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Nonlinear evolution of surface morphology under shadowing
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Fluorocarbon thin-film deposition is studied, which shows an anomalous high dynamic growth exponent and
therefore does not fit in any universal class of fractal surface growth models. A detailed analysis of the nonlinear
behavior of the surface morphology evolution is carried out, quantifying several features of the shadowing
instability. A synergy effect with the Kardar-Parisi-Zhang nonlinearity, which couple the large scales induced by
shadowing with intermediate scales, may explain the anomalous high growth exponent.
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I. INTRODUCTION

Thin-film surface morphology controls many important
physical and chemical properties of the films. It is therefore
of great interest to understand and control the evolution of the
surface morphology during thin-film growth. For example,
very rough surfaces have a low wettability and can result
in so-called superhydrophobic films with applications in
waterproofing of textiles or biocompatible layers in medical
devices. Rough surfaces are characterized by a complex
fractal-like surface morphology. As fractals result from the
nonlinear dynamic of the system, nonlinear processes as
spontaneous pattern formation are strongly linked with rough
surfaces. Thus, spontaneous pattern formation during surface
processing is a way to fabricate nanoscale textured (rough)
materials. The kinetic roughening of many surfaces follows
rather simple scaling laws [1]. Within this scaling theory,
the surface roughness can be represented by the root-mean-
square w of fluctuations of the surface height h(r,t). At
early times during deposition, the surface roughness should
scale with the time w ∼ tβ , where β is the growth exponent.
The growth saturates after some time tx and the surface
roughness should scale with the system size w ∼ Lα , where α

is called the roughness exponent. These exponents allow one
to classify different universality classes, providing information
about the underlying equations determining the deposition
process.

Continuum growth equations are valid in the small slope
approximation |∇h| � 1, but with increasing system size,
the slopes increase and the saturation can be dominated by
nonlinear processes. Also other processes governing the film
growth such as redeposition [2] or shadowing [3] are nonlinear.
Thus, there is a necessity to study the nonlinear behavior during
deposition. Previous experimental investigations of the surface
roughening have been restricted to the determination of the
scaling exponents α and β [4–6]. These scaling exponents can
be compared with predictions of universal classes including
nonlinear terms. More detailed analyses are necessary, in
particular, if the experimental scaling exponents do not fit
to any universal class. Such an anomalous scaling has been
reported from fluorocarbon thin-films deposition [4], where
shadowing has been expected to be responsible for the large β.

This study presents the first detailed nonlinear analysis of the
spectral redistribution of surface height perturbations during
deposition. To gain insight into the shadowing mechanism
the analysis of experimental data is accompanied by a simple
Monte Carlo simulation of pure shadowing to characterize,
quantify, and distinguish the effects of shadowing against
other possible roughening mechanisms. It is found that the
experimentally observed surface morphology shows all fea-
tures of shadowing. The development of large-scale structures
on the surface is due to shadowing. Although strongly present,
shadowing alone cannot account for the observed large β.
The Kardar-Parisi-Zhang (KPZ) nonlinearity redistributes the
surface height perturbations among the scales and transfers
the perturbations from the large-scale structures induced by
the shadowing to smaller scales. This synergy effect between
these two nonlinearities may be indeed responsible for the
anomalous scaling reported in Ref. [4].

II. EXPERIMENTAL SETUP AND PREVIOUS RESULTS

Fluorocarbon films were deposited on polished Si wafers
on a grounded electrode in a capacitively coupled plasma
reactor driven by an RF generator at 13.56 MHz. The distance
between the grounded and driven electrode was 39 mm, and
the total electrode surface area was 43 cm2. As feedstock
c-C4-F8 was used. The discharge was operated at 100 Pa, and
a power of 60 W was applied. The gas flow was 17 sccm.
More details on the experimental apparatus can be found
in Ref. [4]. The surface morphology of the samples was
studied ex situ by atomic force microscopy (AFM). For
AFM measurements no intrinsic nonlinearities in the data
acquisition are known. Images of 15 μm × 15 μm were taken
at a resolution of 256 × 256 points as shown in Ref. [4]. A
dynamic scaling exponent of β = 1.35 ± 0.08 has been found.
Such a large growth exponent does not fit to any growth model
found in Ref. [1]. The largest dynamical scaling exponents
(up to one) are predicted by shadowing [7]. Therefore it can
be expected that shadowing play an important role during the
deposition process. As shown in Figs. 1(a) and 1(b), the surface
shows a grassy topology at early times, which is indicative
for geometrical shadowing effects [1,8]. However, shortly
after that, cusps develop. These cusps are larger structures
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FIG. 1. AFM images (15 μm × 15 μm) at different times and film thickness (a) 〈h〉 = 0.050, (b) 0.075, (c) 0.100, (d) 0.125, (e) 0.150,
(f) 0.200, (g) 0.250, and (h) 0.300 μm, respectively.

