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Statistical assessment of order within systems of nanoparticles: Determining the efficacy of
patterned substrates to facilitate ordering within nanoparticle monolayers fabricated through
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The degree of order within nanoparticle monolayers deposited through electrophoretic deposition on
lithographically patterned and unpatterned substrates was analyzed using four complementary measures of
order: Voronoi-cell edge-fraction entropy, local bond-orientation order parameter, translational order parameter,
and anisotropy order parameter. From these measures of order, we determined that the pattern had an influence
on some aspects of the ordering within the nanoparticle monolayer but had no effect on others. The Voronoi-cell
edge-fraction entropy did not measurably change due to the pattern, indicating that the pattern has no effect on
the number of defects present. The translational order parameter also had no change due to the pattern. The local
bond-orientation order parameter had a measurable change, indicating the pattern increased the bond ordering
slightly. Also, the anisotropy order parameter developed herein indicated an increase in order. The direction of the
increased order corresponded with the direction of the anisotropy designed on the patterned substrate, strongly
suggesting that the pattern drives the particles to become more ordered.
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I. INTRODUCTION

Ordered systems of nanoparticles (supercrystals) have
attracted significant interest recently because of the many
potential applications resulting from the unique behaviors
of these arrangements of nanoparticles (NPs) [1–6]. Super-
crystals can be fabricated using a variety of techniques, such
as evaporative self-assembly, Langmuir-Blodgett, and ligand-
mediated self-assembly [2,7–13]. However, if supercrystals
are to be employed in applications on an industrial scale,
alternative techniques that are more rapid and easily scalable
should be considered. Recently, we have developed such a
rapid and scalable alternative using electrophoretic deposition
(EPD). We have demonstrated the potential of EPD in
creating two-dimensional nanoparticle films (NP monolayers).
However, these films display only local ordering. If order can
be enhanced, EPD can rival the aforementioned techniques in
the production of supercrystals [14–16]. To enhance ordering
within the films, we must initially understand the mechanisms
behind ordering. The mechanisms can be more easily explored
if we first have tools with which to quantify the order. For
example, measuring variations in the degree of order as a
result of changes in electric field strength, substrate material,
suspension concentration, etc., would give insights into the
mechanisms behind ordering.

Quantifying order has been explored in many fields,
including biology, material science, chemistry, physics, and
mathematics, among others [17–22]. These explorations con-
firm that order can be quantified on an absolution scale
(complete order, corresponding to an ideal crystal, to complete
disorder, corresponding to an ideal gas). The entire scale of
order can be represented by order parameters that range from
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one (complete order) to zero (complete disorder). We have
adopted three complementary, statistical measures of order that
can be applied to any system of particles in two dimensions
(2D) (including the EPD films). In addition, we have employed
a measure of order that detects anisotropy of ordering within
a system that utilizes a complex order parameter. All four of
these measures have three-dimensional analogs.

Herein, we describe an attempt to improve ordering with
NP monolayers fabricated by EPD. During NP film fabrication
using EPD, local ordering can occur [16]; however, long-range
ordering in EPD can be inhibited because of two properties.
First, in a typical deposition, the film simultaneously grows
in different regions throughout the substrate as particles
deposit individually on the surface. Second, when using a flat
electrode, no asymmetry exists in the plane of the electrode;
therefore, ordering in this plane will have no preferential direc-
tion. The combination of simultaneous, localized, supercrystal
nucleation and substrate symmetry inhibit the creation of films
with long-range order.

Since the basic EPD process cannot facilitate long-range
ordering, we consider modifications to the process. One
possible way to do this is to create a patterned substrate that
creates predefined locations for each particle. This approach
has been successfully implemented in other liquid phase
assembly approaches such as polymer-mediated assembly and
evaporation self-assembly [23–28]. In this paper, we fabricated
nanopatterned substrates with sixfold symmetry, which intro-
duced long-range periodicity and anisotropy into the system
to facilitate ordering. EPD was used to deposit nanoparticles
on these substrates. Scanning electron microscopy (SEM) was
used to image individual NPs on the substrate surface. The
images were then analyzed to identify and locate particles
on the substrate, resulting in a list of particle locations. This
list was then distilled into four statistical quantities that were
employed to compare the degree of order between patterned
and unpatterned substrates.
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II. EXPERIMENT

