivation of (41), and thus fully char-
acterized by R̄lin(t,y). The full solution decomposes as
follows: (

cD

T

)−1

R̄lin(t,y) = Rξ (y) − blin(t,y) (42)

with

blin(t,y)
√

Bth(t)

= − y√
Bth(t)

R
(−1)
ξ/

√
Bth(t)

(y/
√

Bth(t))

+
∫ ∞

0
dw w2e−w[w+y/

√
Bth(t)]R

(−1)
ξ/

√
Bth(t)

(w)

+
∫ ∞

y/
√

Bth(t)
dw w2e−w[w−y/

√
Bth(t)]R

(−1)
ξ/

√
Bth(t)

(w), (43)

where R
(−1)
ξ (y) denotes the primitive of the disorder correlator,

all the rescaling is purely diffusive with as usual Bth(t) = T t
c

,
and limt→∞ blin(t,y) = 0 so that the asymptotic correlator (41)
is indeed recovered. A remarkable property of the linearized
solution is that all the time dependence in blin(t,y) is described
by an overall factor

√
Bth(t) and the rescaling of the transverse

length scales y and ξ by the same factor, as shown explicitly in
(43). As an example, the graphs of R̄lin(t,y), 1

2∂yC̄
lin(t,y), and

C̄ lin(t,y) for Rξ (y) taken as a Gaussian function of variance
2ξ 2 are given in Fig. 6.

Let us emphasize that the infinite-time contribution Rξ (y)
in (42) arises from the nonanalyticity of the kernel relating
this correlator to R̄lin(t,y). It thus requires a careful treatment
of the boundary terms in the corresponding convolution
formula (E6).

The exact relations (39) and (40) are satisfied by R̄lin(t,y),
however, two artifacts of the linearization can be identified: on
one hand, the distribution P̄lin[F̄ ,t] is Gaussian, whereas the
exact P̄[F̄ ,t] is known to display non-Gaussian features; on
the other hand, R̄lin(t,y) rescales with respect to the diffusive
roughness Bth(t) at all times, whereas it should rescale with
respect to the asymptotic roughness ∼ t4/3 at large times [41].
These two artifacts point out the crucial role played by the
nonlinearity [∂yF̄V ]2 in the non-Gaussianity and the time
dependence of the free-energy fluctuations. The linearized
solutions (42) and (43) can nevertheless be considered as a
qualitative benchmark for the correlated disorder case ξ > 0.

The form of the linearized solution suggests indeed the
following generic decomposition at finite time and for a generic
RB disorder correlator Rξ (y):

R̄(t,y) = D̃∞

[
Rξ (y) − b+(t,y) + b−(t,y)

2

]
, (44)

lim
t→∞ b±(t,y) = 0 ⇒ R̄(∞,y) ≡ D̃∞ Rξ (y), (45)∫

R
dy Rξ (y) ≡ 1 ⇒

∫
R

dy b±(t,y) = 1 ∀t, (46)

suited for the asymptotically large times where we conjecture
the function Rξ (y) to tend towards the microscopic-disorder
transverse correlator Rξ (y) at high temperature. The distinct
corrections b±(t,y) correspond to the wings in C̄(t,y) and
move to large y with increasing scale 
t ∼ √

B(t) [41].
Figure 3 summarizes schematically this phenomenology (to
be compared to Fig. 6), with ξ̃ ∼ ξ being the rounding of the
correlators due to the microscopic disorder correlation ξ > 0.
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Finally, the asymptotic amplitude D̃∞ in (44) is predicted
to be cD/T in the limit ξ → 0; however, this prediction
is nonphysical in the limit T → 0 so it must break down
for temperatures below Tc(ξ ) = (ξcD)1/3 as discussed in
Ref. [11]. We will examine from now on the assumption
that for T < Tc, the decomposition (44) remains valid but
with D̃∞ = cD/Tc, justifying it with scaling and saddle-
point arguments. Since the full linearized solution is known
explicitly, we know that such a saturation of the asymptotic
amplitude can only arise from the KPZ nonlinear contribution
at times below the Larkin length, before the corrections b±(t,y)
separate from the microscopic disorder correlator Rξ (y).

C. DP toy model

We do not know exactly the distributions P̄[F̄ ,t] and
P̄[η,t], or even their correlators C̄(t,y) and R̄(t,y), for a
generic disorder transverse correlator (1). As we have just
seen, neglecting the KPZ nonlinearity in the Feynman-Kac
equations, it is however possible to go beyond (41) and actually
compute at all times the correlators C̄ lin(t,y) and R̄lin(t,y),
starting from a generic RB correlator Rξ (y) [cf. (43)]; they
reconnect of course with the infinite length-scale limit (41), but
their corresponding corrections b±(t,y) encode a pure thermal
scaling of the roughness, inherited from the small length scales
and kept at all length scales [41].

Taking an opposite point of view, we have considered a
DP toy model constructed from the asymptotically large-times
properties of the random phase ηV . This construction is based
on the main assumption that there exists a characteristic time
tsat above which the fluctuations of ηV (t,y) have reached
a saturation regime. This regime can be minimally charac-
terized via its two-point correlator behavior around y = 0,
i.e., R̄(t,y) ∼ R(y) as defined in (44)–(46) and depicted in
Fig. 3. For the DP geometrical fluctuations, the characteristic
scale traditionally invoked is the Larkin length Lc, defined
below (11) as the time marking the beginning of the asymptotic
power-law regime for the roughness. The scale invariance
thus displayed for the geometrical fluctuations can only be
achieved for scales where the free-energy fluctuations have
saturated, hence for times larger than tsat. This argument yields
consistently the upper bound tsat � Lc.

First, we assume that the effective disorder at fixed time,
F̄V (t,y) and ηV (t,y), have Gaussian distributions accordingly
to their linearized FP equation. So, they are fully described by
their two-point correlators (19) and (20) [translational invariant
by the STS (17)] and their mean values ηV (t,y) = 0 and
F̄V (t,y) = − t

2c
R̄(t,0) by (32) and (33) (which play, however,

no role in the computation of statistical averages).
Second, we assume that the random-phase correlator has a

stable normalized functionR, all the possible time dependence
being generically hidden in two effective parameters D̃t and
ξ̃t :

R̄(t,y) ≈ D̃tRξ̃t
(y) ,

∫
R

dyRξ̃t
(y) ≡ 1. (47)

This form generalizes the decomposition (44) but neglecting
the corrections b±(t,y). This is a self-consistent approximation
since those corrections and the corresponding wings of C̄(t,y)
appear at y2 ∼ B(t), and by definition of the roughness it

corresponds to an improbable position of the DP endpoint of
decreasing weight P(t,y) as illustrated in Fig. 3.

Finally, we assume that the function Rξ̃ (y) coincides with
the transverse correlator Rξ (y) of the microscopic disorder,
as for the linearized FP equation at infinite time (41). The
effective width ξ̃t and amplitude D̃t are kept generic though,
but under the asymptotic constraint

D̃∞(T ,ξ ) ≡ f (T ,ξ )
cD

T
, (48)

where f (T ,ξ ) is an interpolating parameter such that we
recover the correct ξ = 0 limit (38) with f (T ,0) ≡ 1.
A weaker assumption would be to assume the rescaling
Rξ̃ (y) = 1

ξ̃
R1(y/ξ̃ ) with R1 decaying as fast as a RB disorder

correlator.
In Ref. [34], we have obtained for this DP toy model a

set of GVM predictions for the roughness and the Larkin
length, with Rξ (y) taken specifically as a Gaussian function
of variance 2ξ 2 (cf. Appendix A). Those predictions are
constructed centered on the full-RSB cutoff uc(T ,ξ ) of
Eq. (A10). Assuming ξ̃t ≈ ξ and D̃t ≈ D̃∞, the form (48) and
the definition f (T ,ξ ) ≡ 4

3uc(T ,ξ ) yields a a self-consistent
equation for the interpolating parameter

f 6 = 4π

[
T

Tc(ξ )

]6

(1 − f ) , Tc(ξ ) ≡ (ξcD)1/3 (49)

that connects monotonously the low- and high-temperature
scaling of D̃∞ at f (Tc,ξ ) ≈ 0.94:

T � Tc : f ≈ (4π )1/6 T

Tc

⇒ D̃∞(0,ξ ) ∼ cD/Tc, (50)

T � Tc : f � 1 ⇒ D̃∞(T ,0) ∼ cD/T (51)

and hence for the Larkin length (A9) and the asymptotic
roughness (A7) beyond Lc:

Lc(T ,ξ ) = 4π
T 5

cD2
f (T ,ξ )−5, (52)

Basympt(t) ≈ 3

22/3π1/3

[
D̃∞(T ,ξ )

c2

]2/3

t4/3. (53)

According to these GVM predictions, the amplitude of
the geometrical fluctuations y(t)2 ∼ A(c,D,T ,ξ ) t2ζ at large
length scales has a temperature dependence which is damped
as sufficiently low T below Tc(ξ ) > 0, whereas the superdif-
fusing scaling ζ = 2

3 remains unchanged.
For the DP toy model, there is thus a physically deep

connection between the full-RSB cutoff uc in the GVM
computation, the asymptotic amplitude of the random-phase

correlator at small |y| [namely, R̄(t,0)
(t→∞)∼ D̃∞/ξ ], the

Larkin length Lc, and the amplitude of the roughness at large
length scales, this last quantity being typically accessible in
experiments. Let us emphasize the physical meaning of the
Larkin length: as defined below (11), Lc is the length scale or
time which marks the beginning of the asymptotic random-
manifold regime for the roughness, i.e., for times larger
than Lc the roughness follows the power law B(t) ∼ t4/3.
This promotes Lc to a characteristic scale for the asymptotic
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fluctuations and properties of the DP and 1D interface, a crucial
point that will be fully exploited in the scaling analysis of the
next section.

Note finally that the DP toy model we propose is an
improved version of a previous toy model, where the equivalent
of F̄ (t,y) is a double-sided Brownian motion in y (see, e.g.,
Refs. [59,60]). In other words, it matches the infinite time
and ξ = 0 limit (38). Our first and main new ingredient
is to implement the finite disorder correlation length in
a rounding of C̄(t,y) at small y and to attribute it to a
similarity between the correlator curvature [∝R̄(t,y)] and the
microscopic disorder correlator. Our second new ingredient
is to introduce generically a time dependence of the effective
parameters ξ̃t and D̃t , which will be discussed in Sec. VI.

IV. SCALING ANALYSIS OF THE TEMPERATURE
DEPENDENCE OF THE ASYMPTOTIC ROUGHNESS

Now that we have an efficient effective model, it is
important to relate its parameters with those of the original
1D interface. We perform such an identification in this section
using scaling arguments by making explicit the relations
between the DP toy-model effective parameters and the 1D
interface parameters {c,D,T ,ξ} in the two limits of low versus
high temperature, and extrapolate a continuous crossover
between those two regimes via the temperature dependence
of the GVM Larkin length [34].

We conclude this construction by sketching two saddle-
point arguments for the roughness, which use either the large
length scale t or the zero-temperature limit of 1

T
as a control

parameter in order to accredit our asymptotic assumptions for
a short-range correlated disorder (ξ > 0).

A. Scaling arguments

Coming back to a full path-integral representation for the
roughness and more generally for any average of observables
depending exclusively on the DP endpoint, we present there-
after scaling arguments such as sketched in Ref. [11] for the
1D interface model defined in Sec. II A. We also refer to
Ref. [61] for a previous approach. Note that we systematically
disregard the numerical prefactors in the whole section.
Assuming that the random potential V scales in distribution
consistently with its two-point transverse correlator Rξ (y)
and that Rξ (ay) = a−1Rξ/a(y), the rescaling of the spatial
coordinates and of the energy yields exactly for the roughness

B(r; c,D,T ,ξ ) = a2 B̄(r/b; 1,1,T /Ẽ,ξ/a), (54)

where B̄ is the roughness function with adimensional param-
eters, provided the scaling factors satisfy the two relations
involving the Flory exponent ζ 1D

F = 3
5 :

a = (D1/3c−2/3b)3/5 ⇔ b = (D−1/5c2/5a)5/3, (55)

Ẽ ≡ ca2/b = (cD2b)1/5 = (acD)1/3. (56)

Fixing one of the scaling factors to a characteristic scale
of the model gives three possible choices, each suited for the
description of a particular temperature regime (high T , low
T , and their connection), with the ad hoc assumptions on

the scaling function B̄(r̄; 1,1,T̄ ,ξ̄ ). First, with respect to the
temperature T ,

Ẽ = T , b = r∗(T ) ≡ T 5

cD2
, a = ξth(T ) ≡ T 3

cD
, (57)

B(r; c,D,T ,ξ )
(T �Tc)≈ ξth(T )2B̄

(
r

r∗(T )
; 1,1,1,0

)
(58)

catches the high-T scalings if the function B̄(r̄; 1,1,1,0) is
properly defined (cf. Sec. IV B). Second, with respect to the
finite width or disorder correlation length ξ ,

a = ξ , Ẽ = Tc(ξ ) ≡ (ξcD)1/3 , b = r∗(Tc), (59)

B(r; c,D,T ,ξ )
(T �Tc)≈ ξ 2B̄

(
r

r∗(Tc)
; 1,1,0,1

)
(60)

catches the low-T scalings if the function B̄(r̄; 1,1,0,1) is
properly defined (cf. Sec. IV B), with r∗(Tc) = ξ 5/3c2/3D−1/3.
Third, with respect to the Larkin length Lc(T ,ξ ), defined as
the beginning of the asymptotic random-manifold regime [37]
[as discussed first after (11) and then in Sec. III C],

b = Lc(T ,ξ ) ≡ r∗(T )/f (T ,ξ )5, (61)

a = ξeff(T ,ξ ) = ξth(T )/f (T ,ξ )3, (62)

Ẽ = T/f (T ,ξ ), (63)

B(r; c,D,T ,ξ ) = ξ 2
effB̄(r/Lc; 1,1,f,ξ/ξeff) (64)

with f (T ,ξ ) an interpolating function between the high-T and
low-T regimes for both the Larkin length and its corresponding
effective width:

f (T ,0) = 1, f (0,ξ ) = T/Tc, (65)

Lc(T ,0) = r∗(T ), Lc(0,ξ ) = r∗(Tc) ≡ r0(ξ ), (66)

ξeff(T ,0) = ξth(T ), ξeff(0,ξ ) = ξ. (67)

We can now focus on the roughness itself, and discuss the
consequences of a power-law behavior at large length scales,
which is known to be governed by the roughness exponent
ζ exact

RM = 2
3 . A behavior such as

B̄asympt(r̄; 1,1,T̄ ,ξ̄ )
(r̄�1)≈ r̄2ζRM (68)

without any other parameter dependence [this constraint can
actually be taken as another definition of the Larkin length
(61) for r̄ = r/Lc] implies for the rescaling (61)–(63)

Basympt(r; c,D,T ,ξ ) ≈
[

ξeff(T ,ξ )

Lc(T ,ξ )ζRM

]2

︸ ︷︷ ︸
≡A(c,D,T ,ξ )

r2ζRM . (69)

An artifact of the GVM framework is that it predicts the
Flory exponent of the model for the asymptotic roughness
exponent; for the 1D interface ζ 1D

F = 3
5 , whereas for the DP

toy model ζ
toy
F = 2

3 = ζ exact
RM . So, either the asymptotic GVM

exponent coincides with the Flory exponent of (55) and all the
temperature dependence is canceled in A(c,D,T ,ξ ), or they
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do not and the scaling prediction

A(c,D,T ,ξ ) =
(

D3/10

c3/5L
1/10
c

)4/3

=
[

D

cT
f (T ,ξ )

]2/3

(70)

matches the GVM result for the DP toy model (53) with (48).
It is important to emphasize that the Flory exponent 3

5 is
imposed by the rescaling procedure of the full model of a 1D
interface, whereas the exact RM exponent 2

3 is the true physical
roughness exponent at large length scales and is predicted by
assuming only that the scaling of the disorder free energy is
dominated by F̄ (t,y)2 ∼ D̃∞|y| as in (38), hence ζ

toy
F = ζ exact

RM
(cf. Sec. IV B).

