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Selection theory of free dendritic growth in a potential flow
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The Kruskal-Segur approach to selection theory in diffusion-limited or Laplacian growth is extended via
combination with the Zauderer decomposition scheme. This way nonlinear bulk equations become tractable. To
demonstrate the method, we apply it to two-dimensional crystal growth in a potential flow. We omit the simplifying
approximations used in a preliminary calculation for the same system [Fischaleck, Kassner, Europhys. Lett. 81,
54004 (2008)], thus exhibiting the capability of the method to extend mathematical rigor to more complex
problems than hitherto accessible.
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I. INTRODUCTION

Pattern formation is ubiquitous in nature. Snowflakes
constitute an everyday paradigm of a self-organized structure,
apparently the first that was the subject of scientific study [1].
Any physical pattern possesses at least one characteristic
length scale, and if it is dynamic, it also has a characteristic
time scale. The foremost task of scientific endeavour in the
field of pattern formation is to explain the emergence of these
scales and to determine them quantitatively. Since systems
with linear dynamics will, due to the superposition principle,
not normally single out a particular length scale, an essential
ingredient of pattern-forming systems is the nonlinearity of
their dynamics.1

As it turns out, snowflake-like structures (dendritic mor-
phologies) also arise at microscopic scales in the casting of
metals, and they determine structural properties such as the
strength of the material, which imparted considerably more
importance to scientific preoccupation with them than just
fundamental interest would have.

The first models of dendritic crystal growth assumed
transport of heat away from or material to the growing
nucleus to be simply diffusive, so the term diffusion-limited
growth was coined. Understanding the selection of dynam-
ical features such as a basic length scale and the growth
velocity turned out to be remarkably difficult even within
these simplifying models. Almost 40 years passed between
Ivantsov’s approximate solution [2] that did not exhibit
selection and the development of an analytic theory explaining
the mechanism of structure selection [3–5]. This may seem
even more surprising considering that the bulk equations of
diffusion-limited systems are linear and the nonlinearity of the
dynamics emerges solely via the equations of motion for the
two-phase interface. In fact, the analytic approaches developed
had to rely heavily on this linearity.

*klaus.kassner@ovgu.de
1Linear systems may display interesting patterns due to boundary

conditions. Chladni figures are a well-known example. However, we
rather speak of pattern formation, when scale selection is intrinsic to
the dynamics.

Ivantsov’s theory, neglecting surface tension at the bound-
ary between the melt and the solid, predicts only the product
of the tip radius of a dendrite and its growth velocity, as a
function of the undercooling. In experiments, the undercooling
determines both quantities separately. A decisive step towards
the solution was the insight that without surface tension
the problem is ill-posed [6,7] and that the capillary length
has to be taken into account, even if it is much smaller
than any length scale of the arising pattern. Surface tension
regularizes the mathematical problem and drastically alters the
solution space. Without surface tension, there is a continuum
of parabolic needle-crystal solutions. With isotropic surface
tension, there are no solutions with a shape close to one of
these Ivantsov parabolas (or paraboloids), no matter how small
the surface tension, a fact that testifies to the singular nature
of the “perturbation” surface tension. With anisotropic surface
tension, the continuum of Ivantsov solutions is reduced to a
discrete set, with the fastest of the needle-crystal solutions
being the only linearly stable one.2 Hence, the selection
problem is broken down into two parts: an existence problem
for a discrete set of solutions and the stability analysis
singling out one element of the set as the one that should
be observed. A completely analogous theory was developed
for Saffman-Taylor fingers in viscous fingering [9–11], where
selection is also due to surface tension, albeit not, of course,
to its anisotropy.

These theories were two-dimensional, just as the original
numerical work giving evidence for a selection mechanism
based on solvability [12–14]. Three-dimensional situations
considered initially referred to axisymmetric crystals [5,13]
and hence were not very realistic. Later, steps were taken
to extend the theory towards nonaxisymmetric needle-crystal
shapes [15,16], and eventually an analytic theory was de-
veloped for the fully nonaxisymmetric case [17,18]; all the

2What is said here for surface tension, holds, mutatis mutandis,
also for interfacial kinetics. With an anisotropic term for the velocity-
dependent deviation of the interface temperature from its equilibrium
value, selection happens even if the Gibbs-Thomson effect is not
taken into account [8]. If both surface tension and the kinetic term
are isotropic, there is no selection of parabolic shapes in free growth.
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necessary elements of the final complete theory were not
present before Ref. [18].

From the outset, two different analytic approaches were
pursued. With the first method, the equation of motion of
the two-phase interface is linearized, which leads to an
integro-differential equation in nonlocal problems (such as
dendritic growth or viscous fingering). Using Fredholm’s
alternative, a solvability condition is derived that is satisfied
only by a discrete set of values of the selection parameter (a
nondimensionalized surface tension or its inverse) [5,9,19].
The second approach, pioneered by Kruskal and Segur [20],
consists in solving the interface equation far from singular
points in the complex plane via a perturbation expansion in
terms of the small selection parameter and in the vicinity
of these points via a scale transformation and reduction
to a local equation. The two solutions then have to be
asymptotically matched to obtain a globally valid solution.
Parameter relationships established in the matching procedure
yield the selection criterion [4,8,21–24]. There is general
agreement that only the second approach is mathematically
rigorous [11,21,25,26]. The linearization of the first method
introduces approximations that normally will not invalidate
the scaling relations obtained; but it will not reproduce their
prefactors correctly or provide a globally valid approximate
solution. Moreover, if the equations contain more than one
small parameter (say, a kinetic coefficient or a characteristic
number describing the flow, besides the usual selection
parameter), the linearization may produce even worse results
due to the structural instability of the problem [21].

In both approaches, it is necessary to first derive an (integro-
differential) equation for the interface position depending on
a single independent variable. This can be achieved, e.g., by
eliminating the bulk field variables via conformal mapping (in
the viscous fingering case) or using Green’s function methods
(in crystal growth). These techniques are applicable only for
linear bulk equations, which seemed to preclude utilization of
the method for convection problems.

For a long time, the only exception to this restriction had
been the work on two-dimensional crystal growth in an Oseen
flow by Bouissou and Pelcé [27]. To obtain the selection
criterion, they used a method, outlined in Ref. [28], which is
closely related to the first of the two approaches mentioned, and
hence not rigorous. Their method has recently been extended
by Alexandrov et al. [29] to include solute diffusion. The
equation of motion for the deviation of the solution from
that of the problem without surface tension is simplified
in the style of a linear stability analysis which allows to avoid
the derivation of an integro-differential equation. Moreover,
the adjoint linear operator is constructed heuristically in
Fourier space to obtain a solvability condition in the spirit
of the Fredholm alternative, a procedure that may introduce
additional (possibly problematic) approximations.

A different method, having the potential of achieving
the same level of rigor for problems with nonlinear bulk
equations as the asymptotic matching approach, was recently
introduced [30,31]. It consists in a combination of Zauderer’s
decomposition scheme [32] for partial differential equations
with the Kruskal-Segur approach. Zauderer decomposition is
the step allowing reduction of nonlinear bulk equations to
an interface equation and thus circumventing the necessity

of an exact integral equation, available only for linear bulk
equations. Reference [30], dealing with potential flow, was
more or less a proof of concept, in which we copiously
used additional approximations to simplify the result to an
easily digestable form, allowing us to map it in the end to the
flowless finite Péclet number case treated by Ben Amar [22].
The main purpose of the present paper is to remove these
approximations, which renders the treatment more complex,
but does not impose insurmountable obstacles. Of course, the
mapping obtained gets lost, because it was only approximate.
Clearly, potential flow is not a very realistic assumption, but
it has the advantage that the unperturbed problem is exactly
solvable; the analog of Ivantsov’s analytic solution exists. This
is different in the case treated by Bouissou and Pelcé [27],
where already the zeroth-order problem is solved within an
approximation, replacing the Navier-Stokes equations with
the Oseen problem (which in two dimensions does not even
give a uniform approximation to the true flow [33]). We will
consider more realistic flows and a better approach than the
Oseen approximation in a later publication.

The paper is organized as follows. In Sec. II the model
equations are given. They are nondimensionalized and rewrit-
ten in parabolic coordinates in Sec. III. Section IV gives the
analog of the Ivantsov solution in the presence of a potential
flow. Then the method of Zauderer decomposition is explained
in Sec. V, allowing us to reduce the set of partial differential
equations of the full problem to an integro-differential equation
for the interface alone, without losing the terms decisive for
solvability theory. Next, the decomposed equations are solved
to first order (in the small parameter σ 2/7) in Sec. VI. Near the
solid-liquid interface, the relevant behavior beyond all orders
of regular perturbation theory is obtained in Sec. VII from a
WKB analysis. On the other hand, in Sec. VIII, the asymptotic
Kruskal-Segur reduction to a locally valid equation, applicable
near a singularity in the complex plane, is carried out. It leads
to a nonlinear integro-differential equation constituting an
eigenvalue problem. The numerical solution of this eigenvalue
problem determines the selected velocity (and other properties)
of the needle crystal. Detailed results are given for a set
of parameters corresponding to a particular experimental
system, which, however, does not exhibit potential flow, so the
comparison is only qualitative. Some conclusions are offered
in Sec. IX. A few general calculations and slightly elaborate
mathematical conversions are relegated to two Appendices.