Patterned substrates were created by spin coating hydrogen
silsesquioxane (HSQ) (Fox-12, Dow Corning) onto epi-ready,
phosphorus-doped, silicon wafers (n-type MEMC Electronic
Materials SDN) with an extant native oxide surface layer.
After spin coating, the substrate was immediately baked on
a hot plate at 90 ◦C for 40 min. The film was then exposed
to electron-beam radiation using a Raith e-Line electron-
beam lithography instrument. Tetramethylammonium hydrox-
ide (TMAH) heated to 55 ◦C was used to develop the exposed
film [29,30]. The resulting substrate contained both patterned
and unpatterned regions; the unpatterned regions were used
as a control reference for our measures of ordering. The
patterns were composed of rectangular line features of length
60 ± 2 nm and width of 20 ± 2 nm, written in a hexagonal
lattice configuration with a pitch equal to the line length (see
Fig. S1 in Supplemental Material) [31].

NPs of iron oxide (FeO/Fe3O4) were synthesized by
thermal decomposition of iron oleate in the presence of oleic
acid using 1-octadecene as a solvent (adapted from Park
et al.) [16,32,33]. The spherical, synthesized nanoparticles
were measured to possess a diameter of 9.6 ± 0.9 nm by
using a Philips CM20 transmission electron microscope. The
synthesized particles were cleaned through centrifugation and
resuspended in hexane at a concentration of ∼0.1 mg/mL.
EPD was performed by first mounting, in parallel pate con-
figuration, two electrodes with a 5.0-mm gap. The patterned
substrate acted as the negative electrode and an unprocessed
silicon wafer as the positive electrode. The wafers (each being
∼1.5 cm × 1.5 cm in area) were then inserted into the NP
suspension, after which, a 500-V potential was applied across
the gap for 15 s. The voltage was turned off, the electrodes
extracted, and the voltage reapplied for 1 min. The resulting NP
film on the patterned substrate was imaged using backscatter
electron detection on the Raith e-Line operating in scanning
electron microscopy mode. At least five SEM images, each
representing >900 nm × 600 nm regions, taken from both
the patterned and the unpatterned regions, were used in the
determination of the Voronoi entropy and the local order
parameter. The figures, presented in the main body of this
article, show only a small section of a single SEM image; for
an entire SEM image, refer to Fig. S2 [31].

III. DISCUSSION AND RESULTS

Before any measures of order were made, we needed
to process the images in order to identify and locate the
particles within the images. As voids and pattern elements
existed within the films, we needed to locate these features
and to treat particles neighboring these features as boundary
particles. After image processing, we located all the particles
and analyzed the order using four measures. First, we found
the informational entropy relating to the number of edges
for the Voronoi cells [34–37]. Next, we calculated the local
bond-orientational order parameter (ψ) and the translational
order parameter (τ ) [38–43]. Two NPs are considered bonded
if they share a Voronoi edge. The nature of the bonding
(physical, chemical) is not important for the statistical analysis
of the ordering. Finally, we developed the anisotropy order

FIG. 1. (Color) (a) SEM image of iron oxide NPs on unpatterned
region of substrate. (b) A segmented image of (a), with black
areas representing voids in the film. (c) A processed version of (a),
optimized for identification of particle locations. Identified particles
are marked by red (gray) plus signs. (d)–(f) Corresponding images for
the patterned substrates. (e) In this example, black regions represent
both voids and pattern elements. (Scale bar = 100 nm.)

parameter, which is similar to the global bond-orientational
order parameter, and demonstrated its practicability [42,44].

A. Image preparation

To assess order, one must measure how the location of one
particle relates to the location of other particles. In particular, a
particle’s location relative to said particle’s nearest neighbors
is vital for measuring order. Different techniques exist for
determining nearest neighbors; in this work, we utilize the two-
dimensional Voronoi tessellation for each image to determine
neighbors [15,34,45,46]. Two Voronoi cells that share an edge
are considered neighbors, and the NPs that are represented by
the cells are considered bonded. In a portion of our sample
images, regions exist in which no particles have deposited
[identified as either voids or pattern elements, hereafter
referred to simply as voids; Figs. 1(a), and 1(c)]. Since the
Voronoi tessellation is a space-filling pattern designation,
particles that deposited next to these voids will appear to
have neighbors on the side facing the void. Such a miscount
of the number of neighbors can have deleterious effects on
the measure of ordering; thus, we modified our Voronoi
tessellation assessment by removing from the tessellation any
Voronoi cell that contained one or more vertices that were
adjacent to either void. Additionally, we removed particles on
the edge of the image (border particles) from the measurement.
Border particles are identified as those having a Voronoi vertex
at ±∞. Thus, we regarded all particles that neighbor a void and
all particles at the edge of the image as boundary particles. All
particles identified as boundary particles are disregarded in all
further analyses. In the following discussion, we first address
how to segregate each image into two regions: one consisting
of voids, one consisting of regions with NP deposition. Then,
we discuss how to identify the location of each particle within
an image, a necessary input for obtaining the desired statistical
measures.