If we try boldly the rescaling b = r in order to catch the
large-length-scales behavior, we obtain

b = r , a = (D1/3c−2/3r)3/5 , Ẽ = (cD2r)1/5, (71)

B(r; c,D,T ,ξ )
(r→∞)≈

(
Dr3

c2

)2/5

B̄(1; 1,1,0,0), (72)

which would predict the asymptotic roughness exponent
ζ 1D

F = 3
5 if the function B̄(r̄; 1,1,0,0) was properly defined,

but this is not the case since the two limits T → 0 and ξ → 0
can not be exchanged or taken simultaneously.

The quantity f (T ,ξ ) has been introduced here in order to
interpolate between the two limits (57) and (59), in the only
way compatible with the rescaling procedure (55) and (56).
We argue, however, that f (T ,ξ ) is the same parameter defined
in (48) for D̃∞ in our DP toy model. Actually, all the scalings
(57)–(60) are properly recovered in a GVM approximation of
the Hamiltonian [34] [cf. (A1)–(A4)], with the identification
f (T ,ξ ) ≡ 6

5vc(T ,ξ ) that transforms the equation (A3) for the
full-RSB cutoff vc(T ,ξ ) into

f 6 = 16π

9

[
T

Tc(ξ )

]6

(1 − f ). (73)

So, f (T ,ξ ) turns out to be the key quantity for the connection
of our scaling arguments and the two sets of GVM predictions,
centered either on the Hamiltonian or on the pseudo-free
energy at a fixed length scale, both recalled in Appendix A. The
numerical discrepancy between the equations (73) and (49) for
f (T ,ξ ) can be either reabsorbed in the definition ξ̃t ≈ 2

3ξ for
the latest, or more safely attributed to the GVM approximation.

B. Saddle-point arguments

The previous scaling arguments are based on the presumed
existence of specific limits, which can be precised in a path-
integral reformulation of the roughness functions (54). We
present thereafter two saddle-point arguments which provide
a controlled validation of our different assumptions at T > 0
and ξ > 0.

First, we use 1
T

as a large parameter at low temperature in
order to argue the existence of a proper limit for B̄(r̄; 1,1,0,1)
in (60) [the high-temperature case (60) is already well
controlled]; this is not obvious in the usual conventions of
mathematicians regarding the DP (c = T ) (see Appendix G).
Second, we revisit the original derivation of the exponent
ζ exact

RM = 2
3 by Huse, Henley, and Fisher [29] from the point

of view of our DP toy model and using the length scale t as
large parameter for the saddle point.

1. Zero-temperature roughness of the 1D interface

The low-temperature limit in (60) can be made explicit
coming back to the path-integral definition of the roughness
and performing the rescaling (59) with t∗(T ) ≡ T 5

cD2 as in (57):

B(t1; c,D,T ,ξ )

= ξ 2B̄

(
t1

t∗(Tc)
; 1,1,

T

Tc

,1

)
(74)

= ξ 2

∫
y(0)=0 Dy y( t1

t∗(Tc) )
2 e− Tc

T

∫ t1
t∗(Tc )

0 dt
[

1
2 (∂t y)2 + V1(t,y(t))

]
∫
y(0)=0 Dy e− Tc

T

∫ t1
t∗ (Tc )

0 dt
[

1
2 (∂t y)2 + V1(t,y(t))

] ,

(75)

where V1[t,y(t)] ≡ V [t,y(t)]|D=1,ξ=1. In the path integrals,
the trajectories y(t) have a fixed starting point y(0) = 0 but a
free endpoint y(t1). Since all temperature dependence has been
gathered in a single and large prefactor Tc

T
, the path integrals

are dominated by a common optimal trajectory y�(t), which,
assuming that it exists, does not depend on temperature since
it minimizes

∫ t1/t∗(Tc)
0 dt { 1

2 (∂ty)2 + V1[t,y(t)]}. The saddle
trajectory endpoint is then reached at some optimal endpoint
y�

1 = y�
1( t1

t∗(Tc) ,V1), common to the numerator and denominator
and independent of T . Finally, one obtains from (75) that
in (74) limT →0 B̄( t1

t∗(Tc) ; 1,1, T
Tc

,1) is finite, being equal to

y�
1( t1

t∗(Tc) ,V1)2. So, if the optimal path y� does exist and if its
variance at fixed length scale t1 is finite, the zero-temperature
limit is well defined. See Appendix G for a discussion on this
last point.

2. DP toy model scaling argument, asymptotic roughness,
and Flory exponent

The scaling arguments of the previous section, established
on the full model of a 1D interface, have of course their
counterpart for our DP toy model. The main assumption is that
the large-time scaling of F̄ (t,y) is governed by its infinite-time
correlator C̄(t,y) = D̃∞|y| [Eq. (38)] with the amplitude
being essentially a constant D̃t ≈ D̃∞ (denoted thereafter
simply by D̃) and similarly ξ̃t ≈ ξ̃ . This ensures that upon
the change of variable y = aȳ and t = bt̄ , the following free
energy is equal in distribution to

Fth(t,y) + F̄ (t,y)
d= a2

b

cȳ2

2t̄
+ a

1
2 D̃

1
2 F̄1(t̄ ,ȳ), (76)

where F̄1(t,y) ≡ F̄ (t,y)|D̃=1,ξ̃ /a . The argument of Ref. [29]
can then be summarized as follows: the free energy and
roughness fluctuation exponents χ and ζ are, respectively,
defined as F̄ (y) ∼ bχ F̄ (ȳ) and y ∼ bζ (which amounts to

take a ∼ bζ ). The fact that in distribution F̄ (t,y)
d∼ a

1
2 F̄ (ȳ)

implies χ = 1
2ζ while equating the thermal and disorder

contributions in (76) yields χ = 2ζ − 1. These two equations
fully determine the values of the exponents: χ = 1

3 and ζ = 2
3 .

Taking care of the prefactors of those power laws, we define
the following rescaling procedure:

B(t ; c,D̃,T ,ξ̃ ) = a2 B̄(t/b; 1,1,T /Ẽ,ξ̃/a), (77)
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a = (D̃/c2)1/3b2/3 ⇔ b = cD̃−1/2a3/2, (78)

Ẽ ≡ ca2/b = (D̃2b/c)1/3 = D̃1/2a1/2, (79)

where B̄ is the roughness function with adimensional param-
eters, if the scalings factors satisfy the two relations involving
the Flory exponent ζ

toy
F = 2

3 . To understand how this power
counting can describe correctly the large-time asymptotics,
we chose the rescaling equivalent to (71):

b = t , a = (D̃/c2)
1
3 t

2
3 , Ẽ = (D̃2t/c)1/3, (80)

which implies from the definition of the roughness
B(t ; c,D̃,T ,ξ̃ ) in (22)

B(t ; c,D̃,T ,ξ̃ )

=
[

D̃

c2

] 2
3

t
4
3

∫
dȳ ȳ2 exp

{− 1
T

[
D̃2

c
t
] 1

3
[

ȳ2

2 + F̄1(1,ȳ)
]}

∫
dȳ exp

{− 1
T

[
D̃2

c
t
] 1

3
[

ȳ2

2 + F̄1(1,ȳ)
]} ,

(81)

where the overline denotes the average over the random
F̄1. The advantage of our specific choice of the rescaling
parameters a and b is that the time dependence of the
exponentials in (81) is then gathered in a single prefactor
t

1
3 . For each fixed F̄1, one may thus evaluate the integrals

in ȳ through the saddle-point method in the large-t limit.
The integrals at the numerator and denominator of (81) are
dominated by the same y�[F̄1] which minimizes ȳ2

2 + F̄1(1,ȳ),
ensuring that y�[F̄1] is independent of t . We read from (81)
that

Basympt(t ; c,D̃,T ,ξ̃ ) = (y�[F̄1])2(D̃/c2)
2
3 t

4
3 , (82)

i.e., the roughness exponent is ζ exact
RM = 2

3 . However, all this
construction breaks down at the very last when the scaling
F̄ (t,y)2 ∼ D̃|y| ceases to be valid, at small |y| � ξ̃ , i.e., when
the scaling factor a(t) matches with the effective width ξ̃ .
This yields an alternative definition of the Larkin time t0 as
a(t0) ≡ ξ̃ or t0 = (c2ξ̃ 3/D̃)1/2. Coming from the large length
scales, this asymptotic scaling breaks earlier due to thermal
fluctuations, at the Larkin time tc � t0. Identifying tc and
Lc(ξ,T ), generalizing ξ̃ ≈ ξ to ξeff(T ,ξ ) of (66) and using
finally D̃ = f (T ,ξ ) cD

T
of (48), we recover consistently with

(52) and (65) for the Larkin time:

a(tc) ≡ ξeff ⇔ tc =
(

c2ξ 3
eff

D̃

)1/2

= T 5

cD2
f (T ,ξ )−5, (83)

which has as a lower bound its low-temperature limit

t0 = ξ 5/3c2/3D−1/3 = r∗[Tc(ξ )]. (84)

The large-time limit makes the scaling assumption
F̄1(1,ȳ)2 ∼ |y| even more reliable, and the saddle point can
be properly taken in this limit, yielding the Flory exponent of
the DP toy model ζ

toy
F = 2

3 . This was not the case for the 1D
interface in (72). Indeed, upon the rescalings (71), we obtain

in a path-integral representation

B(t1; c,D,T ,ξ )

=
[
Dt3

1

c2

] 2
5

B̄

(
1; 1,1,

T

(cD2t1)
1
5

,
ξ(

D
1
3 c− 2

3 t1
) 3

5

)
(85)

=
[
Dt3

1

c2

] 2
5

∫
y(0)=0 Dy y(1)2 e

− Ẽ
T

∫ 1
0 dt [ 1

2 (∂t y)2 + V ( t
t1

,y(t))|
D=1,

ξ
a

]

∫
y(0)=0 Dy e

− Ẽ
T

∫ 1
0 dt [ 1

2 (∂t y)2 + V ( t
t1

,y(t))|
D=1,

ξ
a

]

(86)

with a = (D1/3c−2/3t1)3/5 , Ẽ = (cD2t1)1/5. The large-t1
asymptotics can not be taken directly from this expression
since it is not in a saddle form and all scales are intertwined,
contrarily to the study of the free energy itself which
corresponds to scales integrated up to time t1.

V. SYNTHETIC OUTLOOK

We address analytically throughout this paper the conse-
quences of a finite correlation length ξ > 0 of the microscopic
disorder V (t,y) explored by a 1 + 1 DP or, alternatively, of
a 1D-interface finite width which is always present in exper-
imental systems. On one hand, several analytical arguments
yielding exact results at ξ = 0 break down as such, questioning
their generalization to ξ > 0. On the other hand, despite a lack
of exact analytical expressions, the finiteness of this quantity
allows us to control the scalings and the low-temperature
limit of the model (see Sec. IV), avoiding the pathological
and unphysical divergences that appear at ξ = 0, in particular
conjointly to the limit T → 0.

In order to tackle the case at ξ > 0, the 1 + 1 DP formulation
allows us to follow effective quantities at fixed length scale or
growing time as defined in Sec. II C, in an approach thus
conceptually similar to the FRG which focuses on the flow
and fixed points of the disorder correlator (denoted � or
R [32,33,62]). Considering the free energy at fixed disorder
(averaging over the thermal fluctuations but one step before the
disorder average), it is thus possible to disconnect theoretically
the two statistical averages, and even to focus on the pure
disorder contributions thanks to the STS and the Feynman-Kac
equations for F̄V and its derivative ηV (see Sec. II D), paving
the way to the numerical computation frame presented in
Ref. [47]. Those two quantities are not directly accessible
experimentally (except for liquid crystals, as discussed later
in Sec. VII) and are a priori more complex to handle since
they encode more information than direct observables such as
the geometrical fluctuations and the roughness. However, they
actually display a simpler phenomenology by disconnecting
the thermal and disorder effects and the different length scales,
whereas the roughness B(t) intricates all of them as illustrated
by the combination of Fth(t,y) and F̄V (t,y) in (22).

Although P̄[F̄ ] and P̄[η] are not Gaussian at ξ > 0
not even in the infinite-time limit, their main features are
encoded in the two-point correlators C̄(t,y) and R̄(t,y), i.e.,
the scalings of C̄ and R̄ dominate the higher moments of
the PDFs, similarly to the case ξ = 0 (see Sec. III A). This
supports consequently the construction of the toy model of
Sec. III C, which relies on the assumption that the PDFs
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can be approximated as Gaussian ones described by a given
set of two-point correlators; the GVM predictions derived
from this DP toy model [34] (see Appendix A) are actually
found to be qualitatively in agreement with the numerical
results presented in Ref. [47]. The study of the two-point
correlator R̄ provides thus a vantage point on the DP properties,
first at asymptotically large times (keeping in mind that the
infinite-time limit simplifies the analytical treatment of the RM
regime, i.e., via a Fokker-Planck approach as in Appendix F)
and second at finite time with the connection to the short-times
regime.

In order to characterize the asymptotic large-times behavior,
which can potentially display universality, a central quantity
is the saturation amplitude of the effective disorder, i.e.,
D̃∞(T ,ξ ). At fixed ξ > 0 it is equivalent to the maximum
of the asymptotic correlator R̄(∞,y = 0) which is equal
to D̃∞/ξ̃∞Rξ̃=1(y = 0) and is measured numerically as
the maximum of the saturation correlator R̄sat(y = 0) in
Ref. [47]. However, for a δ-correlated microscopic disorder
Rξ=0(y) = δ(y), R̄(∞,y = 0) diverges whereas the amplitude
D̃∞/ξ̃∞ remains well defined. It is remarkable to notice that
from the whole saturation correlator, the quantity D̃∞ is the
only feature that eventually plays a role in the asymptotic
roughness in GVM or scaling arguments, e.g., in (53), the
specificity of the (normalized) RB disorder correlator Rξ (y)
(1) and thus of the function R(y) being then gathered into a
numerical constant. D̃∞(T ,ξ ) appears to be the relevant quan-
tity for a universal description of the crossover between low-
and high-T asymptotic DP fluctuations, from an analytical
point of view and in a remarkable agreement with the numer-
ical results of Ref. [47]. Going one step further, the crossover
from its ξ = 0 (or high-T ) limit is better described by the inter-
polating parameter f (T ,ξ ) = D̃∞(T ,ξ )/( cD

T
) first introduced

in (48) and expected to rescale also the characteristic scales
such as Lc(T ,ξ ) according to the relations (61)–(64) obtained
by pure scaling arguments. The GVM framework yields the
two predictions (49) and (73) for f (T ,ξ ) derived from the value
of the full-RSB cutoff (cf. Appendix A), and a third analytical
prediction will be presented in the next subsection of Sec. VI;
all of these predict a monotonous crossover connecting the
limits T = 0 and ξ = 0 [Eqs. (65)–(67)] with a polynomial
equation on f (T ,ξ ). This prediction can be checked to be
qualitatively consistent with the numerical results in Ref. [47],
but the comparison will anyway suffer quantitatively from the
variational approximation and from several corrective factors
due to the numerical procedure.