II. MODEL EQUATIONS

Heat transport in the liquid and solid phases is described by
the diffusion-advection equations

∂T

∂t
+ (w · ∇) T = D∇2T (1)

with w the flow velocity in the liquid and w ≡ 0 in the
solid. The advection term coupling the temperature and flow
equations renders the bulk problem nonlinear, despite the
simplifying assumption of potential flow made below (which
reduces the flow description to a linear equation). As the
notation suggests, we assume the thermal diffusivity D to be
the same in both phases (symmetric model). We consider an
incompressible flow, which means that a stream function can
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be introduced. In two dimensions, its defining equation takes
the form

w = ∇ × (ψez) = ψyex − ψxey. (2)

Because ψ depends on x and y only, we obtain ∇ × w =
−∇2ψ ez, and taking the flow to be potential, we have

∇2ψ = 0. (3)

When specializing Eq. (1) to one of the phases, we will
denote the temperature variable by T l and T s in the liquid
and the solid, respectively. Equations (2) and (3) are the bulk
equations of motion for the flow.

Because we are looking for steady-state solutions, we need
not prescribe detailed initial conditions. We must, however,
specify boundary conditions for each of the bulk equations. At
infinity in either the liquid or solid we require homogeneous
Dirichlet boundary conditions for the temperature fields; i.e.,
we set the temperature constant:

T l(x) → T∞ for d(x,�) → ∞, (4a)

T s(x) → TM for d(x,�) → −∞. (4b)

Herein, � is the interface and d(x,�) denotes a signed distance
function, increasing towards the liquid. TM is the bulk melting
temperature of the solid, and for crystal growth to occur in
a pure system, we must have T∞ < TM . The dimensionless
parameter characterizing this undercooling is

� = TM − T∞
L/cp

, (5)

where L and cp are the latent heat and specific heat, both
referred to a unit volume.

Moreover, there are boundary conditions at the interface,
reading

T s |� = T l|�, (6a)

T l|� = TM − L

cp

d0κa(θ ), (6b)

LVn = Dcp[∇T s |� − ∇T l|�] · n. (6c)

Equation (6a) describes continuity of the temperature across
the interface, and Eq. (6b) is the Gibbs-Thomson condition
giving the equilibrium temperature of a melt-crystal interface
with curvature κ . That is, we assume kinetic effects to be
negligible, implying local thermal equilibrium at the interface.
If the interface is given by y = h(x), then κ = −h′′(x)/[1 +
h′(x)2]3/2. d0 is the average capillary length,

d0 = γ0
TMcp

L2
, (7)

where γ0 is the angular average of the orientation dependent
surface tension γ (θ ). θ is the angle of the interface normal with
some fixed direction, for example, the direction of the y axis.
From the thermodynamics of interfaces we know [34] that
the angular dependence of the nonaveraged capillary length is
not that of the surface tension but that of the surface stiffness
γ (θ ) + γ ′′(θ ). This is described by the factor a(θ ) ≡ [γ (θ ) +
γ ′′(θ )]/γ0. For simplicity, we will assume fourfold anisotropy
here, described by a single harmonic, i.e.,

a(θ ) = 1 − β cos(4θ ). (8)

From a mathematical point of view, Eqs. (6a) and (6b)
together with the boundary conditions at infinity and some
initial condition for the two temperature fields are sufficient to
solve the diffusion problem in the two phases, with given flow
field and interface position. However, the interface position
is a priori unknown, its determination is part of the problem.
Therefore, an additional interface equation is needed. This
is the third boundary condition, the Stefan condition (6c).
Physically it follows from energy conservation across the
interface. Vn is the interface normal velocity, and the left-hand
term describes latent heat production due to advancement of
the interface, whereas the right-hand side gives the sum of
the heat currents into the solid and liquid phases. The normal
vector n points from the solid into the liquid.

The flow field w is dynamic only in the liquid. We need
a boundary condition at infinity, where we impose a constant
flow directed opposite to the growth direction of the needle
crystal:

w(x) → −Uey for d(x,�) → ∞. (9)

Because we have potential flow, we cannot impose conditions
for all three components of the flow velocity at the interface;
the Laplace equation for the stream function does not admit
prescription of more than one scalar quantity. Physically, this
is reasonable, since potential flow is frictionless, and hence
we cannot prescribe the tangential velocity at the interface,
because there is no no-slip condition. The normal velocity, on
the other hand, follows from mass conservation. We assume
the simplest case, viz., equal mass densities in the solid
and the liquid. Then the liquid is neither sucked towards the
solid (which would be the case if the density of the solid were
higher than that of the liquid) nor ejected from it. Since the
solid does not move,3 the normal velocity of the liquid must
be zero:

n · w(x)|� = 0 . (10)

Equations (1) through (10), supplemented by initial condi-
tions for all the fields, constitute the complete mathematical
description of an idealized physical system. Requiring the
solution to be stationary and to correspond to a crystal growing
at constant velocity V along the y direction we may replace
Vn in Eq. (6c) by V ey · n = V ny . Transforming to a moving
frame of reference,

r → r + V tey, (11a)

w → w + V ey, (11b)

in which the interface is at rest, all time derivatives ∂t get
replaced by −V ∂y . Note that due to the transformation of w,
Eq. (1) is invariant under this change of frame. Nevertheless,
the time derivative can be dropped after the transformation,
because we seek a time-independent solution. Moreover, the
“flow velocity in the solid” becomes −V ey by virtue of the
transformation.

3Meaning that no volume element of the solid is in motion. The
interface moves, of course, due to the addition of solid.
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III. PARABOLIC COORDINATES AND
NONDIMENSIONALIZATION

A family of exact analytic steady-state solutions to the
model equations exists for vanishing capillary length and,
similar to Ivantsov’s solution in the flowless case, the crystal
interface is parabolic [35–37]. Therefore, it is useful to intro-
duce parabolic coordinates. We employ conformal parabolic
coordinates

x = ηξ, y = 1
2 (η2 − ξ 2), (12)

their advantage being equality of the scale factors gξ =
gη =

√
ξ 2 + η2. In the Appendix, some of the transformation

formulas are given.
To nondimensionalize the equations, we use the tip radius

ρ of the Ivantsov-like solution, defined as the inverse of the
curvature at the tip, as a length scale. The corresponding
diffusion time ρ2/D is taken as a time scale

x,y → ρx,ρy, κ → κ

ρ
, t → ρ2

D
t. (13)

Note that this implies ξ and η to scale with
√

ρ : ξ,η →√
ρ ξ,

√
ρ η.

The nondimensional form of the flow velocity follows
immediately:

w → D

ρ
w. (14)

(This implies ψ → Dψ .) The nondimensional flow velocity
at infinity then becomes

Pf ≡ ρU

D
, (15)

the so-called flow Péclet number. Moreover, it will turn out
useful to include the growth Péclet number

Pc ≡ ρV

D
(16)

into the prescription for nondimensionalization of temperature

T → TM + L

cp

PcT , (17)

which means that the nondimensional temperature in the liquid
approaches −�/Pc at infinity.

With these transformations and dropping time derivatives,
as we are interested in stationary solutions, we obtain the
following set of bulk equations:

ψηT
l
ξ − ψξT

l
η = T l

ξξ + T l
ηη, (18a)

Pc

(
ξT s

ξ − ηT s
η

) = T s
ξξ + T s

ηη, (18b)

ψξξ + ψηη = 0. (18c)

The boundary conditions for the fields at the interface now
read

T s = T l, (19a)

T l = − 1
2σκa(θ ), (19b)

[ξηs]
′ = −η′

s

(
T s

ξ − T l
ξ

) + T s
η − T l

η , (19c)

ψξ + η′
sψη = Pc

(
ηs + η′

sξ
)
, (19d)

FIG. 1. Coordinate lines for conformal parabolic coordinates.
Note that these coordinates will cover the xy plane twice, if negative
values for η are admitted.

where ηs(ξ ) is the interface position, a prime means a derivative
with respect to ξ along the interface, and

σ = 2d0

ρPc

(20)

is the selection or stability parameter. (In order not to
overburden the notation, we have dropped the qualifier |�
next to the fields and their derivatives, indicating that these
quantities have to be evaluated at the interface position.)