taking over the smaller ones [Figs. 1(c) and 1(d)] as expected
for shadowing where taller surface features block incoming
flux from reaching lower-lying areas of the surface [1,8].
However, as β > 1 another roughening mechanism which is
synchronized to shadowing must be present or the nonlinearity
redistributes the spectral power already deposited on the
surface and additionally roughens the surface by means of
this process. The static scaling exponent α increases during
the first minutes of deposition from 0.4 [(a) and (b)] to 0.6 (d)
and then saturates at a value of α = 0.67 ± 0.02. In the case of
oblique incidence during sputter deposition a value of α = 2/3
is predicted by nonlinear growth including surface diffusion.
In this particular case a β of 1/5 is predicted, which is not
observed in the experiment. In the experiments reported here
the particles do not arrive at the surface under a single oblique
angle. A value of α = 1 indicates linear growth, and a value of
α = 1/2 can correspond to nonlinear growth with relaxation
due to surface tension [1]. Again, none of the universal classes
reported in Ref. [1] are consistent with the experiment, but the
observed static scaling exponent α ≈ 2/3 points to a further
nonlinear mechanism during the deposition.

III. SHADOWING

The primary nonlocal effect is the shadowing effect
[3,7–11], where taller surface features block incoming flux
from reaching lower-lying areas of the surface. The shadowing
effect is active because the incoming flux has an angular
distribution. This allows taller surface features to grow at the
expense of shorter ones, leading to a competition between
different surface features for particle flux. This competition
leads to a grassy morphology and ultimately to a mounded
surface as shorter surface features receive little or no particle
flux and are suppressed. Shadowing is an inherently nonlocal
process because the shadowing of a surface feature depends
on the heights of all other surface features, not just close
ones.

A model including both nonlinear shadowing and diffusion
effects has been initially developed by Bales and Zangwill [3]
and by Karunasiri et al. [9]. The roughening of a surface profile

is given by the evolution of the surface height h(x,t)

∂h

∂t
= R�

√
1 + (∇h)2 + ν∇2h + η. (1)

The stochastic arrival of the particles is modeled by white
noise η. Relaxation is provided by the surface tension ν. The
deposition growth R is multiplied with the exposure or solid
angle �(x,h). The exposure angle gives a measure of the open
sky that one can see from the position x, which is a highly
nonlocal effect. The factor

√
1 + (∇h)2 in Eq. (1) implies that

the growth takes place normal to the surface [10]. Both the
exposure angle and the normal growth are strongly nonlinear
functions of the surface height, and no analytical expression is
known in Fourier wave number space.

The Fourier representation of Eq. (1) taking � =√
1 + (∇h)2 is

∂

∂t

∑
q1

h(q1,t)e
iq1x = R

∑
q2

�(q2,t)e
iq2x

∑
q1

�(q1,t)
iq1x

−
∑
q1

νq2
1h(q1,t)e

iq1x. (2)

After multiplying both sides of this equation by e−iqx

and integrating over x the delta function condition for the
shadowing term includes now three waves

∫
dxei(q1+q2−q)x =

δ(q1 + q2 − q). This results in

∂

∂t
h(q,t) = R

∑
q=q1+q2

�(q2,t)�(q1,t) − νq2h(q,t), (3)

or an equivalent for the spectral density

1

2

∂

∂t
h2(q,t) = Re

[
R

∑
q=q1+q2

�(q2,t)�(q1,t)h
∗(q,t)

]

− νq2h2(q,t), (4)

where the asterisk denotes the complex conjugate. Therefore
in the large slope limit the exposure angle is nonlinearly
interacting with the surface height perturbations and the
normal growth fluctuations �.
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A. Quasilinear shadowing

For small slopes (� ≈ 1) and due to the strong contribution
of the q = 0 mode [�(q = 0) =

√
1 + (qh)2 = 1] in general

shadowing is in first order determined by the exposure angle.
As this dependence is linear on the exposure angle, but the
exposure angle depends on the surface height perturbations in a
nonlinear nonlocal way, it is called quasilinear here. Therefore
in first order shadowing is given by the averaged cross-power
spectrum as given by