Note that although the two communities of physi-
cists and mathematicians work with two different conven-
tions, respectively, at fixed elastic constant c (the choice
c = 1 essentially fixing the units of energy) versus at
c = T (as discussed in Appendix G), all the above dis-
cussion remains valid in both conventions, although the
choice c = T leads to other limits in temperature. The
two opposite limits at high T (or ξ ≈ 0) D̃∞ ≈ cD

T
,

and at low T [or ξ > 0 and below Tc(ξ ) = (ξcD)1/3],
D̃∞ ≈ cD

Tc
= (c2D2ξ−1)1/3 translate with the convention

c = T into D̃∞ ≈ D and D̃∞ ≈ T 2/3D2/3ξ−1/3, respectively,
above and below T m

c = √
ξD [deduced self-consistently from

T m
c = (ξcD)1/3 = (ξT m

c D)1/3]. In the course of the study

of the rescaling of the correlator C̄(t,y) with respect to the
roughness B(t) in Ref. [41], it has been noticed that in the
regime |y| �

√
B(t), we have numerically as expected a linear

behavior C̄(t,y) ∝ |y| but with a by-product prefactor that
corresponds precisely to our D̃∞. Taking as a criterion the
collapse of the curves C̄(t,y) at different temperatures on an
arbitrary chosen curve, the temperature dependence of this
prefactor is consistent with all our analysis on the origin and
interpretation of D̃∞(T ,ξ ) (see the insets in Figs. 10 and 14 of
Ref. [41], which illustrate, respectively, the conventions c = T

versus independently fixed c = 1 and T ).
As for the finite-time behavior, especially at short times, it is

a priori crucially sensitive to the specific microscopic disorder
correlator, thus compromising a possible universality. We
speculate that the time evolution of the free-energy fluctuations
displays essentially two regimes on the fluctuations of the
disorder free energy, separated by the saturation time tsat first
introduced in the course of our DP toy-model definition in
Sec. III C: starting from the initial condition R̄(0,y) ≡ 0 im-
posed by (30), the central peak of the correlator R̄(t,y) devel-
ops itself keeping the integral

∫
R dy R̄(t,y) = 0 constant, until

it reaches the saturation shape D̃∞ Rξ̃ (y) compensated by neg-
ative bumps according to the generic decomposition (44)–(46)
as illustrated in Fig. 3. Note that an independent criterion to
determine tsat is provided by (33): ∂t F̄V (t,y) = − 1

2c
R̄(t,y = 0)

should self-consistently be a constant above tsat, as it has been
observed numerically in Ref. [47]. Since ∂2

y C̄(t,y) = 2R̄(t,y),
after the double integration (21) the correlator C̄(t,y) starts
from the initial condition C̄(0,y) ≡ 0 [also imposed by (30)],
and at fixed time above tsat it is rounded at |y| � ξ , increases
then linearly C̄(t,y) ≈ D̃∞|y| at ξ � |y|√B(t) and is constant
for any larger |y| (see again Fig. 3). The position 
t of
these wings of C̄(t,y) or equivalently of the negative bumps
of R̄(t,y) is discussed at length in Ref. [41] and identified
to correspond physically to the typical position of the DP
endpoint 
t ≈ √

B(t) in the different roughness regimes and
even below the Larkin length Lc.

What happens below tsat can not be understood without
taking into account the whole microscopic disorder correlator
Rξ (y), whose feedback via the KPZ nonlinearity at small |y|
modifies the amplitude D̃∞(T ,ξ ) and the shape Rξ̃ (y) before
the saturation is achieved, especially in the low-T regime and
in any case with tsat � Lc. Neglecting the KPZ nonlinearity
yields the prediction (42) and (43) which mixes different limits:
the ξ = 0 (high-T ) amplitude D̃∞ = cD

T
, the same correlator

as the microscopic disorder Rξ̃ (y) = Rξ (y), and the wings
rescaled with respect to the pure thermal roughness Bth(t)
at all length scales (this diffusive behavior being for sure an
artifact of the linearization). In the low-T regime, we believe
that by generating relevant non-Gaussian correlations such
as R̄3 and C̄3 [defined in (36) and (37)] below tsat, the KPZ
nonlinearity introduces an effective kernel for R̄ that modifies
simultaneously D̃∞ andRξ̃ (y), with in particular the saturation
below Tc of the amplitude D̃∞ ≈ cD

Tc
as predicted by scaling

arguments in Sec. III B.
The phenomenology of the DP fluctuations is simpler from

the point of view of the disorder free energy F̄V via its
two-point correlators R̄ and C̄ because they display these
two time regimes separated by tsat, as we have speculated
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here and then checked numerically in Ref. [47]. From the
competition between the typical F̄V and the thermal Fth, the
resulting roughness Bdis(t) should also display two regimes as
observed numerically in Ref. [47]. However, when recombined
with the pure thermal effect, the roughness B(t) displays two
or three time regimes, respectively, at high T (thermal and
RM regimes) and low T (with an additional intermediate
Larkin-modified regime), with Lc at the beginning of the RM
regime, as predicted by GVM and again observed numerically.

The disorder free energy is an effective quantity which
encodes the microscopic disorder explored by the polymer;
there is consequently a feedback between the geometrical
fluctuations P(t,y) and the free-energy correlations C̄(t,y):
first, the existence of wings in C̄(t,y) is imposed physically
by the finite variance of the PDF P(t,y) [the polymer does
not explore often regions |y| >

√
B(t) so these regions do

not contribute much to the correlator C̄(t,y)]; second, the
PDF P(t,y) is deduced from the competition between Fth and
F̄V ∼ C̄1/2, the maximum of the typical F̄V being precisely
fixed by the wings of C̄; third, the wings of C̄ or the
bumps in R̄ can be skipped for a GVM computation of the
roughness, providing a self-consistent justification of our DP
toy model. Beyond the scaling in time of those fluctuations,
which we plainly understand physically now, their temperature
dependence at all times is finally determined by the integrated
disorder up to tsat � Lc, where the KPZ nonlinearity plays a
crucial role below Tc(ξ ).

VI. EFFECTIVE EVOLUTION IN TIME AND
TEMPERATURE OF THE AMPLITUDES D̃t

Having this global picture in mind, we can now gather
all the physical intuition we have obtained and construct the
following analytical argument in order to obtain an evolution
equation for the an effective time-dependent amplitude D̃t as
a refinement of our DP toy model.

The evolution of the correlator R̄(t,y), given by the “flow”
equation (34), can not be solved directly since it brings into
play the three-point correlation function R̄3(t,y), a hallmark
of the KPZ nonlinearity. To extract an exact information from
this flow, one should in principle solve the full hierarchy
of equations connecting the whole set of n-point correlation
functions, a task which seems however out of reach. As we
will detail thereafter, the restriction of the flow to the vicinity
of y = 0 leads in fact to an (approximate) closed equation
on the height of the two-point correlator R̄(t,0) = D̃tRξ̃t

(y)
according to our DP toy model (47). It will allow us to pinpoint
the role of the nonlinearity in the temperature dependence
of the asymptotic D̃∞(T ,ξ ) and its interpolating parameter
f (ξ,T ) defined by (48), and give more insight into the
short-time behavior of D̃t and F̄V (t,y) [with respect to (33)].

A. Rescalings of R, R̄, R̄3, and ηV

From (34), the flow of R̄(t,y) in y = 0 reads as

∂t R̄(t,0) = T

c
R̄′′(t,0) − 1

c
R̄′

3(t,0) − 1

t
R̄(t,0) − DR′′

ξ (0)

(87)

(throughout this section we denote for short the derivative with
respect to y by a prime). Although this equation is exact, it

can not be solved directly since the three-point correlator R̄3

is not known. To go further and try to find out what relations
between the physical parameters it might nevertheless imply,
one has to surmise a (minimal) scaling form of the different
correlators and their first derivatives.

Let us first consider the known scaling of the microscopic
disorder correlator Rξ (y):

DRξ (y)
(y→0)≈ D

[
Rξ (0) + R′′

ξ (0)
y2

2

]
= c0

D

ξ

[
1 − c1

y2

2ξ 2

]
,

(88)

where c0 = Rξ (0)|ξ=1 and c1 = −R′′
ξ (0)

Rξ (0)

∣∣
ξ=1 are numerical con-

stants, independent of ξ and reflecting the specific geometry
of the correlator around the origin. For instance, when the
correlator is a Gaussian function Rξ (y) = e−y2/(4ξ 2)/

√
4πξ 2

(i.e., used to generate the Fig. 6), one has c0 = 1√
4π

and c1 = 1
2 .

By analogy with (88) and supported by the numerical test
of our DP toy model in Ref. [47], we now assume that the
correlator R̄(t,y) scales around y ≈ 0 as

R̄(t,y)
(y→0)≈ c2

D̃t

ξ

(
1 − c3

y2

2ξ 2

)
. (89)

Here, c2 and c3 are numerical constants independent of the
parameters (c,D,T ,ξ,t):

c2 = R̄(t,0)

∣∣∣∣ ξ = 1
D̃t = 1

, c2c3 = −R̄′′(t,0)

∣∣∣∣ ξ = 1
D̃t = 1

(90)

while c2
D̃t

ξ
is the height of the central peak R̄(t,0) assumed

to capture all the dependence in the parameters. c2 is actually
defined so that the ξ → 0 limit (38) is recovered:

D̃∞(T ,ξ ) ≡ lim
t→∞ D̃t =

∫
R

dyR̄(∞,y) > 0, (91)

lim
ξ→0

D̃∞(T ,ξ ) = cD

T
, (92)

which is known to hold exactly, without any additional numer-
ical constant. The constant c2 depends on global properties
of the infinite-time limit of the correlator, in the sense that
it is constrained by (91) and (92). The main assumption in
the scaling form (89) is actually that the curvature of the
correlator R̄(t,y) at the top of its central peak happens on
a scale ξ/

√
c3 which corresponds to ξ̃∞ and is independent of

time and {c,D,T }. This assumption is not exact at all times,
but we expect that it captures anyway the main features of the
geometry of the correlator R̄(t,y) close to its central peak.

Finally, the three-point correlation function is assumed
to scale in D̃t and ξ in the same way as it naively does merely
by counting the number of occurrences of η in the definition
(D11) of R̄3(t,y) (i.e., inferred from R̄ ∼ ηη, R̄3 ∼ ηηη, and
rescaling also the derivative ∂y):

R̄′
3(t,0) = c4

D̃
3/2
t

ξ 5/2
with c4 = R̄′

3(t,0)

∣∣∣∣ ξ = 1
D̃t = 1

. (93)

Here, c4 is also assumed to be a numerical constant. If
this form is again not expected to be exact at all times, it
can still be thought as a reasonable approximation provided
the three-point correlator R̄′

3(t,y) is analytic around y = 0.
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This last assumption is justified for instance in view of
the zero-temperature and infinite-time limits of the flow
equation (34) (under the stationarity condition ∂t R̄ = 0),
which yields that the three-point correlator limt→∞ R̄′

3(t,y) is
merely proportional to R′′

ξ (y), which is analytic around y = 0.
Note finally that the scalings (88), (89), and (93) are all

compatible with the following rescaling in distribution (also
inferred from ηη ∼ R̄):

η(t,y)
(d)=
(

D̃t

a

) 1
2

η

(
t,

y

a

)∣∣∣∣
ξ/a

(94)

for all values of the rescaling parameter a. A way to
reformulate the definitions (90) and (93) of the numerical
constants {c2,c3,c4} is thus to identify those constants with
the corresponding derivatives of the correlator R̄(t,y) taken
at a = ξ and D̃t = 1, which ensures their independence with
respect to the other parameters.

B. Evolution of ˜Dt and prediction for ˜D∞ and f (T,ξ )

Substituting the rescalings (88), (89), and (93) into (87)
transforms the equation for R̄(t,0) into an effective closed
evolution equation for the amplitude:

∂t D̃t + 2

t
D̃t = −c3

T

cξ 2
D̃t − c4

c2

1

cξ 3/2
D̃

3/2
t + c0c1

c2

D

ξ 2
.

(95)

The nonlinear KPZ term of the equation of evolution for F (t,y)
corresponds to the term ∝ D

3/2
t . The numerical solution of this

equation is plotted in Fig. 4.
To tackle the infinite-time case, we have introduced in

Secs. III C and IV A the interpolating parameter f and
identified it as the full-RSB cutoff in the GVM predictions (cf.
Appendix A). By canceling the right-hand side of (95) and in-
troducing the interpolating parameter f (c,D,T ,ξ ) = D̃∞

/
cD
T

as in (48), one obtains a new equation for f :

f 3/2 = c2c3

c4

[
T

Tc(ξ )

]3/2(
c0c1

c2c3
− f

)
, (96)

where Tc(ξ ) = (ξcD)1/3 is the same characteristic temperature
as the one obtained in Sec. IV A by scaling.

Noting that c2 is defined in (90) precisely so that it absorbs
all the quantitative contribution of the geometry of R̄, the

FIG. 4. (Color online) D̃t as a function of t (left: linear scale,
right: logarithmic scale). In green (bottom curve), the solution of the
full differential equation (95); in red (top curve), the solution of the
equation without the nonlinear KPZ term; the dashed horizontal lines
are the corresponding large-time asymptotics; in purple dotted, the
short-time asymptotics (98). Chosen parameters: c = D = T = ξ =
1, c0 = c2 = 1√

4π
, c1 = c3 = 1

2 , c4 = 1
4 .

condition (92) guarantees that limξ→0 f = 1. The ξ → 0
solution of (96) is then f = c0c1

c2c3
, so one obtains eventually

that c0c1
c2c3

= 1. This is valid for all values of the parameters
if the {ci} are indeed parameter independent. However, those
numerical constants are constrained only by the geometry of
R̄(t,y), and we know from the numerical study in Ref. [47]
that at large times the correlator saturates to a
R̄sat(y) ≈ D̃∞R(y) with only a slight T dependence of the
function R.

Disregarding this possible but small modification of the
numerical constant depending on T , the equation for the
interpolating parameter finally reads as

f γ = c0c1

c4

(
T

Tc

)γ

(1 − f ) with γ = 3

2
. (97)

Strikingly, it takes a form very similar to the equations (49)
and (73) obtained in Sec. III from the GVM approach, with
an exponent γ = 6 instead of γ = 3

2 . In fact, the value of this
exponent only influences the specific monotonous crossover
from the high-T regime, where the KPZ term has little
influence (f � 1) to the low-T asymptotics where f is linear

in T as f
(T →0)∼ ( c0c1

c4
)

1
γ T

Tc
.

The value of γ modifies the numerical constants in this last
regime but does not influence the power-law dependence in the
physical parameters, gathered in Tc(ξ ). The equation (97) is
a consistency check with respect to the two GVM predictions
(49) and (73), and the strictly monotonous behavior of R̄(t,0)
and D̃∞ observed numerically in Ref. [47].