Finally, the boundary conditions at infinity may be written
(see Fig. 1)

T l → − �

Pc

(η → ∞), (21a)

T s → 0 (η < 1, |ξ | → ∞), (21b)

ψ ∼ (Pf + Pc)ηξ (η → ∞), (21c)

the last equation being an asymptotic equality [38].

IV. EXACT SOLUTION IN THE ABSENCE
OF SURFACE TENSION

If we neglect surface tension in the spirit of Ivantsov,
Eqs. (19a) and (19b) tell us that with vanishing capillary
length the interface becomes an isotherm, T l|� = T s |� = 0.
Assuming it to be a coordinate line suggests the temperature
field to depend on one of the coordinates only, i.e., T = T (η).
Inserting this into (18a) and (18b), we have

−ψξT
l
η = T l

ηη, (22a)

−PcηT s
η = T s

ηη. (22b)

In view of boundary condition (21b), we see that the second
equation is solved by T s ≡ 0. The first can have a purely η

dependent solution only if

ψ = ξf (η). (23)

Inserting this into (18c), we find

f ′′(η) = 0 ⇒ f (η) = c1η + c2, (24)
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with constants c1 and c2 to be determined from the two bound-
ary conditions [(19d), (21c)]. By assumption, the interface is
at ηs(ξ ) ≡ 1, so (19d) simplifies into ψξ (1) = Pc. We find
c1 = Pf + Pc and c2 = −Pf . Therefore,

ψ = ψ Iv = ξ [Pcη + Pf (η − 1)]. (25)

This leaves us with the ordinary second-order differential
equation (22a)T l

ηη + [Pcη + Pf (η − 1)]T l
η = 0 subject to the

boundary conditions T l(1) = 0 and (21a). The solution is
straightforward:

T l = T Iv(η) = −e
Pc
2

∫ η

1
e− Pc

2 η′2− Pf

2 (η′−1)2

dη′, (26)

where Pc is determined as a function of � and Pf from

�

Pc

= e
Pc
2

∫ ∞

1
e− Pc

2 η′2− Pf

2 (η′−1)2

dη′. (27)

In the limit Pf → 0, this becomes identical to the usual
Ivantsov relation for diffusion-limited dendritic growth,
whereas for Pc 
 Pf we can evaluate the formula analytically,
which yields � = Pc

√
π/2Pf . In practice, we will determine

Pc = Pc(�,Pf ) numerically from Eq. (27).
The selection problem arises in the same way here as in the

flowless case: only Pc is determined, given the undercooling
and the imposed flow, by the Ivantsov-like solution. Given Pc,
we can calculate the product of the growth rate V and the tip
radius ρ but not both quantities separately. Ivantsov’s approach
eliminates the parameter σ from the equations. As (20) shows,
we may calculate ρ once we know σ and Pc. So the aim must
be to include σ into the theory and to obtain a value for it.

For easy reference, we will call the solution (25)–(27) the
flow-Ivantsov solution.

V. ZAUDERER DECOMPOSITION AND CONTINUATION
TO THE COMPLEX PLANE

The approach to be followed is singular perturbation theory
about the flow-Ivantsov solution.4 Thus, we shall consider
small deviations from it:

T → T Iv + T and ψ → ψ Iv + ψ, (28)

but we will be careful to avoid illegitimate linearizations. In
particular, we will not linearize terms containing derivatives
of the interface position.

In this first approach, we shall restrict ourselves to the limit
of small growth Péclet number, i.e., Pc 
 1. As it turns out,
interesting results for the selection parameter arise only, if we
also assume Pc 
 Pf . In particular, this means that terms with
a factor of Pc will be neglected in the exponentials of Eq. (26).5

4As we shall see later, we do not precisely expand about the flow-
Ivantsov solution but rather about an approximation to it that becomes
accurate in the vicinity of the appropriate complex-plane singularity.

5They could equally well be neglected in the exponentials of
Eq. (27), but that equation does not appear in the calculation of the
selection parameter σ . It is only needed to obtain Pc for given values
of � and Pf , once numbers are to be extracted from the equations.

The diffusion-advection equation (18a) then becomes an
inhomogeneous equation for the temperature deviation, in the
liquid, from the flow-Ivantsov solution

T l
ξξ + T l

ηη − (ψη + ξPf )T l
ξ

+ [ψξ + Pf (η − 1)]T l
η = ψξe

− Pf

2 (η−1)2
. (29)

The only approximation in this equation is that Pc has been
set equal to zero. All field nonlinearities are still present.

In the solid [Eq. (18b)], we just drop the terms multiplied
by Pc and obtain a Laplace equation

T s
ξξ + T s

ηη = 0, (30)

and Eq. (18c), being linear, remains formally unchanged,

ψξξ + ψηη = 0, (31)

but the meaning of ψ is now different (it is the deviation of the
stream function from its form in the flow-Ivantsov solution).

To rewrite the boundary conditions, we set ηs = 1 + h(ξ ).
While it is legitimate to view h(ξ ) as a small quantity, this may
not be true for h′(ξ ) and higher derivatives. Expanding (19a)
about the flow-Ivantsov solution, we have T Iv|� + T l|� =
∂ηT

Iv|η=1 h + T l(ξ,1) = T s |� = T s(ξ,1). Later, we will need
the derivative of the interface temperature with respect to ξ .
We are then not allowed to simply take the partial derivative
of the temperature field with respect to ξ , which would
give T l

ξ − h′(ξ ) = T s
ξ (because ∂ηT

Iv|η=1 = −1). Actually, the
derivative must be taken along the interface, so we obtain T l

ξ +
T l

ηh
′(ξ ) − h′(ξ ) = T s

ξ + T s
η h′(ξ ) instead. Keeping this proviso

in mind, we may use the simpler form before differentiation as
the shortest description of the appropriate boundary condition.
The full set of interface boundary conditions then reads

T s + h = T l, (32a)

T s = −1

2
σκa(θ ), (32b)

[ξh]′ =
(

∂

∂η
− h′ ∂

∂ξ

)
(T s − T l), (32c)

ψξ + h′ψη = −Pf [hξ ]′. (32d)

All of these are evaluated at η = 1, but if they are to be
differentiated, then this has to be done before setting η = 1
and field derivatives with respect to η will arise.

Zauderer’s asymptotic decomposition [32] is a projection
scheme reducing the solution of a system of partial differential
equations (PDEs) to the solution of a series of first-order
equations. These may be decoupled within a perturbative
approach, if a small parameter or slow variable is available.
(Otherwise, the series of first-order equations does not of-
fer any simplification over the original system of PDEs.)
Originally conceived for hyperbolic equations, the method
generalizes to elliptic systems in the complex plane.

Asymptotic decomposition seems to have largely passed
into oblivion (at least in the physics world), possibly because
often multiscale expansions are superior to it, leading to
more easily tractable equations. Nevertheless, for the problem
considered here, Zauderer decomposition is particularly well
suited, not losing information about transcendentally small
terms (if the “principal part” [32] of the set of equations is
chosen correctly).
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In Ref. [30], we discussed that in the case of purely
diffusive transport and in the limit of small growth Péclet
number, Zauderer decomposition of the transport equations is
equivalent to their factorization

(∂ξ + i∂η)T l = 0, (∂ξ − i∂η)T s = 0, (33)

and that a few simple manipulations of these partial differential
equations using the boundary conditions lead to a local
equation for the interface position h(ξ ),

σa(θ )κ = (1 − iξ )h(ξ ). (34)

This equation contains the complete information needed to
compute the mismatch function that has to be zero at the tip
of the needle crystal for selection to be possible. Near the
singularity ξ = −i in the complex plane, Eq. (34) describes
the dominant behavior of the solution.

Equations (33) are, due to their simplicity, well suited for a
discussion of the strategy of our approach. Typically, Zauderer
decompostion produces, from the basic partial differential
equations of the problem, a leading-order or “principal-part”
equation in each domain that is first order and easily solvable
(for example by the method of characteristics). The complete
solution will be a sum of this leading term and other
contributions that may be calculated in subsequent steps of
the perturbative scheme. In the simple case considered here
for explanatory purposes, the temperature field satisfies the
Laplace equation factorizing in the complex plane (a formal
Zauderer decomposition just reproduces this factorization).
Solving the factorized equations, one finds

T (ξ,η) = f1[ξ + i(η − 1)] + f2[ξ − i(η − 1)] (35)

with analytic functions f1 and f2. Inserting this solution into
the boundary conditions at η = 1 and analytically continuing
the resulting equations to w = −i (where w is the analytic
continuation of ξ ), some of their terms must become singular
in the limit h(ξ ) 
 1 (σ → 0), because the curvature term in
Eq. (34) becomes singular in that limit [see Eq. (A9)]. The
solution for T l must be analytic in the liquid, i.e., for η > 1,
corresponding to the upper half complex plane. Hence the
f2 term will remain analytic near w = −i.6 The important
contribution to T l that may diverge near the singularity will
then come from f1, and this function is the solution to the
first equation of Eq. (33). Similarly, it may be argued that
in the solid the f2 term is the important one; it solves the
second equation of Eq. (33). Thus, Eqs. (33) give us a solution
that is valid near the singularity. At the interface, far away
from the singularity, this approximation is also justified (albeit
to a lesser degree), because there the curvature term in the
boundary conditions can be linearized. For the (homogenous
part of) the linearized equations, each of the f1 and f2 terms
alone is a solution. To obtain the full solution, the second
singularity at w = i has to be taken into account. To treat that
case, the lowest order equations for T l and T s would have to
be interchanged. So the choice of the sign of the ∂η term in
the factorization depends on the singularity considered, and

6The argument −i to f2 obtained by setting w = ξ = −i and η = 1
can alternatively be constructed setting ξ = 0 and η = 2 > 1.

the signs for the liquid and solid domains must be opposite
to each other. In our simple example, it is sufficient to just
consider one singularity, because the result for the second will
be the complex conjugate of that for the first.