Hh,�(q) = 〈h∗(q)�(q)〉, (5)

where h(q) and �(q) are the Fourier transforms in wave
number. As a large number of samples for each condition
for experimental data are not available, it seems appropriate
to carry out the the analysis in one dimension only, taking
the second dimension as the statistical ensemble taking 128
subseries of 128 points for ensemble averaging 〈·〉. As a
complex quantity, the cross-power spectrum can be written
as Hh,�(q) = |Hh,�(q)|eiϕh,�(q), where ϕh,�(q) is the average
cross-phase. The coherence, defined by

γh,�(q) = |〈h∗(q)�(q)〉|√
〈|h(q)|〉2〈|�(q)|〉2

, (6)

measures how phase-locked modes are with values in [0,1].
Figure 2 shows the cross-coherence and the cross-phase
between the surface height and the exposure fluctuations. If
a significant coherence is observed, the cross-phase is close to
zero. Therefore quasilinear shadowing increases the spectral
power and the surface roughness. With deposition time the
coherence increases and shifts to larger structures (lower
wave numbers). Therefore larger and larger structures are
getting unstable to quasilinear shadowing, where the smaller
structures do only receive a marginal part of the particle flux.
We observe that for these smaller structures the cross-phase
between h and � is getting more and more irregular as the
deposition proceeds.

B. Nonlinear shadowing

Investigating scaling laws power spectral densities (PSD)
are often used in surface topology analysis. However, the
PSD does not distinguish between independently excited
and nonlinearly coupled waves. A measure of the quadratic
coupling between two waves with wavelength q1 and q2 with
a third one q = q1 + q2 is given by the cross-bispectrum [12]

B(q1,q2) = Re[〈�(q1)�(q2)h∗(q = q1 + q2)〉]. (7)

If these three waves are spontaneously, independently ex-
cited, their phases are also statistically independent, and
the bispectrum vanishes. On the other hand, a nonlinear
coupling between the waves q, q1, and q2 is locking their
phases with each other. As a result, the bispectrum takes
a finite value. To investigate the fully nonlinear behavior
the cross-bispectra 〈�(q1)�(q2)h∗(q)〉 have been calculated
as shown in Fig. 3. For convenience the wave numbers in
Fig. 3 are labeled with the quantity, which has been Fourier
transformed (q1 ≡ q�1, q2 ≡ q�2). All cross-bispectra show
the same basic features. The region q1 < 0 and q1 + q2 > 0
is dominated by negative coupling 〈�(q1)�(q2)h∗(q)〉 < 0.
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FIG. 2. Cross-coherence and- phase between surface height
and exposure angle perturbations during fluorocarbon thin-film
deposition.

For every surface height perturbation h(q) an associated
perturbation in the exposure angle �(q1 = q) can be found. As
� ∼ |∇h| the normal growth spectra �(q2 = 2q) contains the
second harmonics of h(q). The three-wave coupling condition
is fulfilled. This damping caused by the coupling with the
second harmonics reflects the smoothing of the surface due to
the reduction of the slopes of the surface. The strongest non-
linear drive is found at q1 < 0, q2 > 0, and q = q1 + q2 < 0
close to the line q2 = −q1. This can result from the coupling
�(q1 − q)�∗(q1)h∗(−q), where the modulation of the normal
surface growth �(q1 − q) is used as a sideband to increase
the spectral power in large-scale features h(q). It is found that
two nonlinear mechanisms are active during the deposition,
damping due to wave number doubling of the normal surface
growth, and growth due to its modulation by large-scale
structures.

To estimate the impact of nonlinear shadowing
the integrated cross-bispectra

∑
q=q1+q2,−q=q1+q2

x

Re[〈�(q1)�(q2)h∗(q)〉] are presented in Fig. 4. The
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FIG. 3. (Color online) Cross-bispectrum between surface height,
exposure angle, and normal surface growth fluctuations during
fluorocarbon thin-film deposition at different times and film thickness
(a) 〈h〉 = 0.050, (b) 0.075, (c) 0.100, (d) 0.125, (e) 0.150, (f) 0.200,
(g) 0.250, and (h) 0.300 μm, respectively. The cross-bispectrum is
shown normalized to its maximum absolute value. Positive (negative)
values are depicted in orange (blue). Information on the impact of its
amplitude can be found in Fig. 4.

cross-bispectra are integrated over both propagation
directions q and −q. It shows a similar behavior as the
cross-coherence in Fig. 2. The integrated cross-bispectra
are positive and therefore contribute to a roughening of the
surface. With increasing deposition time the amplitude in
the integrated cross-bispectra increases. The spectral power
concentrates at large structures, which is also consistent
with the shadowing instability. The impact of this nonlinear
roughening will be investigated next.