C. Short-time evolution of ˜Dt and saturation at tsat

Leaving the infinite-time case, we consider now the
opposite regime of short times where the evolution (95)
of D̃t can be solved first in the absence of the nonlinear KPZ
term, predicting that D̃t is linear in t at short times:

D̃t

(t→0)� c0c1

3c2

D

ξ 2
t. (98)

This behavior can also be checked by the naked eye directly
on (95) searching for a solution D̃t ∝ t . Note the factor 3 in
the denominator, due to the two terms in the left-hand side
of (95). Assuming that the solution D̃t is also linear at short
times while keeping the KPZ term actually yields the same
result (since then D̃

3/2
t � D̃t � t0).

One checks that this self-consistent hypothesis is correct by
solving (95) numerically (cf. Fig. 4). Note that (98) predicts
the short-time regime D̃t to be temperature independent. The
behavior (98) should thus hold in generality, and allow us to
define a saturation scale tsat at which D̃t reaches its asymptotic
value

D̃∞ = c0c1

3c2

D

ξ 2
tsat, i.e., tsat = 3c2

c0c1

cξ 2

T
f. (99)

Accordingly to this equation, the saturation occurs earlier
at higher temperatures, the thermal fluctuations actually
smoothing the evolution of the disorder correlator.

Another consequence of the short-time behavior (98) deals
with the short-time dynamics of the mean value −2c F̄V (t,y).
Inserting the short time D̃t of (98) into the assumed scaling
R̄(t,0) = c2

D̃t

ξ
of (89) and into the exact relation (33),
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one obtains from the initial condition F̄V (t,y) ≡ 0 that

−2c ∂t F̄V (t,y)
(t→0)= c0c1

3
D
ξ 3 t , hence the prediction

−2c F̄V (t,y)
(t→0)= 2c0c1

3

D

ξ 3
t2. (100)

This quadratic behavior in t thus predicts a superlinear short-
time regime for F̄V (t,y).

This saturation time is different from the characteristic time
t∗ = t5

cD2 recently discussed in Ref. [63] for the evolution of the
free-energy fluctuations in the high-temperature regime and
which corresponds to the Larkin length appearing by scaling
at high T or ξ = 0 as discussed in (57). This scale t∗ allows
us to draw apart a short-time diffusive and the large-time KPZ
regime in the evolution of the fluctuations of F (t,y) (see also
Ref. [41] for a related study), while the scale tsat we examine
in this section, singular in the limit ξ → 0, captures the short-
time effects inherently due to the finiteness of ξ via the KPZ
nonlinearity.

To summarize, at finite ξ the nonlinear KPZ term does
not modify the short-time regime but induces a saturation of
D̃t at shorter times with increasing T and to an asymptotic
value D̃∞ < cD

T
. The high- and low-temperature asymptotic

regimes D̃∞
(T �Tc)= cD

T
and D̃∞

(T �Tc)= cD
Tc

are both independently
well controlled, and the evolution equation (95) we presented
thus allows us to tackle the crossover from one regime to
the other, but only in an effective way. An interesting open
question is to provide a proper analytical derivation of the full
temperature crossover and to fix the value of its exponent γ .

VII. LINK TO EXPERIMENTS

We discuss in this last section the consequences of the
finite ξ > 0 and its associated low-T regime for two specific
experiments. On one hand, domain walls in ultrathin magnetic
films [1–3] are well described by the DES model of a 1D
interface defined in Sec. II A, and both their static geometrical
properties and their quasistatic dynamical properties (in the
so-called creep regime) are thus captured by the DP endpoint
y(t) fluctuations. On the other hand, a second instance of
experiments encompassed by the KPZ theory is provided
by interfaces in liquid crystals [64–66], whose geometrical
fluctuations are directly described by the DP free energy F (t,y)
properly recentered.

A. Temperature dependence of the asymptotic roughness

As emphasized in Sec. IV A, a prominent feature of the DP
in a correlated disorder is that the amplitude of the roughness
B(t) is modified by the microscopic length ξ even at very large
length scales (in the RM regime), provided that the temperature
is lower than the characteristic temperature Tc = (ξcD)1/3.
Interfaces in ferromagnetic thin films are a prototype system
[11] for the experimental study of 1D interfaces, and in
particular their roughness exponent has been measured [1,3] to
be ζRM ≈ 0.66 in agreement with the KPZ exponent ζRM = 2

3 .
As estimated in Ref. [34] (Sec. VII B), the order of magnitude
of Tc could be of room temperature for these systems, which
makes it even more relevant to determine whether they lie in
the low-T or in the high-T regime.

One could in principle distinguish between those two tem-
perature regimes through the prefactor ARM of the asymptotic
roughness at large length scales:

ARM
(T �Tc)∼

(
D

cT

) 2
3

, ARM
(T �Tc)∼

(
D2

c4ξ

) 2
9

(101)

as given by scaling arguments (69) and (70), predicted by GVM
in (A15)–(A17), and consistent with the numerical study of the
roughness in Ref. [47].

The main problem regarding such a study is that the elastic
constant c and possibly the disorder strength D may depend
themselves on temperature, making it difficult to characterize
the low-T regime by a temperature-independent ARM, or to
interpret a measure of the scaling in temperature ARM ∼ T 2þ

with þ the thorn exponent. In any case, a change of regime in
the temperature dependence of ARM would provide a strong
evidence for a low-T to high-T crossover. Promising experi-
ments have actually been performed regarding the temperature
dependence in ultrathin Pt/Co/Pt films, as analyzed in Ref. [35]
where a fine study is devoted to the thermal rounding at the
depinning transition.

In case of an elastic constant depending linearly on the
temperature c = κT , we would expect a roughness amplitude
similar to Am

RM obtained under the usual mathematician’s
convention c = T , as exposed in Appendix G and with an
additional dependence in κ .

B. Quasistatic creep regime

The creep motion of 1D interfaces, describing the qua-
sistatic but nonlinear response of the interface to an external
driving field, could also be an interesting benchmark for the
ξ > 0 DP model predictions. Even though its description
[32,33] is not directly covered by the equilibrium statistical
properties of the interface we have presented here, it happens
that the characteristic length scales governing its scaling are
actually believed to be the static ones. As detailed in Ref. [34]
(Sec. VII B), those length scales are modified in the low-T
regime, implying that the characteristic free-energy barriers
scale differently with the temperature above or below Tc. This
behavior could provide an experimental criterion to distinguish
between the low- and high-T regimes, especially since the
exponent of the creep law has been successfully tested on
domain walls in ultrathin magnetic films on several orders of
magnitude in the velocity [1–3].

A challenging situation would be that of an interface
moving in a gradient of temperature, as studied numerically
in Ref. [67], with a gradient spanning Tc itself and with an
elastic constant c (or the disorder strength D) which could
again depend or not on the temperature.

C. High-velocity regime in liquid crystals

Another experimental system where our approach might
prove instructive is that of growing interfaces in liquid crystal
turbulence [64–66]. The corresponding setup consists in a
thin layer of liquid crystal subjected to a constant voltage
U and to an alternating electric field which can generate
two distinct turbulent modes (called “dynamical scattering
modes”) DSM1 and DSM2, the latter being more stable than
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the former. Starting from a dot (respectively a line) of DSM2 in
a DSM1 background, one thus observes the growth of circular
(respectively flat) interface. We refer the reader to Ref. [66]
for a complete account of the phenomena at hand.

The fluctuations of this interface are actually remarkably
well described by the KPZ theory, providing a benchmark for
its predictions not only about scaling exponents but also about
scaling functions. Contrarily to the case of magnetic interfaces,
the fluctuations of the interface position are described by the
random variable F̄ (t,y) that plays the role of the disorder free
energy in the context of the DP, as defined by (12) and (13).
Besides, for the liquid crystal interface, t is the physical time
and y the longitudinal direction of the interface.

For the circular interface, it has been shown that the ex-
perimentally measured C̄(t,y) defined by (19), once properly
rescaled, matches very well the prediction of the KPZ theory
at ξ = 0: C̄(t,y) can be fitted by the corresponding Airy2

correlator [56]. Although the length scale ξ of the disorder
correlations is below the optical resolution of the experiment
[no rounding of the cusp of C̄(t,y) is observed], it is still
finite and should be relevant by inducing a crossover between
two “temperature” regimes to identify. The (noncentered)
displacement h(t,y) of the interface evolves according to

∂th(t,y) = v∞ + ν∂2
yh(t,y) + λ

2
[∂yh(t,y)]2 + V (t,y),

(102)

where v∞ represents the mean displacement velocity. Com-
paring this equation to the flow of FV (t,y) [Eq. (25)], one
thus reads the correspondence λ = 1

c
, ν = T

2c
, or equivalently

c = 1
λ

, T = 2ν
λ

. It can be argued [65,66] that in the experimen-
tal configuration of the growing dot, the parameter λ is directly
given by the mean velocity λ = v∞. This velocity itself is well
described by a growing affine function of the applied constant
voltage U , in the probed voltage range 26 V < U < 30 V (see
Fig. 20 in Ref. [66]). One may surmise that the parameter ν,
which describes the diffusive fluctuations of the interface, is
independent of the constant voltage U (although this point is
not discussed in Ref. [66]), and similarly for the amplitude D

of the disorder fluctuations.
If those assumptions are true, one can deduce from

the correspondence c = 1
λ

, T = 2ν
λ

that the low-temperature
regime of our description (where ξ matters in the scaling of the
fluctuations amplitude) corresponds to a high-velocity λ = v∞
regime for the liquid crystal interface, and inversely for the
low-velocity range being described by our high-temperature
regime. A natural question is thus to determine whether the
experiments are done in the high- or low-velocity regime. A
test observable is provided by the amplitude of the fluctuations
of h(t,y), denoted � in Ref. [66], and defined in the large-time
regime from the scaling

h(t,y)
(d)= v∞t + (�t)

1
3 χ2(y/(�1/6λ1/2t2/3)), (103)

where χ2 is the Airy2 process and its argument is rescaled with
respect to the asymptotic roughness ∼ t2/3. In our notations,
one has

� = D̃2

c
. (104)

This is read for instance from the factor a
1
2 D̃

1
2 which rescales

the disorder free energy in (76) with the choice a = (D̃/c2)
1
3 t

2
3

of (80). Equivalently, one has (�t)
1
3 = Ẽ where Ẽ is the

factor in (80) which rescales the free energy in (81). From
our intuition based on scaling arguments, the relation (104)
should thus remain valid on the whole temperature range. The

high-T and low-T results D̃
(T �Tc)= cD

T
and D̃

(T �Tc)= cD
Tc

thus
imply for �

λ � λc : �low λ = D2λ

ν2
,

(105)

λ � λc : �high λ = D
4
3

λ
1
3 ξ

2
3

.

with λc =
(

ν3

ξD

) 1
2

The crossover between those two regimes occurs at a charac-
teristic λc which is similar to the inverse of the characteristic
temperature T m

c = √
ξD in the conventions of mathematicians

(see Appendix G), as expected since T ∝ 1
λ

and c = 1
λ

.
Strikingly, the crossover occurs between a low-λ regime (our
high T ) where � is an increasing function of λ and a high-λ
regime (our low T ) where � is a decreasing function of λ.
Note that the limit λ → 0 in (102) is exactly the linearized
KPZ problem whose evolution has been solved at all times
in (42) and (43) and should thus be described exactly the
microscopic disorder correlator Rξ (y) at asymptotically large
times [Eq. (41)].

In Ref. [66], the authors have measured � as a function of
the voltage U and found a decreasing dependence, attributing
it to a dependence in U of the parameters D or ν in the
expression �lowλ = D2λ

ν2 (tackled with ξ = 0 in our language,
when ξ � 0 can be neglected). In that spirit, (105) was first
announced at the very conclusion of Ref. [41] but with respect
to the parameter ν and with the two regimes being separated
by the characteristic value νc = (ξλ2D)1/3. We propose here
another scenario where D and ν are independent of U , and

� follows its high-λ expression �high λ = D
4
3

λ
1
3 ξ

2
3

. If confirmed

(e.g., by an independent measure of the parameter ν), this
would provide a clear evidence that the system lies deep
in the high-λ regime, and would interestingly constitute an
example of a phenomenon depicted by the “low-temperature”
KPZ regime.

VIII. CONCLUSION

In this paper, we have studied analytically the consequences
of a finite disorder correlation length ξ on the static properties
of a 1D interface depending on the length scale (or equivalently
a growing 1 + 1 directed polymer at a fixed time) in a random-
bond quenched disorder accounting for a weak collective
pinning. The two-point correlator R̄(t,y) of the derivative of
the disorder free energy [the random phase ηV (t,y)] at fixed
time t emerged as a central quantity in the determination of
the dependence on the temperature T and the other parameters
of the model (the disorder correlation length ξ , the elastic
constant c, and the disorder strength D), as summarized in
Sec. V.

The characteristic temperature Tc = (ξcD)1/3 separates
two temperature regimes in the time evolution of R̄(t,y),
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which is characterized by its amplitude D̃t and the shape of
its central peak R(y), from the point of view of our DP toy
model which focuses on the small transverse displacements
|y| (which are the most probable to be visited by the polymer
and thus the more relevant ones). Although a priori the full
shape of the correlator R̄(t,y) should matter, we showed
that the asymptotic height of its central peak, parametrized
by D̃∞(T ,ξ )/ξ̃ with ξ̃ ≈ ξ , captures the main features of
the crossover between low T and high T in the large-time
random-manifold regime; the amplitude of the geometrical
fluctuations in this asymptotic regime are actually not affected
by ξ at high T , whereas on the contrary at low T it plays a
crucial role and keeps this amplitude bounded. We showed
that the ratio f (T ,ξ ) between the actual value of D̃∞(T ,ξ )
at finite ξ and its value cD

T
at ξ = 0 is directly related to

a replica-symmetry-breaking cutoff parameter uc appearing
in the GVM replica approach, endowing this cutoff with an
unsuspected physical meaning (see Sec. III C). Moreover, D̃t

evolves at finite t according to two time regimes, an initial
regime and a saturation regime separated by a single time
scale tsat which allows us to understand how, depending on
the temperature, the geometrical fluctuations depicted by the
roughness B(t) display in turn two (at high T ) or three (at low
T ) time regimes. Finally, we believe that the function R(y)
for times above tsat is closely connected to the microscopic
disorder correlator Rξ (y), but such a connection still needs to
be characterized with some additional kernel to be determined
analytically, beyond the linearized case R̄lin(t,y) that we have
solved exactly.

The picture we have derived in this paper is in full
agreement with extensive numerical results on the ξ > 0
KPZ equation that will be presented in a companion paper
(Ref. [47]). In agreement with an effective equation that
we put forward for D̃∞(T ,ξ ), it appears that this quantity
presents a crossover from low to high T , and not a phase
transition that would be characterized by a nonanalytic depen-
dence of D̃∞ in T . We can not strictly exclude nonetheless the
scenario of a phase transition because of inherent numerical
imperfections in the simulations and because the analytical
equation on D̃∞(T ,ξ ) is either effective (97) or obtained in
the GVM approximation (49) and (73). A rigorous procedure
is needed to elucidate this alternative. Possible approaches
encompass from an extension to the ξ > 0 case of recent
results [18,38–40] in the ξ = 0 KPZ class, to an adaptation of
FRG arguments [31–33], to the study of the correlator R̄(t,y).