1. Image segmentation

The locations of voids and pattern elements were recorded
by segmenting the original image into a black and white
image, where black indicated voids and pattern elements in
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the film and white indicated regions where particles had
deposited. The segmentation of the image was done by
applying a series of image processing filters. First, a series
of filters [median, Gaussian blur (low pass), and high pass]
were applied. Median filters are nonlinear filters that address
a single pixel and replace said pixel by the median value
in a N × M neighborhood (kernel) surrounding said pixel.
Median filters are very effective at removing impulse noise
(isolated noise spikes) while preserving high frequency detail
(edges). A Gaussian blur is a low pass filter that attenuates
high frequency data while passing low frequency data. For
the purposes of segmentation, individual particles are not
important; rather the region that is occupied by particles is of
interest. Thus, we applied a Gaussian blur so that the particle
edge data are lost, and the particles became indistinguishable.
High pass filters act in a manner opposite to low pass filters,
attenuating low frequencies and passing high frequencies
within the data. In this way, very low frequency data that
do not give information of the location of particles can be
removed. In this case, the desired effect of the high pass filter
is to make the average intensity uniform throughout the image
(leveling). Next, a series of contrast adjustments and image
multiplications (multiplying the image by itself in this case)
were applied, with the final contrast adjustment creating a
black and white image. The image was inverted so that the
voids and pattern elements appeared black. Then, a maximum
or minimum morphological operation was used to make minor
adjustments to the size of the segmented regions [Figs. 1(b) and
1(d)]. Figure S2 shows the sequence of images after applying
each filter [31]. One aspect of this technique worth noting is
that the blur of the Gaussian filter limited the size of the void
that could be detected. Thus, smaller voids will be blended
in with the particles and be seen as regions with particles. To
verify the efficacy of this procedure, the resulting segmented
image is multiplied by the original image, and visual inspection
by side-by-side comparison of the result and the original image
is performed.

2. Particle location measurement

To identify particles in each image, we again applied a
series of filters to the original SEM images. First, a median
filter was used to remove impulse noise. A high pass filter was
used to level the image while maintaining the definition of
each particle. A Gaussian filter was applied to remove noise
over an individual particle and to create an intensity peak at the
center of the particle while maintaining the definition of each
particle. After this, a series of contrast adjustments and image
multiplications were applied to amplify the contrast between
the particles and the background. The particles were then
identified first by using MATLAB’S imregionalmax function,
which finds the regional maxima within an image, and then
by finding the centroid of each identified region. After finding
the particles’ locations, a marker (red plus) was drawn at each
particle location. The images were then visually inspected to
ensure that the center of each particle was located (Fig. S3
shows a sequence of images after each filter) [31].

The list of identified particle locations was then compared
to the segmented image. Any particles that have been located
within a void or pattern element regions are removed from the

list. Any identified particles that lie on the border of the image
were removed from the list, as they either did not identify
actual particles or did not accurately reflect the location of
an actual particle, since the center of the particle may have
lain outside the border of the image. Finally, only uniquely
identified particle locations were kept. The result was the final
list of particle locations, which was used in all further analyses
[Figs. 1(c) and 1(f)].

B. Voronoi-cell edge-fraction distribution and entropy

Voronoi tessellations have a long history of use in a
variety of fields, including anthropology, astronomy, biology,
chemistry, computational geometry, physics, and statistics,
among others [34,35,45,46]. A Voronoi tessellation, as defined
by Okabe, is an association, “. . .given a set of two or more but
a finite number of distinct points in the Euclidean plane, . . .”
of “. . .all locations in that space with the closest member(s)
of the point set with respect to the Euclidean distance” [46].
The Voronoi tessellation supplies a great deal of information,
a few examples of which are listed below:

(i) First, the Voronoi tessellation provides a visual tool that
could be used.