The film thickness increases linearly in time 〈h〉 = Rt ,
where R is the deposition growth rate. To compare the results
presented here against previous work we use ∂/∂t = R∂/∂〈h〉.
The evolution of the mean free spectral power 〈h2〉 is related to
the evolution of the roughness w by ∂〈h2〉

∂〈h〉 = 2w ∂w
∂〈h〉 . Since the

roughness develops according to a power law w = w0〈h〉β
with growth exponent β the time evolution is given by
∂w
∂〈h〉 = βw/〈h〉, which results in

∂〈h2〉
∂〈h〉 = 2β

w2

〈h〉 . (8)

The actual observed roughening (8) is compared to the
quasilinear (QL) and nonlinear (NL) roughening in Fig. 5. The
QL shadowing is given by

∫
q

√
�2(q)

√
h2(q) cos(�,h) where

cos(�,h) is the cross-phase between surface height and ex-
posure angle perturbations as shown on the right-hand side of
Fig. 2. To be a possible candidate to explain the actual observed
roughening it must be larger than that together with the damp-
ing, which is not considered here. The NL roughening given by

FIG. 4. Integrated cross-bispectrum between surface height, ex-
posure angle, and normal surface growth fluctuations during fluoro-
carbon thin-film deposition.

∫
q

∑
q=q1+q2,−q=q1+q2

Re[〈�(q1)�(q2)h∗(q)〉] is also shown in
Fig. 5. The observed anomalous dynamical scaling exponent
β = 1.35 of the experimental data cannot be explained by
shadowing alone. As shown in Fig. 5(a) the roughening due
to QL shadowing is about one order of magnitude below the
actual observed one and the NL shadowing is even up to three
orders of magnitude below that. For the experimental data NL
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KPZ
(a)

(b)

〈h〉

FIG. 5. (Color online) (a) Comparison of the measured rough-
ening (black, solid) with the roughening due to quasilinear (QL,
blue, dashed) and nonlinear shadowing (NL, red, dotted) and
KPZ nonlinearity (KPZ, green, dash-dotted). (b) The ratio between
nonlinear and quasilinear roughening.

shadowing is negligible [Fig. 5(b)]. Therefore, the observed
dynamic scaling coefficient β can only result from another
linear process, which should be cooperative to QL shadowing
or from NL redistribution of the spectral power by another
nonlinearity as the KPZ nonlinearity [13], for example, as
discussed in Sec. IV.

C. Monte Carlo simulations

The nonlinearity of the shadowing effects can be easily
tested on simple Monte Carlo simulations of the growth
of a periodic one-dimensional surface under incoming par-
ticle flux. An illustration is shown in Fig. 6. The method
consists of sticking identically shaped incident particles on

x
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FIG. 6. (Color online) Zoom on a grown surface under incident
bombardment of highly sticking and low sputtering yield particles (in
black). Implementation sites are discrete. The surface function h(x)
is locally defined by the position of the highest particle, as illustrated
by the two red curves. The bottom one is the initial surface, and the
top one is the surface a short time prior to the end of the run.

〈h〉 〈h〉

〈h〉

〈h〉

FIG. 7. (Color online) Cross-coherence and -phase between sur-
face height and exposure angle perturbations from MC simulations.

implementation sites at the boundary layer of the growing
surface. All implementation sites are located at the nodes of a
uniform two-dimensional mesh. Effects of binding energy and
incident energy distribution are minimized to a simple form.
A first layer of atoms is initiated with a required horizontal
spectrum (red layer at the bottom of Fig. 6). A succession
of particles is then sent from the top of the domain toward
the surface, at a random discrete horizontal location with a
random direction. At the discrete location where the particle
trajectory hits the surface, the particle sticks with 99% of
probability. If the receiving particle already stuck to the surface
is bounded only to one other particle, within 1% probability
both incident and receiving particles are remitted from that
location, with uniform random directions and half of the initial
probability to erode again. Results shown in Fig. 6 correspond
to a periodic domain of 1024 sites, with about 104 particles
deposited above the initial surface. The high sticking and low
erosion probability is responsible for a highly porous structure,
because cascade processes are rare, and shadowing is clearly
manifested. At each horizontal location x, the vertical position
of the highest particle defines the surface height h(x) at that
position, as illustrated by the red curve at the top of the surface
in Fig. 6. To perform statistical analyses on the surface growth
dynamics, a series of 256 simulations has been performed with
identical power spectrum for the initial surface roughness.