Having an asymptotic solution that is valid both near the
singularity and all the way to the interface, we may then impose
the solvability condition of a vanishing mismatch function on
this solution.7

In the general case, we cannot simply factorize the basic
partial differential equation but achieve the reduction of
order enabling analytic solutions by Zauderer decomposition.
Analytic continuation to the complex plane will again prove
useful. A convenient starting point consists in representing the
partial differential equations as a set of first order equations.
We define

W =
(

T l
ξ

T l
η

)
, Ws =

(
T s

ξ

T s
η

)
, V =

(
ψξ

ψη

)
,

A =
(

0 1
−1 0

)
, B =

(−u0 −v0

0 0

)
, C =

(
F0 0
0 0

)
,

u0 = ψη + ξPf , v0 = −ψξ − Pf (η − 1) ,

F0 = −e− Pf

2 (η−1)2
. (36)

The governing equations then become

Wξ + AWη + BW + CV = 0, (37a)

Ws
ξ + AWs

η = 0, (37b)

Vξ + AVη = 0. (37c)

A is a constant matrix, B and C are assumed to vary slowly as
functions of η and ξ in the vicinity of the Kruskal-Segur point
(w = −i). This suggests a scale transformation ξ, η → εξ, εη,
emphasizing the derivative terms in Eq. (37). As discussed
in Ref. [30], ε may be related to the stability parameter
after solution of the selection problem, giving ε ∝ σ 2/7.
We will expand equations in powers of ε, drop terms of
order ε2 and higher and set ε = 1 afterwards to simplify
the notation. A key of Zauderer’s approach is to rewrite the
system of equations in terms of eigenvectors of the matrix
A appearing in its principal part (here given by expressions
of the form fξ + Afη) and to obtain decoupled equations
for their coefficients, using appropriate projections onto the
eigenvectors. The eigenvectors of A are

r1 =
(−i

1

)
, r2 =

(
i

1

)
, (38)

corresponding to the eigenvalues i and −i, respectively.
Since A is anti-Hermitean and the eigenvalues different, these
eigenvectors are orthogonal (but the formalism does not rely
on this). We expand the field vectors in terms of r1 and r2:

W = Mr1 + εNr2, (39a)

Ws = Nsr2, (39b)

V = χr1, (39c)

7Actually, what is important is not that the solution remains a
good approximation near the interface but only that it captures the
transcendental term which in regular perturbation theory lies beyond
all orders.
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where the choice of a prefactor ε in front of the coefficient
function N is dictated by our expectation of this term being
small in the liquid, because r1 is the eigenvector leading to an
equation of the form Mξ + iMη = 0 in the limit ε → 0 that can
be identified with the flowless case [see Eq. (37a), where the B

and C terms become negligible after the scale transformation in
the limit ε → 0]. For the case without flow, we have identified
this form to correspond to the equation generating the relevant
component of our solution in the vicinity of the singularity
w = −i. With flow, there will be corrections of order ε that
we wish to calculate. That we have completely dropped one
of the eigenvectors in Eqs. (39b) and (39c) is due to the fact
that Eqs. (37b) and (37c) have only principal parts, so the
coefficients of the dropped eigenvectors decouple completely.
Equation (37b) holds in the solid, so we expect the r2 term to be
dominant, Eq. (37c) refers to the liquid domain, so the r1 term
should be dominant. Once we have calculated the coefficient
functions M , N , Ns , and χ , we may obtain the temperature
and flow fields from

Tξ = −i(M − εN ), Tη = M + εN, (40a)

T s
ξ = iNs, T s

η = Ns, (40b)

ψξ = −iχ, ψη = χ, (40c)

equations that also allow us to obtain boundary conditions for
the coefficient functions from Eqs. (32).

Plugging Eq. (39) into Eq. (37) and neglecting terms of
order ε2, we find

Mξ r1 + εNξ r2 + iMηr1 − iεNηr2

+εBMr1 + εCχr1 = 0, (41a)

Ns
ξ − iNs

η = 0, (41b)

χξ + iχη = 0. (41c)

Next, we project these equations onto the eigenvectors to
cast them in the simplest possible scalar form. Projection
operators on the two eigenvectors are easily constructed
by tensorial multiplication with the dual vectors of the
biorthogonal system constructed from r1 and r2. We have

P1 = 1

2

(
1 −i

i 1

)
, P2 = 1

2

(
1 i

−i 1

)
,

(42)
Pj rk = δj,krk, j,k = 1,2.

Abbreviating a = 1
2 (u0 + iv0), we may write the projections

of Brj and Crj as

P1Br1 = −ar1, P1Cr1 = F0

2
r1,

(43)

P2Br1 = ar2, P2Cr1 = −F0

2
r2.

Applying the projection operators to Eq. (41a) and setting
ε = 1, we obtain

Mξ + iMη − aM + F0

2
χ = 0, (44a)

Nξ − iNη + aM − F0

2
χ = 0, (44b)

which together with Eqs. (41b) and (41c) gives us four
equations for the four quantities M , N , Ns , and χ .

Finally, the boundary conditions (32) have to be trans-
formed into boundary conditions for our new fields. Because
W, Ws , and V are defined in terms of derivatives of the
temperature field and the stream function, we have to take
derivatives in Eq. (41c), wherever nondifferentiated temper-
atures appear. It is here where care has to be taken that the
boundary conditions hold along the interface, and hence we do
not obtain a boundary condition for Tξ directly from Eq. (32a)
or (32b) but one for dT / dξ = Tξ + h′Tη. Using (40), we find
the interface conditions:

M = i

2

[(1 + iξ )h]′

1 + ih′ , (45a)

N − Ns = − i

2

[(1 − iξ ) h]′

1 − ih′ , (45b)

Ns = i

2

σ [κa(θ )]′

1 − ih′ , (45c)

χ = − iPf [ξh]′

1 + ih′ , (45d)

where the prime always denotes a derivative with respect to
ξ . Combining the second and third equations, we see that the
equations for M and N decouple from that for Ns , because
we can give their boundary condition at the interface without
solving the equation for Ns explicitly. (Of course, we have to
make sure that there is a solution in the solid, so the behavior
of Ns near the singularity in question is important.)

The boundary conditions at infinity follow from Eq. (21)
combined with Eq. (28) and simply require all fields to go to
zero in the appropriate infinite limit:

M → 0 (η → ∞), (46a)

N → 0 (η → ∞), (46b)

Ns → 0 (η < 1, |ξ | → ∞), (46c)

χ → 0 (η → ∞). (46d)

The alert reader may be surprised that we have eight boundary
conditions [Eqs. (45) and (46)] for four first-order differential
equations [Eqs. (44), (41b), and (41c)]. The system looks
heavily overdetermined. Normally, this problem does not arise.
If the Zauderer method is applied to a typical boundary value
problem, for example, solving the Laplace equation with
Dirichlet boundary conditions on part of the boundary and
Neumann conditions on the remainder,8 then we will obtain
boundary conditions for some combinations of variables at
the first boundary and for others at the second, with the total
number of conditions just corresponding to the total number
of equations. However, our problem is not typical, as is well
known. The interface position itself is an unknown of the
problem, requiring the imposition of an additional boundary
condition at the interface. As a consequence, we obtain a
full set of boundary conditions already from (45), but it is in
terms of the unknown interface position h(ξ ). The remaining
boundary conditions (46) then are solvability conditions to
be imposed on that unknown function. It will turn out that
three of these conditions can be satisfied automatically by

8In the form we employ, the method is not suited for Dirichlet
boundary conditions, due to the transformation to a first-order system.
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requiring h(ξ ) or the curvature to approach zero sufficiently
fast at infinity. The last one is a nontrivial equation for h(ξ )
which replaces the integro-differential equation derivable in
problems with linear bulk equations. Applying the Kruskal-
Segur method to this interface equation, we may then derive
the selection equations.