More broadly, it would be interesting to identify possible
connections between the time equation of evolution (34) of
the correlator R̄(t,y), and the FRG flow equation of evolution
with respect to scale 
 of the renormalized disorder correlator
in a FRG approach. Although the FRG framework holds
perturbatively in ε = 4 − d (hence ε = 3 in our settings), the
two varieties of flow equations bear striking resemblance. In
particular, the high-temperature regime has been studied in
Ref. [31] by neglecting the nonlinear contributions to the FRG
flow, allowing us to recover the same scalings as ours for
T � Tc. On the other hand, neglecting the nonlinearity of the
flow in our settings (Appendix E) indeed yields the correct
high-temperature scaling D̃∞ = cD

T
but does not provide for

instance the correct roughness exponent ζRM = 2
3 [when we

consider the scaling of the negative bumps at large y, as in
(43)]. One would thus need a controlled expansion in order to
draw a meaningful unified picture. Another related question
deals with the T = 0 singularity of the FRG renormalized
correlator which appears at a finite scale 
c and plays an
important role in the physical description of metastability in
random manifolds. Our result should help to understand in
which order the limits T → 0 and ξ → 0 are to be taken. Last,
a FRG approach, through the possible existence of a zero- and
a finite-temperature fixed point, may allow us to distinguish
between the crossover and the phase-transition scenario.

The richness of the KPZ universality class also allows us
to translate the occurrence of low- versus high-temperature
regimes into different languages. We have illustrated this
fact in the analysis of a liquid crystal experiment [64–66]
(Sec. VII) where the low-temperature regime corresponds to a
high-velocity regime, yet to be ascertained experimentally. On
the mathematical side, keeping ξ finite amounts to generalize
the Airy2 process in a nontrivial way (see also Ref. [41]). In
the language of replicas [28], it corresponds to solving the
problems of bosons with attractive but non-δ interactions in
one dimension, for which the ξ = 0 Bethe ansatz solution is
not known to generalize. The same search for an extension also
applies to the Airy1 process, which describes a point-to-line
DP problem (with flat initial conditions), which finds an
experimental incarnation for instance in flat interfaces in liquid
crystals.

One may finally wonder how the existence of a low-
temperature regime extends to phenomena which do not fall a
priori into the KPZ universality class. A basic assumption
made at the very start is that the disorder is Dirac δ

correlated along the longitudinal time direction. The disorder
is nevertheless always correlated in both directions in physical
systems; one generalization of our results would be to take this
property into account. Such correlations may also account for
overhangs present in interfaces, once smoothed out by a change
of scale. The generalization is nontrivial in the sense that the
equations of evolution become nonlocal in time. More broadly,
the cases of non-RB disorder and/or higher dimensions, where
a mapping to a directed-path problem is not always possible,
are still open.
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APPENDIX A: REMINDER OF PREVIOUS GVM
ROUGHNESS PREDICTIONS

For completeness, here we recall and adapt the roughness
predictions for the static 1D interface obtained in Ref. [34],
first assuming that the disorder correlator Rξ (x) in (1) was
a normalized Gaussian function of variance 2ξ 2, then using
the replica trick in order to average over disorder, and finally
performing a Gaussian variational method (GVM) with a
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full replica-symmetry-breaking (RSB) variational ansatz as
introduced by Mézard and Parisi in Refs. [36,68], further
investigated also by Goldschmidt and Blum in Ref. [46]. We
emphasize in particular the role of the interpolating parameter
f (T ,ξ ) between the high- and low-temperature regimes.

For the full DES model of the 1D interface, we had obtained
for the variance of the relative displacements B(r) ≡ 〈�u(r)2〉
at the length scale r

B(r) = T r0

c

[
r

r0
+ B̄dis

(
r

r0

)]
, (A1)

B̄dis(r̄) = 1

vc

∞∑
k=2

(−r̄)k

k!

[
1

5k − 6
+ (1 − vc)

]
, (A2)

r0 = 55π

37

1

cD2

(
T

vc

)5

, (A3)

v6
c = Ã1(5/6 − vc) , Ã1 = 55π

2 × 37

(
T

Tc

)6

, (A4)

Tc ≡ (ξcD)1/3, (A5)

where the four DES parameters {c,D,T ,ξ} are, respectively,
the elastic constant c (elastic energy per unit of length along
the interface), the disorder strength D (the typical amplitude
of the random potential), the temperature T , and the disorder
correlation length ξ (or width of the interface). r0 is the Larkin
length introduced in (61) and marking the beginning of the
asymptotic random-manifold regime, vc(T ,ξ ) the full-RSB
cutoff, and Tc the characteristic temperature separating the
low- and high-temperature regimes.

As for our DP “rounded” toy model, assuming that the
effective disorder correlator of ηV (t,y) [Eq. (20)] is of the
form R̄(t,y) = D̃Rξ̃ (y) we have performed a GVM procedure
on the following statistical average obtained from (22) using
replicas to average over disorder:

〈y(t)k〉 = lim
n→0

∫
dy1(. . .)dyny

k
1e−∑n

a=1 Fth(t,ya )/T

× exp

[
−D̃

2

n∑
a,b=1

Rξ̃ (ya − yb)/T 2

]
. (A6)

With the function Rξ̃ (y) the same normalized Gaussian
function of variance 2ξ̃ 2, we have obtained for the variance
of the DP’s endpoint fluctuations BDP(t) ≡ 〈y(t)2〉 after a
growing time t :

BDP(t � tc) = 3

2

(
2D̃2

πc4

)1/3

t4/3 − ξ̃ 2, (A7)

BDP(t � tc) = T t

c
+ D̃

c2
√

π
t2

(
ξ̃ 2 + T t

c

)−1/2

, (A8)

tc = 33π

24

c

D̃2

(
T

uc

)3

, (A9)

u4
c = Ã2(3/4 − uc) , Ã2 = 33π

24

T 4

(ξ̃ D̃)2
, (A10)

where, as before, the four parameters {c,T ,D̃,ξ̃} are, respec-
tively, the elastic constant c, the temperature T , the effective
strength of disorder D̃, the effective interface width ξ̃ , and
uc(T ,ξ ) the full-RSB cutoff.

However, the second GVM computation was performed
at a fixed time t , so the effective parameters D̃t and ξ̃t have
a priori also a time dependence. Assuming that they both
saturate quite quickly, we can safely compare the two sets of
predictions (A1)–(A5) and (A7)–(A10) with the translation
of time t into the length scale r , the approximation ξ̃ ≈ ξ ,
and the identification of tc with r0 for the Larkin length. As
for the full-RSB cutoffs, the definitions f 1D(T ,ξ ) ≡ 6

5vc(T ,ξ )
and f toy(T ,ξ ) ≡ 4

3uc(T ,ξ ) yield then two similar equations
for the interpolating parameter f (T ,ξ ), respectively (73) and
(49), if we impose by hand D̃ = cD

T
f toy(T ,ξ ) in order to match

the Larkin lengths tc and r0. Their numerical discrepancy can
be safely attributed to the GVM approximation. The structure
f 6 ∝ (T/Tc)6(1 − f ) stems in both cases from the comparison
of ξth(T )2 = ( T 3

cD
)2 and ξ 2 = ξth(Tc)2, Eq. (A4) being initially

of the form

ξ 2 + 16π

9
ξth(T )2

(
6

5
vc

)−6(6

5
vc − 1

)
= 0. (A11)

As discussed in Ref. [11], the Larkin length is a physical
benchmark for the roughness, first as the beginning of its
asymptotic random-manifold regime, second with its relation
to the maximum value of the GVM self-energy [σ ](vc) and
thus to the full-RSB cutoff itself vc(T ,ξ ), and third consistent
with its original definition by Larkin [37] as the length scale at
which the typical relative displacement of the 1D interface
corresponds to its effective width B[Lc(T ,ξ )] ≈ ξeff(T ,ξ )2

which fixes the amplitude of the RM roughness B(r > Lc) ≈
A(c,D,T ,ξ )r4/3:

AGVM
(c,D,T ,ξ ) ↔ LGVM

c (T ,ξ ) ↔ [σ ](vc)GVM ↔ vc. (A12)

Using Eqs. (A4), (A3), and (69), we give the GVM predictions
for the quantities

LGVM
c (T ,ξ )

(A1)= 32π

9

(
6

5
vc

)−5

r∗(T ) , r∗(T ) ≡ T 5

cD2
,

(A13)

AGVM
(c,D,T ,ξ ) = [D3/10c−3/5LGVM

c (T ,ξ )−1/10
]4/3

=
[(

D

cT

)1/3( 9

32π

)1/15(6

5
vc

)1/3]2

(A14)

at low versus high temperatures:

vc

(ξ→0)≈ 5

6
, vc

(T →0)≈ 5

6

(
16π

9

)1/6
T

Tc

≈ 1.11
T

Tc

, (A15)

LGVM
c (T ,0) ≈ 32π

9

T 5

cD2
≈ 11.17r∗(T ),

(A16)

LGVM
c (0,ξ ) ≈ 32π

9

(
16π

9

)−5/6
T 5

c

cD2
≈ 2.66r∗(Tc),
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AGVM
(c,D,T ,0) ≈

(
9

32π

)2/15(
D

cT

)2/3

≈ 0.72

(
D

cT

)2/3

,

AGVM
(c,D,0,ξ ) ≈

(
9

32π

)2/15(16π

9

)1/9(
D

cTc

)2/3

≈ 0.88

(
D

cTc

)2/3

. (A17)

APPENDIX B: STATISTICAL TILT SYMMETRY (STS)

We justify in this Appendix the decomposition of the free
energy FV (t,y) defined by (12) into the sum of a disorder-
independent term FV ≡0(t,y) and a translationally invariant
term F̄V (t,y) [Eqs. (13)–(16)] from the complementary view-
points of path integrals and of stochastic differential equations.
This symmetry arises from three ingredients: the precise
form of the elastic energy density c

2 (∂ty)2, the invariance in
distribution of the disorder V (t,y) by translation along y,
and the continuum nature of the transverse direction y. We
refer the reader to Refs. [18,60,69,70] for previous discussions
of the STS.

The weight of trajectories {y(t)} starting in (0,0) and
arriving in (t1,y1) can be compared to the weight of those
arriving in (t1,0) from the change of coordinates:

ȳ(t) ≡ y(t) − y1

t1
t (B1)

with now the initial and final conditions ȳ(0) = ȳ(t1) = 0.
Introducing the tilted disorder

T t1
y1

V (t,y) ≡ V

(
t,y + y1

t1
t

)
(B2)

and performing the change (B1) in the path integral of the
unnormalized weight (3), one obtains

WV (t1,y1) = e−y2
1 /[2Bth(t1)]WT t1

y1 V
(0,t1) (B3)

thanks to the form c
2 (∂ty)2 of the elastic energy density which

allows us to identify a translated path integral over {ȳ(t)} and to
single out the thermal contribution with Bth(t) = T t

c
. The mea-

sure of the path integral remains unchanged [Dy(t) = Dȳ(t)]
since the change of variable (B1) is a translation. Using the
definitions (13), this equality writes for the disorder free energy

F̄V (t1,y1) = F̄T t1
y1 V

(t1,0). (B4)

This means that the whole dependence in the arrival point y1

of the disorder free energy can be absorbed into a tilt T t1
y1

of the
disorder potential. Using that at fixed final time t1 the disorder
is translation invariant in y, i.e., P̄[V ] = P̄[T t1

y1
V ], one obtains

the symmetry P̄[F̄V (t,y + Y )] = P̄[F̄V (t,y)] as announced in
(17). This translation invariance in the y direction is valid
for any functional of F̄V (t,x), and yields in particular for the
k-point correlators

F̄V (t1,y1 + Y ) . . . F̄V (t1,yk + Y ) = F̄V (t1,y1) . . . F̄V (t1,yk).

(B5)

The same result (17) can also be deduced from the strict
point of view of stochastic differential equations. Note first
that the initial condition WV (0,y)

W̄V ≡0(0) = δ(y) translates for F̄V as

F̄V (0,y) ≡ 0 which is trivially translation invariant along the
y direction. Showing the STS (17) thus amounts to checking
that this property is preserved in time through the evolution
equation (26) for F̄V . Consider for this purpose a “Galilean
transformation” of F̄V (t,y), which consists in defining F̄ v

V (t,y)
through

F̄V (t,y) ≡ F̄ v
V (t,y − vt), (B6)

where v represents the “velocity” of the tilt y �→ y + vt . One
sees directly from (26) that the terms in v in the equation
of evolution for F̄ v

V (t,y) compensate between left- and right-
hand sides: F̄ v

V (t,y) verifies the same equation of evolution as
F̄V (t,y), but in a tilted disorder V v(t,y) = V (t,y + vt). Since
the initial condition is also the same, one obtains

F̄ v
V (t1,y1) = F̄V v (t1,y1). (B7)

Choosing v = y1/t1 in (B6) and (B7) yields again (B4).
Another, but less general, incarnation of the STS arises

when considering the geometrical fluctuations instead of the
free energy. Defining the generating function of the moments
of y(t1),

Wλ
V (t1) =

∫
y(0)=0

Dy(t) e− 1
T
H[y,V ;t1]+λy(t1), (B8)

where the final-time condition is free [or equivalently, y(t1)
is integrated over], the disorder average of the variance of the
endpoint y(t1) is given by

〈y(t1)2〉c ≡ 〈y(t1)2〉 − 〈y(t1)〉2 = ∂2
λ

∣∣
λ=0ln Wλ

V (t1). (B9)

We note that performing an appropriate tilt encoding the
thermal roughness, namely, y(t) = ȳ(t) + λBth(t), one obtains
for the generic function

Wλ
V (t1) = eBth(t1)λ2/2 Wλ=0

Ṽ
(t1), (B10)

where Ṽ (t,y) ≡ V (t,y + λT
c

t) is a tilted disorder. Taking the
logarithm and averaging over disorder, one obtains for (B9)

〈y(t1)2〉c = T t1

c
= Bth(t1) (B11)

and 〈y(t1)k〉c = ∂k
λ |λ=0ln Wλ

V (t1) = 0 for k > 2. It would be
tempting to conclude from these averaged cumulants that
the average of the whole distribution PV (t1,y1) is a normal
law N [0,Bth(t1)]; this is only true in the trivial case without
disorder where PV ≡0(t,y) = Pth(t,y) = N [0,Bth(t1)]. Indeed,
the normalization at fixed disorder W̄V (t1) of definition (5)
prevents a direct disorder average on (B3). As for the roughness
B(t), the property (B11) can be reformulated in an intrinsic
way comparing the cumulants with respect to the thermal,
disorder, and the joint disorder-thermal distributions:

B(t) ≡ 〈y(t)2〉 = 〈y(t)2〉c + 〈y(t)〉2
c
, (B12)

Bdis(t) ≡ B(t) − Bth(t) = 〈y(t)〉2
c
. (B13)

Physically, this decomposition allows us to focus on the
pure disorder contribution of the roughness Bdis(t), which is
equivalent to the full roughness at large times. Such a simple
relation is possible for the second cumulant thanks to the
following generic identity valid in presence of two probability
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laws p1 and p2 (respectively thermal and disorder distribution
in our case):

Varp2◦ p1 = Ep2 ◦ Varp1 + Varp2 ◦Ep1 . (B14)

APPENDIX C: DERIVATION OF THE FEYNMAN-KAC
TIME-EVOLUTION EQUATIONS

We rederive in this Appendix the time-evolution equation
(23) of the weight ZV (t,y) = WV (t,y)

W̄V ≡0(t) , defined with respect to
the pseudo-free energy FV (t,y) in (12). Given in Ref. [29], this
evolution equation is the starting point of the Feynman-Kac
equations of Sec. II D which define univocally the pseudo-
free-energy quantities FV (t,y), F̄V (t,y) and its random phase
ηV (t,y) with their ad hoc initial conditions. However, the
normalization of the weight ZV (t,y) is not conserved in
presence of disorder, so it requires a careful treatment in order
to yield its continuous formulation (23).