(ii) The fraction of Voronoi cells with n sides (n = 3 − 9)
can be extracted, giving a one-dimensional (1D) set of data.
If ordering exists within the system, these data will allow
for the identification of the symmetry of the order (in 2D,
either fourfold or sixfold symmetry can exist as a space-filling
symmetry).

(iii) Informational entropy can be calculated from the 1D
Voronoi-cell edge-fraction distribution data set, giving 0D
data.

(iv) Next, nearest neighbors in two dimensions can be
defined in multiple ways. One common definition is two
particles that share a Voronoi edge. We used this definition
and consider these nearest neighbors to be bonded—integral
information in the calculation of two of the following statistical
measures of order.

(v) The Voronoi tessellation is used to discover which
particles are at a boundary of a void or a border of the
image. These particles should be excluded from certain
measurements.

(vi) The Voronoi tessellation can be used to calculate the
average particle-particle spacing between nearest neighbors
for well-packed particles [15].
(vii) The Voronoi-cell edge can be used to calculate bond

angles between nearest neighbors.
(viii) Furthermore, the Voronoi tessellation allows one to
quantitatively define a hexagonally packed particle as shown
in Sec. IV below.

Seven of the eight above pieces of information extracted
from the Voronoi tessellation will be utilized. Given the list
of particle locations found in Sec. I, a Voronoi diagram was
constructed (Figs. 2(a) and 2(b); larger images are supplied
in Fig. S2 [31]). Using the Voronoi diagram, a distribution of
the fraction of Voronoi cells with n (n = 3 − 9) edges was
plotted. This distribution, shown in Fig. 2(c), was created
by averaging over at least five images for regions with and
without a pattern. The error bars were determined by taking
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FIG. 2. (Color) (a) and (b) Voronoi tessellation, derived from an
image of a nanoparticle film shown in Figs. 1(c) and 1(f). Voronoi
cells with one or more vertices within a black region of the segmented
images [Figs. 1(b) and 1(e)] were removed. Cells were color coded
based on the number of sides of the cell. No cells with greater than 8
or less than 4 sides were shown. (c) Histogram showing the fraction of
particles with n sides, where n = 3 − 9. Within error, the unpatterned
and patterned substrates were equivalent. (Scale bar = 100 nm.)

the standard deviations of the percentages from the patterned
and unpatterned substrates, respectively.

From Fig. 2(c), a clear peak was observed at n = 6,
indicating the particles tended to pack hexagonally. Such
hexagonal ordering can be clearly seen in the original SEM.
The histogram confirmed that the distribution for the patterned
and unpatterned substrates is measurably the same. Finally, we
calculated the informational entropy, S, from this distribution
using

S = −
9∑

i=3

pi ln pi, (1)

where pi is the probability of a Voronoi cell having i edges
[15,36,47]. The entropy provides a direct numerical compari-
son between the data in the distribution. The entropy was S =
1.05 ± 0.03 for the patterned substrate and S = 1.10 ± 0.03
for the unpatterned substrates. The entropy was measurably
the same for both the patterned and unpatterned substrate,
concurring with what was observed in the distribution graph.
Thus, the presence of a pattern did not significantly affect

the Voronoi-cell edge-fraction distribution, indicating that the
pattern had not reduced the fraction of defects present within
the film. Despite this, the pattern still could affect other
measures of order.

C. Order parameters—local bond-orientational order
parameter and translational order parameter

The use of order parameters has been heavily advocated
by Torquato, Truskett, and Kansal in a number of publications
[38,40,42,48]. Order parameters are numbers that describe the
order of a system such that a system with complete disorder
will have an order parameter of zero and one with complete
order will have an order parameter equal to 1. Torquato,
Truskett, and Kansal have gone further to demonstrate that
by measuring two order parameters, one can create an order-
parameter space, which illustrates the relative placement
of fluid, glassy, and crystal equilibrium structures [38,40].
Adopting these ideas, we measured two order parameters, the
bond-orientational order parameter and the translation order
parameter.

The bond-orientational order parameter is calculated for a
Voronoi tessellation, by extracting only those Voronoi cells
with no vertices at ±∞ and no vertices in a void. For each
cell, the local bond-orientational order parameter, ψ6,local, was
calculated for each particle.