Surfaces obtained with this Monte Carlo approach give
a roughness exponent of β = 0.95, which value does not
depend so much on the sticking coefficient. Indeed, for
higher probability of surface erosion redeposition, the grass-
like structure as evident on Fig. 6 will exhibit a lower
internal porosity, but the overall surface will keep a grass-like
organization, due to each structure shadowing its neighboring
ones. Comparing the experimental results with the those of
the simulation, the qualitative agreement with those of the
cross-coherence and cross-phase between � and � (Figs. 2
and 7), the cross-bicoherence between �, �, and h (Figs. 3
and 8) and the integrated one (Figs. 4 and 9) is remarkable.
It can be concluded that shadowing is strongly present during
the deposition process.
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FIG. 8. (Color online) Evolution of the cross-bispectrum between
surface height, exposure angle, and normal surface growth fluctua-
tions from MC simulations in the same representation as in Fig. 3.

As expected for a pure shadowing MC simulation
[Fig. 10(a) the roughening due to QL shadowing is close to the
actual observed roughening [Eq. (8)]. NL shadowing is below
the actual observed roughening but approaches up to 25% of
the QL one [as seen in Fig. 10(b)].

FIG. 9. (Color online) Integrated cross-bispectrum between sur-
face height, exposure angle, and normal surface growth fluctuations
from MC simulations.

(a)

(b)

FIG. 10. (Color online) (a) Comparison of the measured rough-
ening (black, solid) with the roughening due to quasilinear (QL,
blue, dashed) and nonlinear shadowing (NL, red, dotted) for the MC
simulation. (b) The ratio between NL and QL roughening.

IV. KARDAR-PARISI-ZHANG NONLINEARITY

The nonlinear generalization of the Kardar-Parisi-Zhang
(KPZ) equation [13] describing the roughening of a surface is
given by the evolution of the surface height h(r,t)

∂h

∂t
= ν∇2h + 1

2
λ(∇h)2 − K∇4h + η. (9)

In addition to the surface tension ν the surface self-diffusion
−K∇4h gives the surface relaxation mechanisms, where K

is a temperature-dependent positive coefficient. Usually ν is
positive, and surface tension dominates over the surface self-
diffusion. In this case, the system is morphologically stable.
A negative value of ν implements morphological instability.
The balance between only the surface tension (with ν < 0)
and self-diffusion results in periodic height modulation (rip-
ple) with wavelength λBH = 2π

√
2K/|ν| called the Bradley-

Harper instability [14], The term 1
2λ(∇h)2 is the lowest order

nonlinearity possible and is called the KPZ nonlinearity.
Taking ν < 0 and the KPZ nonlinearity into account Eq. (9)
is called the Kuramoto-Sivashinsky equation. In respect to
∇h the KPZ nonlinearity acts like self-advection, which can
be seen by applying ∇ on Eq. (9), yielding a Burgers-like
equations, where the velocity is represented by ∇h. A strong
self-advection can result in a nonlinear KPZ instability. For
weak self-advection, the linear growth is saturated by the KPZ
nonlinearity, which can result in pattern formation.

In Fourier space, where the surface height is given by∑
q h(q,t)eiq·r, the KPZ equation (9) transforms to

∂

∂t

∑
q1

h(q1,t)e
iq1·r =

∑
q1

−νq2
1h(q1,t)e

iq1·r −
∑

q1

∑
q2

× 1

2
λq1q2h(q1,t)h(q2,t)e

i(q1+q2)·r

−
∑

q1

Kq4
1h(q1,t)e

iq1·r + F(η). (10)
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FIG. 11. (Color online) Bispectrum (weighted by −q1q2) be-
tween surface height fluctuations during fluorocarbon thin-film
deposition in the same representation as in Fig. 3.

The Fourier transform of the stochastic arrival of the particles
is given by F(η), which will be neglected for simplification in
the following. By multiplying both sides of this equation by
h∗(q,t)e−iq·r and integrating over dr, we can make use of the
delta function

∫
drei(q1−q)·r = δ(q1 − q) and find

∂

∂t
h(q,t)2 = −2(νq2 + Kq4)h(q,t)2

− Re
∑

q=q1+q2

λq1q2h(q1,t)h(q2,t)h
∗(q,t),

where the asterisk denotes the complex conjugate. In the case
of the KPZ equation, the time evolution of the power spectra
h(q,t)2 is determined by linear processes like the surface
tension and self-diffusion [−(νq2 + Kq4)] and the nonlinear
processes, which are reflected by three-wave coupling which
satisfy the constraint q = q1 + q2.