Using infinitesimal “propagators” in a path-integral formu-
lation of the weight ZV [50], we derive thereafter the evolution
equation first using its propagation equation in continuous
time and second constructing explicitly the weight with the
propagators in discretized time. We rederive this result for
completeness to pinpoint the required hypotheses and the
possible issues in a generalization regarding the form of the
elasticity.

1. Propagation equation in continuous time

We first define the following propagator (with β ≡ 1
T

):

ZV (t1,y1|t0,y0) =
∫ y(t1)=y1

y(t0)=y0

D̃y(t) e−βH[y,V ;t0,t1], (C1)

H[y,V ; t0,t1] =
∫ t1

t0

dt

[
c

2
(∂ty)2 + V [t,y(t)]

]
, (C2)

which represents the weight of trajectories starting in y0 at
time t0 and ending in y1 at time t1 > t0. Note that by definition
ZV (t,y) = ZV (t,y|0,0). Paths y(t) are weighted by a measure
D̃y(t) ensuring that for purely thermal paths, the weight is
normalized. Explicitly, with the normalization W̄V (t) defined
by (4), the measure

D̃y(t) = Dy(t)

W̄V ≡0(t1 − t0)
(C3)

in (C1) ensures that∫
dy1 ZV ≡0(t1,y1|t0,y0) = 1, (C4)

a property which is not true anymore for any V . Here,
∫

dy

denotes
∫ +∞
−∞ dy as in the rest of this Appendix. The advantage

of using this choice of normalization is that ZV (t,y) obeys the
so-called stochastic heat equation (23), which can be shown
using the Feynman-Kac formula.

From its definition, we see that the propagator (C1) presents
several useful properties. For t1 → t0, it goes to a Dirac delta

lim
t1→t0

ZV (t1,y1|t0,y0) = δ(y1 − y0) (C5)

since the trajectory endpoint y1 remains very close to its
departure point at small times; to be more precise, we read

from (C1) the expression of the infinitesimal propagator δZV ,
valid for t1 close to t0:

δZV (t1,y1|t0,y0)
(t1≈t0)= 1√

2π

√
βc

t1 − t0

× e
− βc

2
(y1−y0)2

t1−t0
−β(t1−t0)V (t1,y1)

. (C6)

The prefactor ensures the normalization condition (C4) and
also yields (C5) in the limit t1 → t0. It is rather important not
to overlook this prefactor since it ensures that the infinitesimal
propagator (C6) evolves in time according to the forward and
backward equations (already close to the final one on ZV )

∂t1δZV = +
[

1

2βc
∂2
y1

− βV (t1,y0)

]
δZV , (C7)

∂t0δZV = −
[

1

2βc
∂2
y0

− βV (t1,y1)

]
δZV . (C8)

Last, the noninfinitesimal time evolution is described by the
propagation equation

ZV (t1,y1|t0,y0) =
∫

dy ZV (t1,y1|t,y)ZV (t,y|t0,y0), (C9)

which expresses that the path integral (C1) can be cut at any
time t0 < t < t1 provided the intermediate values y of the path
at time t are integrated upon. Using (C5), the limit t → t1 of
the equation of propagation (C9) yields a trivial identity. To
go further, we can differentiate (C9) with respect to time t

and then use that for t close to t1 the infinitesimal propagator
verifies the backwards evolution (C8) in order to write∫

dy

[
1

2βc
∂2
y − βV (t1,y1)

]
δZV (t1,y1|t,y) ZV (t,y|t0,y0)

=
∫

dy δZV (t1,y1|t,y)∂tZV (t,y|t0,y0). (C10)

Integrating by parts and taking the limit t → t1 thanks to (C5)
finally yields the expected stochastic heat equation

∂tZV (t,y|t0,y0) =
[

1

2βc
∂2
y − βV (t,y)

]
ZV (t,y|t0,y0).

(C11)

Note that a propagator obeying such an equation of
evolution can not keep its normalization constant since in
general

∂t

∫
dy ZV (t,y|t0,y0) = −β

∫
dy V (t,y)ZV (t,y|t0,y0)

(C12)

is nonzero. We also remark that considering an elastic energy
including higher powers of ∂ty than (∂ty)2 in (C2) would be
problematic for finding the equation of evolution: the infinites-
imal propagator (C6) would contain terms of the form (y1−y0)p

(t1−t0)p−1 ,
making it not obvious to determine the equivalent of (C7) and
(C8) and deriving the evolution corresponding to (C11).

2. Explicit propagator in discretized time

A second approach to explicit the normalization properties
of the path integral is to work in discretized time. A path is
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going from yi to yf between time ti and tf in N time steps
δt ≡ tf−ti

N
, so at times tk = ti + k tf−ti

N
. We define the weight (or

probability density) of a free path as

P[y0 . . . yN ]

=
[

βc

2πδt

] N
2

exp

⎡⎣−β
∑

0�k<N

δt
c

2

(
yk+1 − yk

δt

)2
⎤⎦

=
∏

0�k<N

g(δt,yk+1 − yk), (C13)

where we have denoted the microscopic propagator by

g(t,y) =
√

βc

2πt
e−βc

y2

2t . (C14)

One defines the discrete equivalent in Itō’s discretization to
the continuous propagator (C1) as

ZN
V (tf,yf|ti,yi) =

∫
dy0 . . . dyN P[y0 . . . yN ]

× δ(y0 − yi)δ(yN − yf )

× exp

⎡⎣−β
∑

0�k<N

δt V (tk,yk)

⎤⎦ (C15)

with the expectation that this result does not depend on N in
the large-N limit. The following decomposition makes the link
with the continuum formulations (C1)–(C3):

dy0 . . . dyN P[y0 . . . yN ] exp

⎡⎣−β
∑

0�k<N

δt
c

2

(
yk+1 − yk

δt

)2
⎤⎦

= dy0 . . . dyN[
βc

2πδt

]− N
2︸ ︷︷ ︸

≡ D̃y(t)

× exp

⎧⎨⎩−βδt
∑

0�k<N

[
c

2

(
yk+1 − yk

δt

)2

+ V (tk,yk)

]⎫⎬⎭︸ ︷︷ ︸
≡ e−βH[y,V ;t0,t1]

.

(C16)

At V ≡ 0 the normalization corresponding to (C4) still holds:
the writing (C13) is a product of normalized probability
densities. The propagation equation (C9) is readily verified:
for all intermediate times t = t
, one has∫

dy ZN
V (tf,yf ; t,y)ZN

V (t,y; ti,yi)

=
∫

dy

∫
dy0 . . . dy
dy ′


 . . . dyN δ(y0 − yi)δ(y
 − y)

× δ(y ′

 − y)δ(yN − yf )P [y0 . . . yN ]

× exp

⎡⎣−β
∑

0�k<N

δt V (tk,yk)

⎤⎦
=
∫

dy0 . . . dy
 . . . dyN δ(y0 − yi)δ(yN − yf )

×P [y0 . . . yN ] exp

⎡⎣−β
∑

0�k<N

δt V (tk,yk)

⎤⎦
= ZN

V (tf,yf|ti,yi). (C17)

The derivation of the stochastic heat equation can then be
made explicit: fixing now yi and ti [and skipping them in the all
following weights ZV (. . . |ti,yi)], one compares two histories
(t0,y0; . . . ; tN ,yN ) and (t0,y0; . . . ; tN ,yN ; tN+1,yN+1):

ZN+1
V (tN+1,yf ) =

∫
dyN+1 . . . dy0δ(y0 − yi)δ(yN+1 − yf )

× g(δt,yN+1 − yN )e−βδtV (tN+1,yN+1)

×P[y0 . . . yN ]e
−βδt
∑

0�k<N

V (tk ,yk )
, (C18)

where we have isolated the contribution of the last time step.
Expanding the exponential e−βδtV (tN+1,yN+1) (which is valid at
minimal order in δt) yields at order δt

ZN+1
V (tN+1,yf ) − ZN

V (tN ,yf )

� −δtβVZN
V (tN ,yf ) +

∫
dyN+1 . . . dy0δ(y0 − yi)

× δ(yN+1 − yf )[g(δt,yf − yN ) − δ(yf − yN )]

×P[y0 . . . yN ]e
−βδt
∑

0�k<N

V (tk ,yk )
, (C19)

where the third line reads as

g(yf − yN,δt) − δ(yf − yN ) = g(δt,yf − yN ) − g(0,yf − yN )

(C20)

≈ δt ∂tg(δt,yf − yN ). (C21)

Using now ∂tg(δt,yf − yN ) = 1
2βc

∂2
yf
g(δt,yf − yN ) and, in the

integral, ∂2
yf

= ∂2
yN+1

and integrating by parts, we get finally

ZN+1
V (tN+1,yf ) − ZN

V (tN ,yf )

δt

≈
[

1

2βc
∂2
yf

− βV (tf,yf )

]
ZN

V (tN ,yf ), (C22)

which corresponds to the continuum equation (C11) in the
limit δt → 0. Note moreover that from (C18) the following
exact recurrence equation for the propagator can be read as

ZN+1
V (tf + δt,yf ) =

∫
dy g(δt,yf − y)e−βδtV (tN ,y)ZN

V (tf,y)

(C23)

and is the continuous analog of the transfer matrix equation
for a directed polymer constrained on a discretized lattice.

Note that similarly to the continuous case, the specific
form of the short-range elasticity implies the Gaussian form
of the microscopic propagator (C14), which thus satisfies
the diffusion equation leading to the discrete stochastic
heat equation (C22). However, a different elasticity will in
general not be Gaussian and consequently radically change its
evolution equation.
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APPENDIX D: TIME-EVOLUTION EQUATIONS OF
AVERAGES USING THE FUNCTIONAL ITŌ FORMULA

Aiming at the derivation the evolution equations for
∂t C̄(t,y) and ∂t R̄(t,y) given in Sec. II E, we first present in
this Appendix the functional Itō formula [71] applied to a
field X(t,y) obeying a generic Langevin equation, then we
particularize it to the case of multipoint correlators, obtaining
finally the flow equations (34) and (35).

The Feynman-Kac evolution equations (25), (26), and (27)
of FV , F̄V , and ηV take the form of a generic Langevin equation
for a field X(t,y):

∂tX(t,y) = G[X(t,y); t,y] + V(t,y), (D1)

where V(t,y) is a centered Gaussian noise with correlations

V(t,y)V(t ′,y ′) = Dδ(t ′ − t)R(y ′ − y). (D2)

For X(t,y) being FV (t,y), F̄V (t,y), and ηV (t,y) one reads
G, respectively, as G[F ] from (F2), Ḡ[F̄ ; t,y] from (F4), and
Gη[η; t,y] from (F6). For F and F̄ , one has R(y) = Rξ (y)
while R(y) = −R′′

ξ (y) for X = η (note that this particular
notation is specific only to this Appendix). In what follows,
one denotes G[X; t,y] for short instead of G[X(t,y); t,y]. Our
aim is to deduce, from the Langevin equation (D1), evolution
equations for the statistical average of functions of {X(t,yi)} at
different points {yi}, such as the two-point correlation function
X(t,y1)X(t,y2).

This is fairly straightforward to obtain the time derivative
of X(t,y) by directly averaging (D1) which yields ∂tX(t,y) =
G[X; t,y] [e.g., (32) and (33)]. The same can not be applied to
X(t,y)2 since, when writing

∂tX(t,y)2 = 2X(t,y)∂tX(t,y) (D3)

= 2X(t,y)G[X; t,y] + 2X(t,y)V(t,y), (D4)

one can not easily eliminateV from the last term. To tackle such
correlation functions, one may use the functional Itō formula
which reads as follows for the Langevin equation (D1) with
continuous argument y and non-Dirac delta correlated random
potential V:

∂tg[X] =
∫

dy G[X; t,y]
δg[X]

δX(y)

+ D

2

∫
dy dy ′ R(y ′ − y)

δ2g[X]

δX(y)δX(y ′)
, (D5)

where g[X] is a functional of X. For g[X] = O[X(y1)], where
y1 is fixed (e.g., an observable depending on the sole DP
endpoint), one thus finds

∂tO[X(t,y1)] = G[X; t,y1]∂XO[X(t,y1)]

+ D

2
R(0) ∂2

XO[X(t,y1)]. (D6)

For O(X) = X2, one finds

∂tX(t,y1)2 = 2G[X; t,y1]X(t,y1) + DR(0), (D7)

which is the correct form of (D4). Note that the result is
singular for ξ → 0 in our cases of interest R = Rξ and
R = −R′′

ξ .
Another example is provided by the computation of the

time evolution of the average of multiple-point correlators, for

which (D5) yields

∂tX(t,y1)X(t,y2) = G[X; t,y1]X(t,y2)

+G[X; t,y2]X(t,y1) + DR(y2 − y1),

(D8)

which yields back (D7) for y1 = y2. More generally, one has,
noting ∂1O (respectively ∂2O) the derivative of O with respect
to its first (respectively second) argument:

∂tO[X(t,y1),X(t,y2)]

= G[X; t,y1]∂1O(. . .) + G[X; t,y2]∂2O(. . .)

+ D

2
[R(0)∂11 + 2R(y2 − y1)∂12 + R(0)∂22]O(. . .).

(D9)

We now derive the evolution equation for the correlator
R̄(t,y) of ηV (t,y). We first explicit some useful parity symme-
try. The equation for ηV (t,y) is the same as for −ηV R (t, − y)
with a reflected disorder V R(t,y) = V (t, − y). This proves
that

ηV (t,y) = −ηV R (t, − y) (D10)

at all times. Since the distributions of V and V R are the same,
one can replace in averages every η(t,−y) by −η(t,y) without
changing the result (so from now on we skip the index V ). In
other words, η(t,y) is an odd function of y in distribution. We
now define a three-point correlation function

R̄3(t,y) = η(t,y)2η(t,0). (D11)

To simplify the notations, and since one only considers one-
time observables at time t , we now drop the dependence in t

and denote the derivation with respect to y by a prime. Using
the noted parity [which also extends to the derivatives; e.g.,
η′(y) is an even function of y in distribution1] together with
the statistical invariance by translation, one finds for instance,
by translating all arguments by −y,

R̄′′(y) = η′′(y)η(0)
(tr.)= η′′(0)η(−y)

(par.)= η′′(0)η(y), (D12)

1
2 R̄′

3(y) = η′(y)η(y)η(0)
(tr.)= η′(0)η(0)η(−y)

(par.)= η′(0)η(0)η(y). (D13)

We are now ready to determine the time evolution of R̄(t,y)
combining (D8) and (F6):

∂t R̄(t,y) = ∂tη(0)η(y)

(D8)= T

2c
[η′′(0)η(y) + η′′(y)η(0)]

− 1

c
[η′(0)η(0)η(y) + η′(y)η(y)η(0)]

− 1

t
[2η(0)η(y) + y η′(y)η(0)] − DR′′

ξ (y).