ψ
ζ

jn = eiζθjn ,
(2)

ψζ,local = 1

Nn

Nn∑
j=1

ψ
ζ

jn,

where ζ is the periodicity [ζ = 6 represents hexagonal, close
packing as seen in Fig. 2(c)]; θjn is the bond angle j for bonds
emanating from particle n measured relative to an arbitrary,
fixed axis; and Nn is the number of neighbors of particle
n [43]. The distribution of ψ6,local is plotted for all particles
averaged over all images for patterned and unpatterned regions
of film (Fig. 3). ψ6,local was found for each particle in a single
image; then the discrete instances of ψ6,local were binned. The
bins were normalized so that they indicated the percentage of
particles having a range of ψ6,local represented by the bin. The
average value was calculated by separately averaging each bin
over all images of patterned and unpatterned substrates. Error
bars are calculated for each bin by taking the standard deviation
from all images of patterned or unpatterned substrates. The
distribution for the patterned substrate was shifted to the
right relative to the unpatterned substrate, indicating that
local particle ordering was enhanced when the pattern was
present. Thereafter, the average ψ6,local over all particles in
a single image was calculated. Subsequently, the average
was determined over all of the images of the patterned and
unpatterned substrates, separately. The error in ψ6,local was
calculated by taking the standard deviation of the average
value from all images. For the patterned substrate ψ6,local was
0.522 ± 0.013, and for the unpatterned substrate the value was
0.490 ± 0.013.

Given the plot of the ψ6,local distribution and the values
themselves, patterning slightly increased the degree of bond-
orientational order within the system. However, the Voronoi-
cell edge-fraction distribution and corresponding entropy
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FIG. 3. (Color) (a) Distribution of ψ6,local values for patterned and
unpatterned regions. The patterned substrate distribution was shifted
slightly to the right, indicating a greater degree of local ordering.
(b) Pair correlation function which is used to calculate τ , the
translational order parameter.

measured for the patterned and unpatterned substrates were
equivalent. Note that a particle with a six-sided Voronoi cell
may not be truly hexagonally packed. Further, a six-sided
Voronoi cell can evolve from a hexagonally packed NP array
that possesses small deviations from ideal hexagonal packing.
The discrepancy between the two measures of order is likely
due to one of the two aforementioned causes.

Next, we measure the translational order parameter, τ ,
defined as

τ = 1

rc

∫ rc

0
|g (r) − 1|dr, (3)

where g (r) is the 2D pair correlation function, and rc is the
maximum radius measured in the pair correlation function
[40]. This translational order parameter does not depend on the
symmetry of the system. Additionally, the presence of voids
does not affect the measure due to the normalization of g (r) by
the density of particles. Figure 3(b) shows g (r), averaged over
all images for the patterned and unpatterned substrates. g (r)
was very similar for substrates with and without patterning.
Using the values for g (r) shown in Fig. 3(b), τ was calculated.
rc was set to 76 nm, as g (r) ∼ 1 for this value of rc. Values
for g (r) at r > 76 nm have little effect on τ . The results of the
calculations, averaged over multiple images, are τ = 0.257 ±
0.010 for the patterned substrates and τ = 0.250 ± 0.005 for
unpatterned substrates. Again, uncertainties were calculated

by taking the standard deviation of values measured from five
or more images.

While the bond-orientation order parameter indicates some
increase in ordering for the patterned substrate, the trans-
lational order parameters were equivalent for the patterned
and unpatterned substrates. Comparing these results to the
order parameter phase space, as described in Truskett et al.,
our analyzed systems fell closest to the glassy regime [40].
In Truskett et al., the translational order parameter was not
observed to be as sensitive as the bond-orientational order
parameter when ensembles resided in the glassy regime. This
could explain why no significant difference in translational
order was measured, while a small difference for bond-
orientation order was observed.

D. Anisotropy complex order parameter

The anisotropy complex orderparameter is designed to
detect global anisotropy in the direction of bond between
two particles. This anisotropy can be visualized by the
angular orientation of hexagonal Voronoi cells (Fig. S4) [31].
Importantly, the anisotropy measured here is not designed
to ascertain the symmetry of a Voronoi cell. Anisotropy in
the bond direction could be introduced by adding a physical
anisotropy into the system (e.g., a unidirectional magnetic
field, a nonradial fluid flow, anisotropic geometry, etc.). In
such cases, NPs can still pack hexagonally; however, neighbors
prefer to pack in particular directions relative to the physical
anisotropy.

However, the measurement of anisotropy in the bond
direction should be dealt with carefully. A measurement that is
taken within a region that is smaller than the correlation length
of the system will surely display a high degree of anisotropy
since all the particles are correlated. In this case, we are
interested in how the bond directions within the uncorrelated
regions relate to each other.