VI. SOLUTION OF THE DECOMPOSED EQUATIONS

All equations to be solved are now first order with linear
derivative terms. This suggests trying their analytic solution
via the method of characteristics, a step allowing us to make
progress despite the nonlinearity of the basic equations.

The principal parts of Eqs. (41) correspond to two sets
of characteristic coordinates. We start with Eqs. (41c) and
(44a), first setting χ = χ (s,τ ) with s = s(ξ,η) and τ = τ (ξ,η).
The linear combination of derivatives should correspond to a
derivative with respect to s only, which yields the characteristic
equations

dξ

ds
= 1,

dη

ds
= i,

dχ

ds
= 0. (47)

Solving this system with the initial condition

η(s = 0) = 1, ξ (s = 0) = τ, (48)

we obtain

s = −i (η − 1) , (49a)

τ = ξ + i (η − 1) , (49b)

χ = χ (τ ) = − iPf [τh(τ )]′

1 + ih′ ; (49c)

i.e., χ is simply the analytic continuation into the upper
η half plane of the function represented by the boundary
condition (45d) at η = 1. This was to be expected, since
Eq. (41c) contains only a principal part. Analyticity requires χ

to remain bounded for η → ∞; in fact, we have the stronger
condition (46d). To make sure it is satisfied, we may impose
the perturbation h(τ ) to decay fast enough for τ → i∞ so that
[τh(τ )]′ → 0.

The case of the function M is more interesting. We have
the same characteristic coordinates s and τ , and the equation
for M takes the form

Ms − Pf

2
(2s + τ ) M + iPf [τh(τ )]′

2 (1 + ih′)
e

Pf

2 s2 = 0. (50)

Solving this with initial condition (45a), we find

M(s,τ ) = i

2
e

Pf

2 (s2+sτ )

{
[(1 + iτ )h]′

(1 + ih′)

− 2[τh]′

τ (1 + ih′)
(
1 − e− Pf

2 sτ
)}

, (51)

and boundary condition (46a) is satisfied, if again we assume
h(τ ) → 0 for τ → i∞.

The characteristic coordinates for the other two equations
are

s̄ = i (η − 1) , τ̄ = ξ − i (η − 1) , (52)

and we obtain
dNs

ds̄
= 0, (53)

giving the obvious solution

Ns = i

2

σ [κ(τ̄ )a(θ )]′

1 − ih′(τ̄ )
, (54)

and boundary condition (46c) is satisfied, if we require the
(derivative of the) curvature term κa to vanish for τ̄ → −i∞.9

Finally, the equation for N becomes

Ns̄ = −Pf

2
τ̄M(−s̄,τ̄ + 2s̄) + iPf [(τ̄ + 2s̄)h(τ̄ + 2s̄)]′

2[1 + ih′(τ̄ + 2s̄)]
e

Pf

2 s̄2

(55)

with the boundary condition at s̄ = 0, following from Eq. (45b)
and (45c) with ξ = τ̄ :

N (s̄ = 0) = i

2

σ (κa)′(τ̄ )

1 − ih′(τ̄ )
− i

2

[(1 − iτ̄ ) h(τ̄ )]′

1 − ih′(τ̄ )
. (56)

Equation (55) can be solved by direct quadrature, with the
result

N (s̄,τ̄ ) = −Pf

2
τ̄

∫ s̄

0
M(−s̄ ′,τ̄ + 2s̄ ′) ds̄ ′

+ iPf

2

∫ s̄

0

[(τ̄ + 2s̄ ′)h(τ̄ + 2s̄ ′)]′

1 + ih′(τ̄ + 2s̄ ′)
e

Pf

2 s̄ ′2
ds̄ ′

+ i

2

[
σ (κa)′(τ̄ )

1 − ih′(τ̄ )
− [(1 − iτ̄ ) h(τ̄ )]′

1 − ih′(τ̄ )

]
, (57)

and a sufficient condition for boundary condition (46b) to be
satisfied is

lim
s̄→i∞

N (s̄,τ̄ ) = 0. (58)

Evaluation of this requirement will produce the central
equation, to which the Kruskal-Segur method can be applied.
Note that Eq. (58) is an equation for the interface position
h(τ̄ ) that has to be satisfied identically in the single complex
variable τ̄ . The next task is to cast this equation into a
useful form. Since this is purely technical, we relegate
the calculation to the appendices. The resulting interface
equation is

σκ(ξ )a(ξ ) = (1 − iξ ) h(ξ ) + Pf

4
e

Pf

8 ξ 2
∫ ξ

e− Pf

8 ξ ′2

×
[

1 − ih′(ξ ′)
1 + ih′(ξ ′)

ξ ′(1 − iξ ′)h(ξ ′)

+ Pf

2
[1 − ih′(ξ ′)]

∫ i∞

ξ ′
ξ ′′h(ξ ′′)

ξ ′′ − ξ ′

1 + ih′(ξ ′′)

× e
Pf

8 (ξ ′−ξ ′′)2
dξ ′′

]
dξ ′

− Pf

2
e

Pf

8 ξ 2
∫ ξ

e− Pf

8 ξ ′2
{

[1 − ih′(ξ ′)]

×
∫ i∞

ξ ′
ξ ′′h(ξ ′′)

ih′′(ξ ′′)
[1 + ih′(ξ ′′)]2

e
Pf

8 (ξ ′−ξ ′′)2
dξ ′′

9Note that the curvature vanishes for h → ∞ and becomes equal to
the curvature of the Ivantsov parabola for h → 0, and hence vanishes
for |ξ | → ∞ in that case.
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+ ξ ′
∫ ξ ′

h′′(ξ ′′)
[
i(1 + iξ ′′)h(ξ ′′)
[1 + ih′(ξ ′′)]2

+
∫ i∞

ξ ′′
M

(
1

2
(ξ ′′ − ξ ′′′),ξ ′′′

)
dξ ′′′

]
dξ ′′

}
dξ ′,

(59)

where we have renamed τ̄ into ξ for convenience and replaced
the argument θ of the anisotropy function also by ξ [the
dependence a(ξ ) is given in the Appendices]. Note that we can
immediately read off the limit of vanishing flow (Pf → 0) and
verify that it agrees with the local equation (34). [This may,
of course, already be seen from Eqs. (57) and (58).] The full
equation is nonlocal, but it is tractable via asymptotic methods.

In principle, Zauderer’s scheme may be used to solve
the system of Eqs. (37) perturbatively. To carry out this
(complicated) calculation, one would have to keep the dropped
terms of order ε2 and to add terms containing the missing
eigenvectors (and a factor ε) to Eqs. (39b) and (39c). Inspection
immediately reveals that this expansion in powers of ε does
not correspond to a perturbation series about the flow-Ivantsov
solution: setting ε = 0 does not give us the full flow-Ivantsov
solution but only the solutions of the first-order equations
obtained from the projection onto eigenvectors of A; e.g., in
the case of the Laplace equation for χ we would just obtain
a solution to χξ + iχη = 0. However, these pieces of the full
solution are the ones that diverge in the limit σ → 0 near
the singularity of interest, whereas the other terms remain
finite. Hence, the lowest-order Zauderer solution corresponds
to the exact solution of the problem near the singularity. So
the perturbative scheme arising from Zauderer decomposition
corresponds to an expansion about the analytic continuation
of the flow-Ivantsov solution in the vicinity of the singularity.
This may be seen as the deeper reason why a condition
for the transcendental term which is beyond all orders in
regular perturbation theory appears already at first order in
our approach: near the singularity this term is not small, so it
has to be present in a Zauderer-type perturbation theory.

We have carried this perturbative approach beyond first
order for the simpler problem without flow. If we expand h

and κ in powers of ε as well, i.e., h = h0 + εh1 + · · · and
κ = κ0 + εκ1 + · · ·, a solvability condition similar to Eq. (34)
appears to turn up at the next order involving h1 and κ1, but
it is automatically satisfied. Hence, it seems that the lowest-
order solvability condition does indeed capture the mismatch
function needed to obtain the selection criterion. While we
knew this to be true from comparison with known results in
the case of Eq. (34), these arguments suggest it to hold in
general, i.e., also for Eq. (59).

In order to obtain the mismatch function (or the contribution
to it by the singularity considered) at the interface, we have
to solve Eq. (59). Far from the singularity, this can be
done by linearization in terms of the interface position h

and its derivatives, which may all be considered small. The
appropriate tool is WKB analysis. Due to the linearity of the
problem, this will provide the solution up to a constant factor
only. Using asymptotic analysis, we can then solve Eq. (59)
near the singularity, taking all important nonlinearities into
account. Asymptotic matching of the two solutions provides
the prefactor of the near-interface solution. The mismatch

function calculated from it must vanish at the tip of the needle
crystal; this is the solvability condition.