(D14)

1This means that one can replace in averages every η(−y) by −η(y),
simultaneously with every η′(−y) by η′(y), . . . every η(k)(−y) by
(−1)k+1η(k)(y), . . . without changing the result.
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We eventually recognize thanks to (D12) and (D13) that

∂t R̄(t,y) = T

c
∂2
y R̄(t,y) − 1

c
∂yR̄3(t,y)

− 1

t
{R̄(t,y) + ∂y[y R̄(t,y)]} − DR′′

ξ (y). (D15)

This equation is valid at all times and would in principle allow
the studying of the flow of R̄(t,y) starting from its initial
condition R̄(0,y) ≡ 0. Due to the nonlinear KPZ term, it
is however nonclosed on the two-point correlation function
R̄(t,y) and brings into the game a three-point correlation
function R̄3(t,y), making it necessary to solve the full
hierarchy of equations for the n-point functions to determine
R̄(t,y). Yet, using a scaling ansatz in y = 0, Eq. (D15) still
enables us to determine the time evolution of the height of the
R̄(t,y) in y = 0 (see Sec. VI).

Similarly, defining the three-point correlation function
for F̄ ,

C̄3(t,y) ≡ −2[F̄ (t,y) − F̄ (t,0)][∂yF̄ (t,0)]2, (D16)

one obtains the flow of C̄(t,y) using (F4) in (D9) with
O(X1,X2) = (X1 − X2)2, X1 = F̄ (t,y), and X2 = F̄ (t,0):

∂t C̄(t,y) = T

c
∂2
y [C̄(t,y) − C̄(t,0)] − y

t
∂yC̄(t,y)

− 1

c
C̄3(t,y) − 2D[Rξ (y) − Rξ (0)]. (D17)

APPENDIX E: SOLUTION OF THE LINEARIZED
DYNAMICS OF F̄ FOR A GENERIC DISORDER

CORRELATOR Rξ ( y)

In this Appendix, we determine the explicit form of the
correlator C̄(t,y) [resp. R̄(t,y)] of the disorder free energy F̄

(resp. of the random phase η̄) in the approximation where the
time-evolution equation of those quantities is linearized. The
crossover from finite to infinite time regime is discussed.

The evolution equations (35) for C̄(t,y) and (34) for
R̄(t,y) are not closed because of the three-point correlation
functions C̄3(t,y) and R̄3(t,y). It is yet instructive to solve
those equations in the approximation where those three-point
functions are set to zero. An equivalent alternative approach
is to solve directly the equation (26) for F̄ or (27) for η

by neglecting again the nonlinear terms in those equations
[see also Appendix C of Ref. [41], for the explicit case
of Gaussian function for the microscopic disorder correlator
Rξ (y)]. We denote by C̄ lin(t,y) and R̄lin(t,y) = 1

2∂2
y C̄ lin(t,y)

their solutions, which are expected to be valid either at small
times for all y (because the initial condition ensures those
functions vanish uniformly at time 0) or at all times but small
y in the high-temperature regime (see Sec. VI for a discussion).

The equations at hand are linear and are thus solved, e.g.,
using Green’s functions, and the solution takes the form

C̄ lin(t,y) = D

∫
dw Kt (y,w)Rξ (w), (E1)

ȳ

w̄

K̂(ȳ, w̄)

FIG. 5. (Color online) Kernel K̂(ȳ,w̄) defined in (E5) linking the
linearized free-energy correlator C̄ lin(t,y) and the disorder correlator
Rξ (y) with the combination of (E3) and (E4).

where the kernel reads as Kt (y,w) = ∫ t

0 ds Ks(y,w; t) with

Ks(y,w; t) = βct

2
√

π

1√
βcst(t − s)

×
[

2e
− βct

4
w2

s(t−s) − e
− βc

4
(tw−sy)2

ts(t−s) − e
− βc

4
(tw+sy)2

ts(t−s)

]
.

(E2)

The scaling analysis of this expression may be obtained by
setting s = tτ . To this end, we assume the natural rescaling
Rξ (aȳ) = a−1Rξ/a(ȳ) of the disorder correlator. One obtains
that the free-energy correlator rescales purely diffusively as

C̄ lin(t,y) = cD

T

√
Bth(t) Ĉ ξ√

Bth(t)

(
y√

Bth(t)

)
(E3)

with as usual Bth(t) = T t
c

and with the scaling function

Ĉξ̄ (ȳ) =
∫

dw̄ K̂(ȳ,w̄)Rξ̄ (w̄), (E4)

K̂(ȳ,w̄) =
∫ 1

0

dτ

2
√

π

1√
τ (1 − τ )

×
[

2e
− w̄2

4τ (1−τ ) − e
− (w̄−τ ȳ)2

4τ (1−τ ) − e
− (w̄+τ ȳ)2

4τ (1−τ )

]
. (E5)

Under this scaling, the whole {c,D,T } dependence is
absorbed in the prefactor cD

T
. The scaling kernel K̂(ȳ,w̄),

illustrated on Fig. 5 is continuous but nonanalytical on the
lines |ȳ| = |w̄|, as can be seen from the direct computation of
(E5), which, using the symmetry by even parity is expressed
for ȳ � 0 as

Ĉξ̄ (ȳ)
(ȳ�0)=
∫ ȳ

0
dw̄ K̂<(ȳ,w̄)Rξ̄ (w̄)

+
∫ ∞

ȳ

dw̄ K̂>(ȳ,w̄)Rξ̄ (w̄),

K̂<(ȳ,w̄)

2
√

π
= 1 − Erf w̄ − e

ȳ2

4

2

(
2 − Erf

ȳ

2
− Erf

ȳ + 2w̄

2

)
,

K̂>(ȳ,w̄)

2
√

π
= 1 − Erf w̄ − e

ȳ2

4

2

×
(

2 + Erf
ȳ − 2w̄

2
− Erf

ȳ + 2w̄

2

)
. (E6)
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Those expressions describe through (E3) the complete tran-
sition from the initial regime where the correlator is close to
zero to the infinite-time asymptotic regime, where one should
recover limt→∞ R̄lin(t,y) = cD

T
Rξ (y) (see Appendix F 3).

As we now detail, this infinite-time limit is, however, not
obvious to extract from (E6) and is in fact directly related to
the nonanalyticity of K̂(ȳ,w̄). Carefully integrating by part
and differentiating with respect to ȳ leads to the following
expression, valid provided that Rξ (y) is bounded at infinity:

1

2
Ĉ ′(ȳ)

(ȳ�0)= R
(−1)
ξ̄

(ȳ) +
∫ ∞

0
dw̄ w̄e−w̄(w̄+ȳ)R

(−1)
ξ̄

(w̄)

−
∫ ∞

ȳ

dw̄ w̄e−w̄(w̄−ȳ)R
(−1)
ξ̄

(w̄). (E7)

Here, R
(−1)
ξ̄

(ȳ) is the primitive of Rξ̄ (ȳ) which vanishes

in 0. It verifies the scaling relation R
(−1)
ξ (aȳ) = R

(−1)
ξ/a (ȳ)

and its small ξ̄ limit is half of the Heaviside step function
limξ̄→0 R

(−1)
ξ̄

(ȳ) = 1
2�(ȳ), provided now that Rξ̄ (ȳ) describes

a RB disorder.
Its occurrence as the first term of (E7) arises from the jump

of the slope of K̂(ȳ,w̄) in ȳ = w̄, depicted in Fig. 5. Using
those properties, one obtains

lim
t→∞

1

2
Ĉ ′

ξ√
Bth(t)

(
y√

Bth(t)

)

= R
(−1)
ξ (y) + lim

t→∞

{ −→ 1
2

∫∞
0 dw̄ w̄e−w̄2

�(w̄)︷ ︸︸ ︷∫ ∞

0
dw̄ w̄e−w̄(w̄+yt )R

(−1)
ξ t (w̄)

−
∫ ∞

yt

dw̄ w̄e−w̄(w̄−yt )R
(−1)
ξ t (w̄)︸ ︷︷ ︸

−→ 1
2

∫∞
0 dw̄ w̄e−w̄2

�(w̄)

}
= R

(−1)
ξ (y), (E8)

where we have denoted for short yt = y/
√

Bth(t) and
ξ t = ξ/

√
Bth(t). Differentiating with respect to y, one obtains

the expected result limt→∞ R̄lin(t,y) = cD
T

Rξ (y), while keep-
ing t finite yields the decomposition (42) and (43) of R̄(t,y)
announced in Sec. III A.

The short- to large-time behavior of the correlators is
illustrated in Fig. 6 for a Gaussian disorder correlator
Rξ (y) = e−y2/(4ξ 2)/

√
4πξ 2 as considered for the GVM com-

putation in Ref. [34] whose predictions are recalled in
Appendix A.

APPENDIX F: FOKKER-PLANCK EQUATIONS
FOR THE PSEUDO-FREE ENERGY

Starting from the path-integral formulation of the pseudo-
free energy, the average over thermal fluctuations yields the
so-called Feynman-Kac equations for ∂tWV (t,y), ∂t F̄η(t,y),
∂tηV (t,y). In this appendix, we reexamine the possible steady-
state solutions of the Fokker-Planck equations, obtained after
the disorder average over the random potential, and try to
generalize them from the uncorrelated disorder (ξ = 0) to the
case of a random-bond correlated disorder (ξ > 0 and short-
range correlator).

yy

y

R̄lin(t, y)C̄ lin(t, y)
1
2
∂yC̄ lin(t, y)

FIG. 6. (Color online) The finite-time correlator R̄lin(t,y)
(thin purple lines) for a Gaussian disorder correlator
Rξ (y) = e−y2/(4ξ2)/

√
4πξ 2, plotted as a function of y for different

times, compared to its infinite-time limit Rξ (y) (thick red
line), with ξ = 1, c = 1, D = 1, and T = 1. The central peak
develops with increasing times from the flat initial condition
R̄(0,y) ≡ 0. Larger times correspond to lighter colors. Left
inset: same behavior for C̄ lin(t,y). Right inset: same behavior for
1
2 ∂yC̄

lin(t,y) = ∫ y

0 dy ′R̄lin(t,y ′).

1. FP equations for FV , F̄V , and ηV

The pseudo-free energy FV (t,y) follows the KPZ equation
(25):

∂tFV (t,y) = G[FV (t,y)] + V (t,y), (F1)

G[F ] ≡ T

2c
∂2
yF (y) − 1

2c
[∂yF (y)]2 (F2)

and similarly the disorder free energy F̄V (t,y) follows the tilted
KPZ equation (26) depending explicitly on (t,y):

∂t F̄V (t,y) = Ḡ[F̄V (t,y); t,y] + V (t,y), (F3)

Ḡ[F̄ ; t,y] ≡ G[F̄ ] − y

t
∂yF̄ (y) (F4)

as its corresponding random phase ηV (t,y) = ∂yF̄V (t,y):

∂tηV (t,y) = Gη[η̄V (t,y); t,y] + ∂yV (t,y), (F5)

Gη[η; t,y] ≡ T

2c
∂2
yη(y) − ∂y[η(y)2]

2c
− ∂y

[
y

t
η(y)

]
. (F6)

Combining the Feynman-Kac equations (25)–(27) and the
random-potential disorder correlator

V (t,y)V (t ′,y ′) = Dδ(t − t ′)Rξ (y − y ′), (F7)

the time evolution of the free-energy distribution P̄[F,t] is
then given by the functional FP equation (obtained, e.g., from
Itō’s lemma)

∂t P̄[F,t] =
∫

dy
δ

δF (y)
{−G[F ]P̄[F,t]}

+ D

2

∫
dy dy ′Rξ (y − y ′)

δ2P̄[F,t]

δF (y)δF (y ′)
(F8)

with those two terms stemming, respectively, from the deter-
ministic operator G and the remaining stochastic term in the
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Feynman-Kac equation. The distribution P̄[F̄V ,t] follows the
same functional FP equation, with the tilt of the determin-
istic operator G[F ] �→ Ḡ[F̄ ; t,y], whereas the random-phase
counterpart satisfies

∂t P̄[η,t] =
∫

dy
δ

δη(y)
{−Gη[η; t,y]P̄[η,t]}

− D

2

∫
dy dy ′R′′

ξ (y − y ′)
δ2P̄[η,t]

δη(y)δη(y ′)
. (F9)

The detailed notations FV (t,y), F̄V (t,y), and ηV (t,y) have
been simplified to the random functions F (y), F̄ (y), and η(y)
of respective distributions P̄[F,t], P̄[F̄ ,t], and P̄[η,t] at a
fixed time t , although their random nature is initially stemming
from the microscopic random potential V .

2. Steady-state solution at ξ = 0

For an uncorrelated disorder, the disorder correlator reduces
to a normalized Dirac δ function Rξ=0(y) = δ(y) and the
Gaussian distribution

P̄st[F ] ∝ exp

{
− λ

2

∫
dy[∂yF (y)]2

}
(F10)

is a steady-state solution of (F8), i.e., ∂t P̄st[F ] = 0, provided
that λ−1 = cD

T
(see Ref. [29]). This condition comes solely

from the counterbalance of the diffusive term T
2c

∂2
yF (y) and

the stochastic term D
2

δP̄[F ]
δF (y) . As for the contribution of the

nonlinear KPZ term − 1
2c

[∂yF (y)]2, it disappears [13] under
the boundary condition F ′(y)|y±∞ = 0.

There is no time dependence in the FP equation (F1), but the
Gaussian PDF (F10) is a steady-state solution only at t = ∞
for our physical definition of the pseudo-free energy (12) which
satisfies

∂yFV (t,y) = ∂yFth(t,y) + ∂yF̄V (t,y) = c
y

t
+ ηV (t,y)

(F11)

and it then becomes equivalent to the two normalized Gaussian
PDFs

P̄0
G[F̄ ] = 1

C1(λ)
exp

{
− λ

2

∫
dy[∂yF̄ (y)]2

}
, (F12)

P̄0
G[η] = 1

C2(λ)
exp

{
− λ

2

∫
dy[η(y)]2

}
(F13)

with C2(λ) defined by
∫
Dη(y)P̄0

G[η] = 1 and similarly
for C1(λ). Choosing λ−1 = cD

T
and the boundary condition

F̄ ′(y)|y±∞ = η(y)|y±∞ = 0, the FP equation eventually yields
for the Gaussian distributions

∂t P̄0
G[F̄ ] = 1

t
P̄0

G[F̄ ] ln
{
C1(λ)P̄0

G[F̄ ]
}
,

∂t P̄0
G[η] = 1

t
P̄0

G[η]

{∫
dy δ(0) + ln

{
C1(λ)P̄0

G[η]
}}

,

(F14)

the equivalent equation for ∂t P̄0
G[η] being apparently ill defined

in the functional derivative framework, due to an additive
divergent constant δ(0). So, the Gaussian distributions (F12)

and (F13) (with ξ = 0) become a steady-state solution only at
infinite time in order to cancel the whole contribution (F14)
since the value of λ has been fixed as a time-independent
constant.

Actually the chosen boundary condition is the only one
physically possible at all times:

∂yF̄V (t,y)|y±∞ = ηV (t,y)|y±∞ = 0 (F15)

since by construction P̄0
G[F̄ ] and P̄0

G[η] penalize the functions
F̄ (y) and η(y) whose fluctuations extend too much in the y

direction. The boundary condition at y = ±∞ is thus free
from that point of view but should also be compatible with
ηV (t,y) = 0 [Eq. (32)].