1. Techniques and characteristics of anisotropy measurement

The degree of anisotropy in the system was measured
using a modification of the global bond-orientational order
parameter,

ψ
ζ

jn = eiζθjn ,

ψ6,global = 1

Nζ

Nζ∑
j=1

ζ∑
n=1

ψ6
jn

ζ
,

(4)
�an = ‖ψ6,global‖,

�an = arctan

[
Im(ψ6,global)

Re(ψ6,global)

]
.

This value is very similar to ψ6,local; however, the average is
taken over all bonds in a film of particles rather than over
bonds for a single particle, then over all particles [42]. At this
point, �an is equivalent to the global bond-orientation order
parameter. Yet, because we were interested in the direction of
the ordering of particles, we only included particles that were
well ordered, that is, hexagonally packed. We defined a particle
to be hexagonally packed if the particle met two conditions:
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(i) The number of sides of the particle’s corresponding
Voronoi cell matched the peak periodicity of ordering for the
system (e.g., six for hexagonal close packing).

(ii) All edge lengths of the corresponding Voronoi cell were
within 60% of the median edge length of the cell. Visual
inspection shows that this condition works well to choose only
hexagonally packed particles.

Before applying this measure to the NP samples, we
should first understand the behavior of characteristics of
�an. To understand these characteristics we first observed
how �an changed as a function of the standard deviation
of a set of oriented bonds. Thus, we calculated �an using
100 000 randomly generated angles that followed a Gaussian
distribution. The standard deviation of the distribution was
varied, and a plot of �an versus the standard deviation
was generated [Fig. 4(a)]. We also plotted the derivative of
the standard deviation curve (averaged over 12 points for
smoothing), which indicated the sensitivity of �an to changes
in the standard deviation. As evinced from the plot, above a
standard deviation of 50% of the total angular domain, the
order parameter was nearly zero. This effect caused measured
values of �an to be less than expected for the ideal case, as
seen in Sec. III D2.

Another important characteristic of �an was how the
quantity varied with sample size. In a real system, the sample
size can be related to the correlation length of the system, as
discussed in Sec. III D2. For modeling �an, we assume that
each correlated region contains perfectly oriented bonds and
that each region is equal in size. Thus, for each correlated
region, we simulate one random angle.

Figure 4(b) shows how the value of �an changes with
sampling size. The values were simulated by the following
method:

(i) An integer number of random angles between 0 and
π/3 were generated. Then, a number of angles was taken as
the sample size;

(ii) �an was calculated based on the random angles;
(iii) Steps 1 and 2 were repeated 10 000 times for each

sample size; the mean and standard deviation (σ ) were
calculated for the set;

(iv) Steps 1–3 were repeated using all integers in the range
(1–800) for the sample size.

From Fig. 4(b), the mean value of �an was 1 for a sample
size of 1, which was expected as all bond angles were perfectly
aligned. Interestingly, for �an = 1 to have been known with a
95.4% (2σ ) confidence level (that is, a 95.4% probability that
the result was not a random event), the measured samples size
must have been Ss � 4. Further, for 99.7% (3σ ) confidence
level a measured sample size of �5 was required. The inset of
Fig. 2(b) provides a histogram of the 10 000 �an values for a
sample size of 600. The NP samples analyzed here consist of
approximately 600 constituents; thus, we simulated up to 800
to account for all probable quantities. We expected simulations
that comprised a sample size larger than 800 to follow the trend
observed in Fig. 2(b).

These characterizations are important for determining the
necessary quality and sample size of data to obtain a meaning-
ful result. However, a background measurement is also vital
to determine if anisotropy existed. We obtained background
values by amassing a database of angles of bonds from all

FIG. 4. (Color) The properties of �an as determined by simulating
a set of bond angles (a) The blue (dark) line demonstrates how �an

varies as the standard deviation of bond angles varies. The standard
deviation is plotted in percent of total angular range. The red (light)
line shows the derivative of �an as a function of the standard deviation,
indicating the sensitivity of �an to changes in the standard deviation.
The inset is an example of simulated bond angles for a set of bond
angles with a 0.001% standard deviation and an angular range of
2π . (b) This graph demonstrates that even for completely disordered
systems, �an will not be zero and will depend on the sample size.
The sample size is a measure of the number of simulated correlated
regions. Each correlated region is randomly oriented, and all bonds
within a single correlated region are equivalent. �an is calculated
100 000 at each simulated sample size. The +1σ , +2σ , and +3σ