VII. WKB ANALYSIS FAR FROM THE SINGULARITY

Linearizing (59), we obtain the inhomogeneous linear
equation

σ

[
1

(1 + ξ 2)
3
2

− h′′(ξ )√
1 + ξ 2

− ξh′(ξ )

(1 + ξ 2)
3
2

]

= (1 − iξ )h(ξ ) + Pf

4
e

Pf

8 ξ 2
∫ ξ

e− Pf

8 ξ ′2
ξ ′(1 − iξ ′)h(ξ ′) dξ ′.

(60)

The solution of this consists of a particular solution to
the inhomogeneous equation (which will be captured by
regular perturbation theory) plus the general solution of
the homogeneous equation (with integration constants to be
determined from boundary conditions on h). The latter consists
of an exponentially small and an exponentially large term. The
large term is suppressed already within regular perturbation
theory, but the small one will not appear therein at any finite
order. It becomes important, when, due to symmetries of the
problem, all terms of regular perturbation theory vanish. In the
needle-crystal problem, this is the case at the tip of the crystal.
So the transcendentally small term that must be suppressed can
be identified with the decaying solution of the homogeneous
linear equation corresponding to Eq. (60). Alternatively, we
could argue that the general solution to the inhomogeneous
equation may be obtained, within WKB theory, via the method
of variation of constants [38]. Again, the exponentially large
term must be eliminated by an appropriate choice of an
integration parameter. The exponentially small one has the
same form as the decaying solution of the homogeneous
equation, except that there is now a slowly varying prefactor.
Since the mismatch function is to be evaluated at the tip
position in the end, it has the same form as this solution.

The only tricky part of the calculation of the WKB solution
is the evaluation of the integral in Eq. (60), which can be done
via integration by parts. We obtain

h(ξ ) = B1e
Pf

16 (1 + iξ )−
3
8 (1 − iξ )−

5
8 e

S0(ξ )√
σ

+ Pf

16 ξ 2

(61)

with an unknown constant B1 and

S0(ξ ) = i

∫ ξ

−i

(1 + iξ ′)
1
4 (1 − iξ ′)

3
4 dξ ′. (62)

VIII. SOLUTION NEAR THE SINGULARITY

The most appropriate form of Eq. (59) for a local analysis
near the singularity seems to be Eq. (B9). With M given
explicitly, it reads

F (ξ ) = Pf

4

∫ ξ∫ i∞

ξ ′

z̄(ξ ′)
z(ξ ′′)

(
ξ ′e

Pf

8 (ξ ′2−ξ ′′2)

{
[(1 + iξ ′′)h(ξ ′′)]′

− 2

ξ ′′ [ξ
′′h(ξ ′′)]′ · (

1 − e
Pf

4 ξ ′′(ξ ′′−ξ ′))}

− 2[ξ ′′h(ξ ′′)]′e
Pf

8 (ξ ′−ξ ′′)2

)
dξ ′′ dξ ′. (63)
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Introducing the stretching transformation10

ξ = −i(1 − σαt) (64)

with α = 2
7 (obtained from a dominant balance consideration),

we set

h(ξ ) = σαφ(t), (65)

from which we get

h′ = −iφ̇, (66a)

h′′ = −σ−αφ̈, (66b)

(1 − iξ )h = σ 2αφt, (66c)

and find, to leading order in σ ,

F = σ 2α

{
1√

2t + 2φ

[
φ̈

(1 − φ̇2)
3
2

+ 1 + φ̇

(2t + 2φ)
√

1 − φ̇2

]
− φt

}
. (67)

Rewriting the right-hand side of Eq. (63) in terms of the new
variable is a bit more involved and leads to

F = Pf

4
σ 3α

∫ t ∫ t ′

∞

1 − φ̇(t ′)
1 + φ̇(t ′′)

[
e

Pf

4 σα(t ′−t ′′)(t ′′φ̇ − φ)

+ 2(t ′ − t ′′)φ̇
]
dt ′′ dt ′. (68)

An important result is that the leading order of σ is σ 3α ,
which in the limit σ → 0 vanishes faster than the leading
order of Eq. (67). This means that for finite Pf the selected
stability parameter will be the same as in the flowless case
with otherwise equal parameters. Hence, for the same Pc,
the same tip radius (and velocity) will be selected with and
without flow. For given undercooling, the selected velocity and
tip radius will be different from the corresponding quantity
of the flowless case only due to the different relationship
(27) between undercooling and growth Péclet number, which
contains a dependency on Pf (i.e., for the same �, Pc is
different in the two cases). In fact, this result has been used as
an assumption in the past to compute selected growth velocities
in convective situations [39]. Here, it has been proved for
the case of potential flow, but our experience with other flow
patterns suggests this to be a general feature of convection. To
our knowledge, no general proof has been given so far.

To obtain a nontrivial dependency of the stability parameter
on the flow Péclet number, we have to assume large flow
velocities, e.g., Pf = O(σ−α) = O(σ−2/7). Hence we set

P1 = Pf

4
σα. (69)

Since we expect that there is no solution in the isotropic
case, we take surface tension anisotropy into account right
away. Performing the stretching transformation for a(θ ), we
find

a(θ ) = 1 − 2βσ−2α(1 − φ̇)2

(t + φ)2(1 + φ̇)2
. (70)

10It should be kept in mind that the variable t introduced here has
nothing to do with a time. Nevertheless, we denote derivatives with
respect to t by overdots.

The anisotropy parameter β usually is numerically small.
Setting

β = σ 2αb = σ 4/7b, (71)

we may cast our interface equation into the form

φt + P1

∫ t ∫ t ′

∞

1 − φ̇(t ′)
1 + φ̇(t ′′)

[
eP1(t ′−t ′′)(t ′′φ̇ − φ)

+2(t ′ − t ′′)φ̇
]
dt ′′ dt ′

= 1√
2t + 2φ

[
φ̈

(1 − φ̇2)
3
2

+ 1 + φ̇

(2t + 2φ)
√

1 − φ̇2

]

×
[

1 − 2b(1 − φ̇)2

(t + φ)2(1 + φ̇)2

]
. (72)

Given the boundary condition that the imaginary part of φ̇

vanishes for t → ∞ (which is the condition that the tip slope
of the needle crystal is equal to zero) and a prescribed value
of P1, this constitutes a nonlinear eigenvalue problem for b.
We have solved this numerically in the complex plane, using
a scheme similar to the one given by Tanveer [21]; we employ
a relaxation method along two straight intersecting lines in
the complex plane, one of them parallel to the imaginary, the
other lying on the real t axis. Details of the numerical approach,
which is a root finding problem involving the integration of
several ordinary differential equations and exhibits a certain
level of complexity, will be given elsewhere.

We do not find any solutions with b = 0, suggesting that
there does not exist, as anticipated, any steady-state needle
crystal close to a flow-Ivantsov parabola in the case of isotropic
surface tension.

For anisotropic surface tension, we have the usual re-
lationship between the selected stability parameter and the
anisotropy parameter

σ =
(

β

b

) 7
4

. (73)

If the general solution behavior is similar to that of the flowless
case, the solution corresponding to the lowest eigenvalue b

should be the only one that is linearly stable. We assume this
to be true, but have not yet been able to check it.

The relationship between the physical flow Péclet number
and our P1 is

Pf = 4P1

√
b

β
. (74)

Once we have Pf and σ , we may determine Pc from Eq. (27),11

and using the definitions (16) of Pc and (20) of σ we can
evaluate both the selected tip radius ρ and tip velocity V .

11Since our calculation is valid for Pc 
 1, we might, for finite
Pf , use the analytic approximation obtained by setting Pc = 0 on
the right-hand side of Eq. (27), without changing the order in Pc

up to which the calculation is correct; in the case of Pf = 0, we
first would have to evaluate the integral on the right-hand side, but
could still set Pc = 0 in the exponential prefactor. The numerical
evaluation of Pc from Eq. (27) interpolates smoothly between these
two limits, corresponding to Pc ∝ � and Pc ∝ �2, respectively. This
is one reason for using the full Eq. (27) rather than its asymptotic
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FIG. 2. The stability parameter σ as a function of the flow Péclet
number Pf . Material parameters used correspond to pivalic acid with
� = 0.0169 and β = 0.09 [47].

Note that while our approximations hold in the limit Pc 

Pf , which implies in particular an approximation for T l in
Eq. (26) that does not approach the limit Pf → 0 uniformly in
η, the eigenvalue b obtained numerically will still be correct
in that limit, due to the structure of Eq. (59), which reduces to
the selection criterion without flow. Indeed, we have verified
that we obtain the same value of b as Tanveer [21] in the case
without flow.