The basic shape of the KPZ nonlinearity (KPZ-NL)
−q1q2Re〈h(q1)h(q2)h∗(q)〉 as estimated experimentally is
shown in Fig. 11. Before cusps develop [Figs. 11(a) and 11(b)]
the nonlinear interactions appear equally distributed over all
scales. As cusps arise the KPZ-NL is dominated by local
interactions (in q space) at large scales. Stripes develop
progressively [Figs. 11(e) and 11(f)], which are nonlocal
interactions (in q space), indicating modulational instabilities
[15]. As seen in the integrated values (Fig. 12) the KPZ-NL
basically transfers the fluctuations from larger to intermediate
wave numbers. As the interactions are mainly local this depicts
a forward mass cascade, where large-scale cusps break apart
in smaller structures. It should be noted that this redistribution
is only possible, if the mass input is located at large scales,
which is provided by the shadowing instability. Unfortunately
the nonlinear coupling coefficient λ is not known, and the
roughening due to the KPZ-NL cannot be quantified. However,

FIG. 12. Integrated bispectrum (weighted by −q1q2) be-
tween surface height fluctuations during fluorocarbon thin-film
deposition.

to get an impression we set λ = R and assuming that the mass
at the low q transferred to the intermediate q is filled up by
shadowing at low q. The corresponding roughening due to the
nonlinear redistribution is shown in Fig. 4. The roughening due
to the KPZ-NL nearly fits the observed roughening. Therefore
the KPZ-NL can account for the observed roughening with
λ � R.
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V. SUMMARY AND CONCLUSION

Fluorocarbon thin-film deposition, which shows an anoma-
lous high dynamic scaling exponent of β = 1.35 [4], is
investigated in detail. As the shadowing instability reports the
highest β of close to one, this study is focused on the shadow-
ing instability. Under shadowing larger structures shield the
incoming flux to smaller structures, and therefore they gain
more flux themselves. The shadowing nonlinearity depends
mainly on the exposure angle, which is a highly nonlinear
and nonlocal function of the surface height. As no general
analytical relation between the surface height perturbation and
the exposure angle exists, the exposure angle is treated as
an independent function. Furthermore the investigation is
extended to study the influence of normal growth to the
surface, which is also a highly nonlinear function of the surface
height perturbation and also treated as an independent quantity,
here. Surface height perturbations induce perturbations in
the exposure angle at the same wave number, which are
in phase. These modes can couple quasilinear and result in
what we call here quasilinear shadowing. Furthermore normal
growth perturbations are induced at the doubled wave number,
which are expected to be quadrature to the surface height
perturbations. Additionally the normal growth modes are
modulated by the large-scale surface height structures, which
can result in additional nonlinear modulational roughening.
All three mechanisms (quasilinear and nonlinear modulational

roughening as well as nonlinear relaxation due to wave number
doubling in the normal growth) are present in the experiment.
However, the anomalous high dynamical scaling exponent
exceeding one cannot be explained by shadowing alone.

The basic considerations are also tested on numerical
surface morphology data, obtained from a simple Monte
Carlo simulation. Quasilinear roughening is strong enough to
explain the observed roughening for the simulation. Here the
nonlinear effects show significant contribution to the observed
roughening.

As the experiments also report a static scaling exponent
of α = 2/3, which is characteristic for nonlinear behavior,
the KPZ nonlinearity is also studied. The KPZ nonlinearity
acts like a forward cascade under shadowing, transferring
fluctuations in the surface height from the scales of the
shadowing to intermediate scales, increasing the roughness.
The interplay between these two nonlinearities can qualita-
tively explain a scaling exponent higher than one. The actual
roughening due to the KPZ nonlinearity cannot be measured
from the experimental data. However, it can be estimated that
the nonlinear coupling coefficient of the KPZ nonlinearity
has to exceed the linear growth rate to explain the observed
anomalous high β. With in situ real-time measurements of
thin-film deposition [16] it would be possible to estimate the
linear growth rate and the nonlinear coupling coefficients by a
spectral power transfer analysis as done in Refs. [17,18].
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