3. Steady-state solution of the linearized FP equation at ξ > 0

The Gaussian PDFs (F12) and (F13) can be generalized
with the introduction of the correlator R̄−1(t,y) whose func-
tional inverse is defined by (20):

P̄G[F̄ ,t] ∝ e− 1
2

∫
dy dy ′F̄ ′(y)R̄−1(t,|y−y ′ |)F̄ ′(y ′), (F16)

P̄G[η,t] ∝ e− 1
2

∫
dy dy ′η(y)R̄−1(t,|y−y ′ |)η(y ′) (F17)

with the proper time-dependent normalization of PDF such
that
∫
DF̄ (y)P̄G[F̄ ,t] = ∫ Dη(y)P̄G[η,t] = 1.

These expressions actually describe correctly the distribu-
tions corresponding to the linearized problem, namely, to the
equations (F1)–(F6) where the KPZ quadratic contributions to
the functionals G are set to 0. Indeed, the solution in the fields
FV , F̄V , and ηV of those equations is linear in the disorder
potential V (t,y), whose distribution is Gaussian, implying that
the distributions of the fields are themselves Gaussian. We refer
the reader to Appendix E for motivations to study the linearized
problem and for a solution leading to the two-point correlator
R̄lin(t,y) given in (42) and (43), and actually providing the full
time-dependent distributions through (F16) and (F17) with
R̄ = R̄lin.

At ξ = 0, the solution of the full problems (F1)–(F6) is
not Gaussian at finite time, as known from the exact solutions
[18,38–40] but becomes Gaussian at infinite time, as detailed in
the previous section. At ξ > 0, this last property does, however,
not hold anymore. Indeed, anticipating slightly on Sec. VI, if
the steady distribution of η were Gaussian, then the three-point
function R̄3(t,0) would be zero by parity in the field η, and
from (87) the infinite-time limit of the height R̄(t,0) of the
correlator would be the same in the linearized and the original
problems, which is not true.

Another way to illustrate this fact is to try to solve the FP
equation (F8) inserting the Gaussian ansatz (F16). Using the
fast decay of R(y) and R′(y) at large y for the vanishing of
boundary terms, we obtain from the right-hand side of (F8)

∂t P̄G[F̄ ,t]

P̄G[F̄ ,t]

= 1

2

∫
dy dỹF̄ ′′(ỹ)R̄−1(t,|ỹ − y|)

×
{
D

∫
dy ′F(t,|y − y ′|)F̄ ′′(y ′) − 2Ḡ[F̄ ; t,y]

}
− T

2c

∫
dy dy ′δ(y − y ′)δ′′(y − y ′) (F18)
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with the definition

F(t,y1 − y2) ≡
∫

dy3R(|y1 − y3|)R̄−1(t,|y2 − y3|). (F19)

On the other hand, the left-hand side of (F8) yields, differen-
tiating with respect to time,

∂t P̄G[F̄ ,t]

P̄G[F̄ ,t]
= −1

2

∫
dy dy ′F̄ ′(y)∂t R̄

−1(t,|y − y ′|)F̄ ′(y ′).

(F20)

Considering first the linearized case, the identification of
(F18) and (F20) yields, upon appropriate integrations by part,
an equation of the form∫

dy dy ′F̄ ′(y ′)M(t ; y ′,y)F̄ ′(y) = 0, (F21)

where M(t ; y ′,y) = M(t ; y ′ − y) is a translation-invariant
symmetric functional operator which combines R̄ and R.
Since (F21) is valid for any function F̄ ′ decaying fast enough
at infinity, solving this equation amounts to canceling the
operator M(t ; y ′,y). After some manipulations aiming at
casting the functional equation M(t ; y ′,y) = 0 into a diagonal
form, the linearized form of the flow equation (34) on R̄(t,y)
is precisely recovered, namely,

∂t R̄(t,y) = T

c
∂2
y R̄(t,y) − 1

t
{R̄(t,y) + ∂y[yR̄(t,y)]}

−DR′′
ξ (y). (F22)

In the process, the divergent part on the last line of (F18)
was discarded. This flow equation was obtained in Ap-
pendix D using Itō’s lemma, including the nonlinearized
case, and without having singular terms to discard (which
we attribute to an artifact of functional calculus in the
computation above). The infinite-time steady-state solution
thus verifies T

c
∂2
y R̄(∞,y) − DR′′

ξ (y) = 0 which implies di-
rectly the expected result R̄(∞,y) = cD

T
Rξ (y). It ensures that

F(t,y) → ( cD
T

)−1δ(y) in (F19) as t goes to infinity, which
actually prevents the divergent term to appear in (F18). The
finite-time solution is studied in Appendix E.

Taking, however, the corresponding steady-state distribu-
tion (F16) with R̄(t,y) = cD

T
Rξ (y) as trial steady solution for

the full equation (F8) yields a remaining term, arising from
the nonlinearity, cubic in F̄ [i.e., not of the form (F21)], which
vanishes only at ξ = 0.

APPENDIX G: SCALING LAWS FOR A
TEMPERATURE-INDEPENDENT ELASTIC WEIGHT

The model defined in Sec. II A depends on the four indepen-
dent parameters {c,D,T ,ξ}, with the elastic constant c being
fixed independently from the temperature T in the parametriza-
tion describing the elastic interface. In the language of the
directed polymer, the elastic weight e− 1

T

∫ t1
0 dt c

2 [∂t y(t)2] of a
trajectory consequently depends explicitly on T , contrarily
to an alternative convention often used in the mathematics
literature which amounts to choose c = T . The consequences
on the scaling arguments of Sec. III B and the low-T saddle-
point arguments of Sec. IV B are discussed in this Appendix.

One is interested in the generic scaling of the prefactor of
the roughness B(t ; c,D,T ,ξ ) in the random-manifold regime
(of roughness exponent ζRM = 2

3 )

B(t ; c,D,T ,ξ )
t→∞∼ ARM(c,D,T ,ξ )t2ζRM . (G1)

The scaling in temperature of the prefactor is described by
the thorn exponent þ defined by A(c,D,T ,ξ ) ∼ T 2þ. We have
derived in Sec. III B from a scaling analysis that, depending
on the temperature regime with respect to Tc = (ξcD)1/3, the
expressions of the prefactor ARM(c,D,T ,ξ ) are

ARM
(T �Tc)=

(
D

cT

) 2
3

, ARM
(T �Tc)=

(
D2

c4ξ

) 2
9

. (G2)

While þT �Tc

RM = − 1
3 at high temperatures, the existence of the

microscopic length ξ > 0 alters the value of the thorn exponent
to þT �Tc

RM = 0 at low temperatures, even though this exponent
describes large-scale properties of the polymer.

In this Appendix, we determine how those exponents
change when taking the particular convention c = T , often
chosen in the mathematics community, prompting us to denote
by a subscript m the observables defined with this convention,
e.g.,

Bm(t ; D,T ,ξ )
t→∞∼ Am

RM(D,T ,ξ )t2ζRM . (G3)

Physically, the choice c = T amounts to render the elastic
weight temperature independent, with Eq. (3) becoming

Wm
V (t1,y1) =

∫ y(t1)=y1

y(0)=0
Dy e− ∫ t1

0 dt
{ (∂t y)2

2 + 1
T

V [t,y(t)]
}
. (G4)

Here, 1
T

only tunes the relative importance of disorder with
respect to elasticity. The parametrization c = T also arises
in the continuum limit of the discrete simple solid-on-solid
(SOS) directed polymer model [31,41] and is thus of interest
to analyze numerical results of this system. There are other
possible parametrizations depending on the physical model de-
scribed by the KPZ equation. Another example is provided in
Sec. VII C, for which the regime where the disorder correla-
tions matter is a high-velocity regime.

Before handling the different limits with respect to T of
(G4) in a functional integral saddle-point approach similar to
that of Sec. IV B, we first recall some results on the asymptotics
of integrals with one variable. The aim is to determine a
(logarithmic) equivalent at large p of integrals of the form
I (p) = ∫ dy f (y)e−pg(y). The following result holds: if g(y)
has a unique, finite, minimum value reached in y�, then

I (p)
p→∞∼ f (y�)e−pg(y�). (G5)

Here, y� is the point (or one point) where the minimum of
g(y) is reached, and is thus by definition independent of p.
Power-law corrections in p may arise from the integration of
fluctuations around y�, but they disappear, e.g., in ratios of the
following form [see (75) and (81) for the DP]:∫

dy f (y)e−pg(y)∫
dy e−pg(y)

p→∞∼ f (y�)e−pg(y�)

e−pg(y�)
= f (y�). (G6)

The existence of the finite minimum is crucial, as illustrated
from the derivation of Stirling’s formula for the equivalent of
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the factorial. Starting from

p! =
∫
R+

dy e−yyp =
∫
R+

dy e−yep ln y, (G7)

one may be tempted to apply (G5) with

f (y) = e−y, g(y) = − ln y, (G8)

which, assuming blindly that g(y) reaches a finite minimum

in y�, would yield the wrong result p!
p→∞∼ e−y�

ep ln y�

. The
loophole here is that g(y) = − ln y reaches no finite minimum
on R+. On this simple example, the clue is to rescale y by a
factor p [namely, y = pȳ] and write instead of (G7)

p! = pp+1
∫
R+

dȳ e−pȳ ȳp = pp+1
∫
R+

dȳ e−p(ȳ−ln ȳ) (G9)

now with f (ȳ) = 1 and g(ȳ) = ȳ − ln ȳ which is minimal

in ȳ� = 1 one obtains correctly2p!
p→∞∼ pp+1e−p. Note that,

coming back to the initial variable y, we see that the optimum
y� of g(y) in (G8) was not finite but diverging to infinity
as y� = pȳ� = p for p → ∞. In other words, the rescaling
y = pȳ in (G9) allows us to find the optimal y at the correct
scale in the large parameter p.

Consider first the well-controlled high-temperature regime.
Since the rescaling of Sec. III B is at c = T = 1, it is
compatible with the mathematician’s convention and one can
export directly (57) and (58) imposing c = T :

Bm(t ; D,T ,ξ ) = ξm
th (T )2B

(
t

tm∗ (T )
; 1,1,

ξ

ξm
th (T )

)
, (G10)

tm∗ (T ) = T 4

D2
, ξm

th (T ) = T 2

D
. (G11)

The regime ξ � ξm
th (T ), or equivalently T � T m

c , with
T m

c = √
ξD describes the high-temperature limit and consists

in replacing ξ

ξm
th (T ) by 0 in (G10). In the large-time limit

[t � tm∗ (T )], this yields Am
RM(D,T ,ξ )|(T �T m

c )=(DT −2)
2
3 and

the high-temperature thorn exponent is thus þm
RM

(T �Tc)= − 2
3 .

The low-temperature regime is, however, less direct to
handle since the rescaling (59) and (60) of Sec. III B is
not at c = T and thus can not be directly exported to
the mathematician’s convention. Anyway, as first choice the
rescaling a = ξ, b = ξ 2 allows us to rescale at ξ = 1 and to
respect the mathematician’s convention: the elastic term is
unchanged (c = T ) in the weight

Wm
V (t1,y1)

(d)=
∫ ȳ(t1)=y1/ξ

ȳ(0)=0
Dȳ e− ∫ t1/ξ2

0 dt{ (∂t ȳ)2

2 + T m
c
T

V1[t,ȳ(t)]},

(G12)

where V1[t,y(t)] ≡ V [t,y(t)]|D=1,ξ=1, from which one reads

Bm(t ; D,T ,ξ ) = ξ 2Bm

(
t

ξ 2
; 1,

T

T m
c

,1

)
. (G13)

2Again, the equivalent is logarithmic: ln p!
pp+1

p→∞∼ −p. The real

equivalent p!
p→∞∼ √

2πp (p/e)p is obtained after integration of
fluctuations around the saddle.

However, the limit T → 0 can not be taken by candidly replac-
ing T

T m
c

by 0 in (G13). This would lead to Am
RM|(T �T m

c )=ξ−2/3

and yield a corresponding zero thorn exponent, but this appears
incorrect as we now discuss. Indeed, the term T m

c

T
in the

Hamiltonian in (G12) appears only in front of the disorder
term, and not in front of both contributions as in (75). In terms
of path integrals

Bm(t1; D,T ,ξ )

= ξ 2

∫
y(0)=0 Dy y( t1

ξ
)2 e− ∫ t1

ξ

0 dt 1
2 (∂t y)2

e− Tc
T

∫ t1
ξ

0 dt V1[t,y(t)]

∫
y(0)=0 Dy e− ∫ t1

ξ

0 dt 1
2 (∂t y)2

e− Tc
T

∫ t1
ξ

0 dt V1[t,y(t)],

(G14)

the large prefactor Tc

T
actually selects the path which minimizes

the disorder contribution along the polymer trajectory, and
not the full Hamiltonian as in (75), and this path is “too anoma-
lous” (no elastic constraint enforces it to stay in a bounded
region as T → 0). To contend with this singular limit, instead
of starting with (G13), one may better work in the physicist’s
convention starting from the scaling constructions (59) and
(60), where the low-T behavior is controlled. One checks
that the only possible rescaling of (G13) into a physicist’s
roughness B(t ; c,D,T ,ξ ) satisfying c = D = ξ = 1 is

a = ξ , Ẽ = (ξT D)1/3 , b = tm∗∗(T ) =
(

ξ 5T 2

D

)1/3

,

(G15)

Bm(t ; D,T ,ξ ) ≡ B(t ; T ,D,T ,ξ )

= ξ 2B

(
t

tm∗∗(T )
; 1,1,

T

(ξ T D)1/3
,1

)
. (G16)

This rescaling is similar in spirit to the rescaling y = pȳ

in (G9) for the saddle-point asymptotics study of p! : it
allows us to find the optimal path y(t) at the correct scale
in the large parameter T m

c

T
encountered in (G13). The limit

T → 0 in the mathematician’s Bm(t ; D,T ,ξ ) coincides with
the limit T → 0 in the physicist’s roughness of (G16) since

T

(ξ T D)
1
3

T →0−→ 0. One reads from (G16) at asymptotically large

time, according to the known results ζRM = 2
3 ,

Bm(t ; D,T ,ξ )
t→∞∼ ξ 2ARM

(
1,1,

T

(ξ T D)1/3
,1

)[
t

tm∗∗(T )

]2ζRM

.

(G17)

In the low-temperature regime (T � T m
c ), the physicist’s

ARM(1,1, T
(ξ T D)1/3 ,1) remains finite and goes to a T -

independent finite constant in the limit T → 0, as discussed
previously in Sec. IV B. This finally yields

Am
RM(D,T ,ξ )

(T �T m
c )=
(

D2

T 4ξ

) 2
9

. (G18)

At low temperature, the mathematician’s thorn exponent þ is
thus nonzero: þm

RM|(T �T m
c )= − 4

9 .
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V. Baltz, B. Rodmacq, B. Dieny, and R. L. Stamps, Phys. Rev.
Lett. 99, 217208 (2007).

[4] T. Tybell, P. Paruch, T. Giamarchi, and J.-M. Triscone, Phys.
Rev. Lett. 89, 097601 (2002).

[5] P. Paruch, T. Giamarchi, and J.-M. Triscone, Phys. Rev. Lett. 94,
197601 (2005).

[6] N. A. Pertsev, D. A. Kiselev, I. K. Bdikin, M. Kosec, and A. L.
Kholkin, J. Appl. Phys. 110, 052001 (2011).
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