Although our model is definitely a toy model, as experi-
mental flow patterns and velocities will not be well described
by a potential flow,12 we carry the calculation to its end
using parameters determined for an experimental substance,
pivalic acid. Since it is not to be expected that this will give
more than qualitative trends, the purpose of this exercise is
mostly to demonstrate that the (relatively elaborate) formalism
produces numbers finally and that these numbers do not have
unreasonable orders of magnitude.

Caveats to be kept in mind are the following:
(1) We use the symmetric model, whereas the one-sided

model would be more appropriate for experiments with solute
diffusion. However, this is known to just make a difference of
a factor of two in the selected velocity [42] in the diffusion-
limited case. We expect a similar closeness of results of the
two models in the presence of convection.

(2) Our model is only two-dimensional, which certainly
impedes its quantitative applicability to experiments. On
the other hand, typically the predictions of microscopic

form for small Pc. Another reason: the equation represents global
heat conservation that we wish to satisfy as closely as possible.
12A potential flow would be expected around solid helium growing

into its superfluid. For such a system, the Gibbs-Thomson condition
will not describe the interface temperature correctly anymore due
to the appearance of a Kapitza resistance. Moreover, the only
experiments on dendritic growth with solid helium we are aware
of [40,41] (4He, 3He) were done at temperatures well above the
transition to superfluidity.

0.1 1 10

0.01

0.1

∝ U 0.642

pivalic acid
Δ = 0.0169
β = 0.09

U µm
s

V
µ

m s

FIG. 3. The crystal growth velocity V as a function of the flow
velocity U .

solvability theory do not differ much for two-dimensional and
(axisymmetric) three-dimensional systems [43].

(3) More importantly, pivalic acid has kinetic anisotropy,
so it is not to be expected anyway that a model imposing
local equilibrium at the interface will yield a good description.
We chose the experiments from Ref. [44] for comparison,
because they have flow velocities that are in the range of
numerical accessibility for our code, whereas in experiments
with succinonitrile [45] (a system expected to be better
suited for comparison on physical grounds), the imposed flow
velocities were very large, leading to convergence problems in
our eigenvalue computation.

(4) Potential flow and hence our relationship between Pc

and Pf is not realized in the experiments.
Material parameters were taken from Refs. [44,46,47], and

an undercooling of about 0.2 K (equivalent to � = 0.0169)
was assumed, corresponding to a situation considered in the
experiments. Results are shown in Figs. 2 to 5.

Figure 2 gives the selected value of σ as a function of the
flow Péclet number for fixed undercooling � and an anisotropy
parameter that corresponds to a measured value [47].

In Figs. 3 and 4 we give the selected growth velocity V and
tip radius ρ13 in dimensional form. We refrain from compar-
ing these numerical results with a concrete experiment,
because there are too many uncertainties regarding the ap-
plicability of the toy model to real life.

All that we wish to point out here is that there are power law
scaling relations between the growth velocity and the velocity
of the imposed flow as well as between the tip radius and the
flow velocity, valid in a range of undercoolings. This feature

13This is not the radius of curvature at the tip of the true crystal
but the one corresponding to a flow-Ivantsov solution traveling at the
same velocity; i.e., the radius should be obtained by fitting the tail of
an experimental needle crystal, after removal of noise-induced side
branches, to a parabola. Since correction for side branches is tricky,
one may instead fit to an appropriate piece of the needle crystal ahead
of the side-branching region but not too close to the tip.
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FIG. 4. The tip radius of the needle crystal ρ as a function of the
flow velocity U .

will probably not disappear in a more quantitative calculation.
In fact, we have checked for an extended range of anisotropies,
thus varying σ between small and very large values, that the
scaling exponents change only slightly.

Finally, we do compare the values of ρ2V obtained from this
calculation with experimental values in a flow situation [44],
because ρ2V is expected to be a slowly varying quantity,
and therefore what matters mostly is the overall order of
magnitude. As Fig. 5 demonstrates, this quantity compares
reasonably with experiment. In fact, considering that the
experimentalists describe their flow pattern as approximate
Oseen flow, the agreement is not too bad. This should, of
course, not be taken too seriously either. A real comparison
will have to await a calculation with a more realistic flow (and,
for pivalic acid, a different interface boundary condition).

To conclude this section, it may be noted that a local
asymptotic analysis of Eq. (72) for t → ∞ yields the same
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β = 0.09
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ρ
2
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µ
m

3

s this work

experiment

FIG. 5. The product ρ2V as a function of the flow velocity U ,
compared with an experiment [44].

transcendental behavior as Eq. (61) and provides the prefactor
B1 in terms of the solution of the nonlinear equation (72) as a
function of P1 and b. Since the boundary condition on the tip
slope was, however, already incorporated into the numerical
scheme for the solution of Eq. (72), this calculation does not
provide anything new.

IX. CONCLUSIONS

After introducing the combination of Zauderer decompo-
sition with the Kruskal-Segur approach recently [30,31], we
have now presented the method in more detail. The analytic
part of the calculation has been exemplified with a fully
nonlinear problem. Approximations that were introduced in
Ref. [30] for didactic reasons have been removed, rendering
the full power of the method visible.

We believe our approach to be the only one presented so
far that has the potential of a rigorous solution of pattern
selection problems with nonlinear bulk equations. Essentially,
our belief that the method is rigorous rests on two facts: first,
the Zauderer decomposition scheme produces a solution that
becomes exact near the appropriate complex-plane singularity;
second, the WKB solution derived from the interface equation
within the scheme generates the same transcendental terms
that a WKB solution derived from the full system of partial
differential equations would. The second statement has been
shown to be true for the flowless case [31], and we have given
arguments here why it should carry over to the nonlinear case
as well.

The elegance and power of the method show up in its
rendering the purely diffusion-limited case almost trivial
[30,31]. When applied to a problem with nonlinear bulk
equations, calculations certainly become involved. But the
problem remains solvable in a controlled manner, not provided
by other methods. That in the final step the numerical
determination of an eigenvalue becomes necessary should not
prevent us from considering the approach basically analytical.
A similar final step is necessary in almost all related problems
with simpler bulk equations, even though the nonlinear
equation to be solved numerically is less difficult in these
cases.

We are convinced that our method will render a number
of selection problems accessible to solvability theory for
which controlled approximations could not be developed
in the past, thus opening a new line of research. These
problems would include nonlinear diffusion [48], density-
driven convection [49] (for which we have given a preliminary
treatment before [50]), Oseen flow [44,51], and the effect of
the Kapitza resistance on dendritic growth of helium [40,41],
but also pattern selection problems outside of crystal growth,
such as, for example, the motion of the two-phase front
between superconducting and normal conducting parts of a
material [52].
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APPENDIX A: CONFORMAL PARABOLIC COORDINATES

The unnormalized coordinate basis is given by

Eξ ≡ ∂x
∂ξ

=
(

η

−ξ

)
, Eη ≡ ∂x

∂η
=

(
ξ

η

)
, (A1)

which yields g2
ξ ≡ |Eξ |2 = ξ 2 + η2 = |Eη|2 ≡ g2

η .
For the nabla operator, we get

∇ = 1√
ξ 2 + η2

[
eξ

∂

∂ξ
+ eη

∂

∂η

]
, (A2)

whereas the Laplacian reads

∇2 = 1

ξ 2 + η2

[
∂2

∂ξ 2
+ ∂2

∂η2

]
. (A3)

After normalization, the basis vectors are

eξ = 1√
ξ 2 + η2

(ηex − ξey),

(A4)

eη = 1√
ξ 2 + η2

(ξex + ηey),

which can be inverted to express the Cartesian basis by the
orthonormal parabolic one

ex = 1√
ξ 2 + η2

(ηeξ + ξeη),

(A5)

ey = 1√
ξ 2 + η2

(ηeη − ξeξ ).

Let ηs(ξ ) − η = 0 describe the interface, then the normal
vector n can be derived from Frenet’s formulas. The position
vector at the interface may be written

x = ηsξex + 1
2

(
η2

s − ξ 2
)
ey, (A6)

and the differential line element along this curve is

ds =
√

dx2 + dy2 =
√(

η2
s + ξ 2

)(
1 + η′2

s

)
dξ. (A7)

The tangential vector at the interface is given by dx/ ds, the
normal vector must be orthogonal to it. By this condition, it
is determined up to a sign that we choose so as to make the
normal vector point into the liquid. This procedure yields

n = 1√
1 + η′2

s

(eη − η′
seξ ). (A8)

The curvature is given by

κ = −n · d2r
ds2

= − 1√
ξ 2 + η2

s

[
η′′

s(
1 + η′2

s

) 3
2

+ η′
sξ − ηs(

ξ 2 + η2
s

)√
1 + η′2

s

]
, (A9)

and it is positive for a convex solid.
We assume the usual model of four-fold crystalline

anisotropy:

a(θ ) = 1 − β cos 4θ = 1 − β(1 − 8 cos2 θ sin2 θ ). (A10)

The small parameter β is the strength of the anisotropy. θ is
the angle of the interface normal with the y axis, so we have

cos θ = n · ey and sin θ = n · ex , which allows us to find the
anisotropy function expressed in parabolic coordinates:

a(θ ) = 1 − β

[
1 − 8

(ξ − ηsη
′
s)

2(ηs + ξη′
s)

2(
ξ 2 + η2

s

)2(
1 + η′2

s

)2

]
. (A11)

Finally, the flow velocity is given by

w = 1√
ξ 2 + η2

(ψηeξ − ψξ eη). (A12)

APPENDIX B: DERIVATION OF THE
INTERACE EQUATION

We first introduce some simplifications of notation. Substi-
tuting τ̄ = ξ and s̄ ′ = 1

2 (u − ξ ) and defining

F (ξ ) = σκ(ξ )a(θ (ξ )) − (1 − iξ )h(ξ ), (B1)

z(ξ ) = 1 + ih′(ξ ), (B2)

z̄(ξ ) = 1 − ih′(ξ ), (B3)

we have from Eq. (57) with (58)

F ′(ξ ) = − i

2
Pf ξ z̄(ξ )

∫ i∞

ξ

M

(
1

2
(ξ − u),u

)
du

− 1

2
Pf z̄(ξ )

∫ i∞

ξ

[uh]′

z(u)
e

Pf

8 (ξ−u)2
du (B4)

with the prime denoting a derivative with respect to ξ or u,
depending on whether the term concerned is outside or inside
an integral. Writing out M , we have

M

(
1

2
(ξ − u),u

)
= i

2z(u)
e

Pf

8 (ξ 2−u2)

{
[(1 + iu)h]′

− 2[uh]′

u

(
1 − e− Pf

4 (ξ−u)u
)}

(B5)

and

∂

∂ξ
M

(
1

2
(ξ − u),u

)
= Pf ξ

4
M

(
1

2
(ξ − u),u

)

− iPf

4

[uh]′

z(u)
e

Pf

8 (ξ−u)2
. (B6)

Inserting this into Eq. (B4), we obtain a useful expression for
the derivative of F :

F ′(ξ ) = −2iz̄(ξ )
∫ i∞

ξ

∂

∂ξ
M

(
1

2
(ξ − u),u

)
du

= −2iz̄(ξ )

[
∂

∂ξ

∫ i∞

ξ

M

(
1

2
(ξ − u),u

)
du + M(0,ξ )

]

= −2iz̄(ξ )
∂

∂ξ

∫ i∞

ξ

M

(
1

2
(ξ − u),u

)
du

+ z̄(ξ )

z(ξ )
[(1 + iξ ) h(ξ )]′ . (B7)

This can be integrated by parts. Using[
z̄

z

]′
= −2i

h′′

z2
, (B8)
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we arrive at

F (ξ ) = −2iz̄(ξ )
∫ i∞

ξ

M

(
1

2
(ξ − u),u

)
du + 2

∫ ξ

h′′(ξ ′)
∫ i∞

ξ ′
M

(
1

2
(ξ ′ − u),u

)
du dξ ′

+ z̄(ξ )

z(ξ )
(1 + iξ ) h(ξ ) + 2i

∫ ξ h′′(ξ ′)
z2(ξ ′)

(1 + iξ ′)h(ξ ′) dξ ′, (B9)

which is not quite the form we want. On the one hand, Eq. (B9) manifests a certain generality, since it is valid for arbitrary flows.
But on the other hand, we would appreciate to have a right-hand side that obviously vanishes for Pf → 0. To achieve this, we
use Eq. (B9) to eliminate the first term on the right-hand side of Eq. (B4):

F ′(ξ ) = Pf

4
ξF (ξ ) − Pf

4
ξ
z̄(ξ )

z(ξ )
(1 + iξ ) h(ξ ) − i

2
Pf ξ

∫ ξ h′′(ξ ′)
z2(ξ ′)

(
1 + iξ ′) h(ξ ′) dξ ′

− Pf

2
ξ

∫ ξ

h′′(ξ ′)
∫ i∞

ξ ′
M

(
1

2
(ξ ′ − u),u

)
du dξ ′ − Pf

2
z̄(ξ )

∫ i∞

ξ

[uh]′

z(u)
e

Pf

8 (ξ−u)2
du. (B10)

Employing the identities∫ i∞

ξ

[uh]′

z(u)
e

Pf

8 (ξ−u)2
du = −ξh(ξ )

z(ξ )
−

∫ i∞

ξ

{
uh(u)

[
(u − ξ )Pf

4z(u)
− ih′′(u)

z2(u)

]
e

Pf

8 (ξ−u)2

}
du, (B11)

F ′(ξ ) − Pf

4
ξF (ξ ) = e

Pf

8 ξ 2 d

dξ

[
F (ξ )e− Pf

8 ξ 2]
, (B12)

the first of which is obtained via integration by parts again, we may rewrite (B10) as follows:

e
Pf

8 ξ 2 d

dξ

[
F (ξ )e− Pf

8 ξ 2] = Pf

4

z̄(ξ )

z(ξ )
ξ (1 − iξ ) h(ξ ) + Pf

2
z̄(ξ )

∫ i∞

ξ

[
uh(u)

(
(u − ξ )Pf

4z(u)
− ih′′(u)

z2(u)

)
e

Pf

8 (ξ−u)2

]
du

− i

2
Pf ξ

∫ ξ h′′(ξ ′)
z2(ξ ′)

(1 + iξ ′)h(ξ ′) dξ ′ − Pf

2
ξ

∫ ξ

h′′(ξ ′)
∫ i∞

ξ ′
M

(
1

2
(ξ ′ − u),u

)
du dξ ′. (B13)

With one further integration, we arrive at Eq. (59).
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97 (1988).

[37] L. Cummings, Y. Hohlov, S. Howison, and K. Kornev, J. Fluid
Mech. 378, 1 (1999).

[38] C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers (McGraw-Hill, New York,
1978).

[39] R. Ananth and W. N. Gill, J. Cryst. Growth 108, 173 (1990).
[40] J. P. Franck and J. Jung, J. Low Temp. Phys. 64, 165 (1986).
[41] E. Rolley, S. Balibar, and F. Graner, Phys. Rev. E 49, 1500

(1994).
[42] C. Misbah, J. Phys. France 48, 1265 (1987).
[43] M. Muschol, D. Liu, and H. Z. Cummins, Phys. Rev. A 46, 1038

(1992).

[44] P. Bouissou, B. Perrin, and P. Tabeling, Phys. Rev. A 40, 509
(1989).

[45] Y.-W. Lee, R. Ananth, and W. N. Gill, J. Cryst. Growth 132, 226
(1993).

[46] E. Rubinstein and M. Glicksman, J. Crystal Growth 112, 84
(1991).

[47] A. Dougherty, J. Cryst. Growth 110, 501 (1991).
[48] D. A. Kurtze, Phys. Rev. A 36, 232 (1987).
[49] Y. Sun and C. Beckerman, J. Cryst. Growth 311, 4447 (2009).
[50] T. Fischaleck and K. Kassner, Verh. DPG 37, 128 (2002).
[51] V. Emsellem and P. Tabeling, J. Cryst. Growth 156, 285 (1995).
[52] S. J. Chapman, in Proceedings of the First World Congress on

World Congress of Nonlinear Analysts ’92, volume IV, WCNA
’92 (Walter de Gruyter, Hawthorne, NJ, 1995), pp. 3803–3809.

042405-15

http://dx.doi.org/10.1016/0022-0248(88)90439-3
http://dx.doi.org/10.1016/0022-0248(88)90439-3
http://dx.doi.org/10.1017/S0022112098003188
http://dx.doi.org/10.1017/S0022112098003188
http://dx.doi.org/10.1016/0022-0248(91)90365-C
http://dx.doi.org/10.1007/BF00685127
http://dx.doi.org/10.1103/PhysRevE.49.1500
http://dx.doi.org/10.1103/PhysRevE.49.1500
http://dx.doi.org/10.1051/jphys:019870048080126500
http://dx.doi.org/10.1103/PhysRevA.46.1038
http://dx.doi.org/10.1103/PhysRevA.46.1038
http://dx.doi.org/10.1103/PhysRevA.40.509
http://dx.doi.org/10.1103/PhysRevA.40.509
http://dx.doi.org/10.1016/0022-0248(93)90266-Y
http://dx.doi.org/10.1016/0022-0248(93)90266-Y
http://dx.doi.org/10.1016/0022-0248(91)90914-Q
http://dx.doi.org/10.1016/0022-0248(91)90914-Q
http://dx.doi.org/10.1016/0022-0248(91)90286-E
http://dx.doi.org/10.1103/PhysRevA.36.232
http://dx.doi.org/10.1016/j.jcrysgro.2009.07.031
http://dx.doi.org/10.1016/0022-0248(95)00282-0