lines indicate the mean value of �an plus 1, 2, and 3 times the standard
deviation of the 100 000 calculated values. The red (light gray),
individual dot represents the value measured for the unpatterned
substrate. The dot lies below the mean �an, which is expected since
�an is simulated for perfect hexagons. The black dotted line lies along
the value measured for the patterned substrate. The sample size for the
patterned substrate is well beyond the edge of the simulation at 2180.
Thus, the patterned substrate is well above the +3σ line. The gray
region (top) is forbidden because mathematically, �an cannot exceed
1. The inset shows a histogram of 100 000 �an values simulated for a
sample size of 600.

the particles in a reference unpatterned image. The database
comprised seven columns—six for the bond angles for each
particle that matched the aforementioned selection criteria and
one for the area of the Voronoi cell. The background value was
obtained by calculating �an for a set of randomly selected rows
of angles within the database for which the sum of the area
from each row was approximately equal to the total area of the
selected Voronoi cells in the original image. The calculation
was repeated 1000 times, using a different, randomly selected
row of angles each time, and the mean was used as the
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FIG. 5. (Color) A subset of the Voronoi cells from Fig. 2 having
six sides and all edge lengths within 60% of the median edge length for
(a) unpatterned regions and (b) patterned regions. The color indicates
the circular mean (over the range 0◦–60◦) of the six bond angles for
each cell.

background value. This method was tested on unpatterned
images to determine its effectiveness. The resulting �an and
the background value were equivalent within uncertainty for
the images of unpatterned regions.

2. Measurement on patterned substrate

With the measurement techniques and characteristics estab-
lished for �an, we calculated �an for nanoparticle monolayers
on the patterned substrate and unpatterned substrate. The
subset of Voronoi cells that fit the selection criteria is shown
in Figs. 5(a) and 5(b) for the unpatterned and patterned
substrate, respectively. Here, the color of each Voronoi cell was
determined by the circular average, over the range (0◦–60◦) of
all of the six bond directions. The anisotropy order parameter
for the unpatterned substrate was �an = 0.021 ± .007; the
order parameter for the patterned substrate was calculated
to be �an = 0.089 ± .004. The associated error in �an was
calculated by varying the measured x and y positions of each
particle’s location by a random amount between ± 0.5 pixels.
This was repeated 1000 times. �an was found by taking the
mean and the error was found by taking the standard deviation
of the 1000 measurements. A background value was calculated
(using the aforementioned method) to be 0.033 ± 0.015 for
the unpatterned substrate and 0.029 ± 0.011 for the patterned
substrate. These values strongly suggest the existence of
anisotropy in bonding due to the anisotropic geometry of the
pattern.

In the following, we demonstrate how we determined the
sample size of the data in terms of the number of correlated
regions. We compared the value of �an for the obtained sample
sizes to the simulated data to ensure that our sample size was
sufficiently large. To find the sample size, we first calculated
the correlation length, ξc, of a system, as determined from the

following:

g6 (r) = 〈cos[6 (θi − θ0)]〉 ∼ e−r/ξc , (5)

where g6 (r) is the bond-orientation correlation function,
which was measured from the bonds between two nearest
neighbor particles [41,49]. Each bond position was defined at
the midpoint of the bond, r0; the bond angle, θ0, was measured
relative to a fixed, arbitrary axis. The brackets represented a
numerical average over all bonds i lying in an annular ring
at r ± �r . This measurement was repeated using each bond
that lay farther than rmax from the edge of the sampling region,
where rmax was the maximum measured radius for g6 (r). We
use 0.25 nm for �r and 40 nm for rmax. The mean value of
g6 (r) is similar to the mean value of the ψ6,global. The major
distinction between the two parameters lies in the fact that in
the global bond-orientational order parameter, each bond is
treated with equal weight. In the mean of the bond-orientation
correlation function, each annular region is weighted equally.
The sample size, Ss , was then calculated to be

Ss = As

πξ 2
c

, (6)

where As is the area of the sampled Voronoi cells, and πξ 2
c

is the area of a single sample. For the patterned substrate, the
sample size was 2180; for the unpatterned substrate, the sample
size was 764. For the patterned substrate, the sample size is
much larger than the region simulated; however, the value of
the anisotropy is clearly more than three standard deviations
above the simulated mean. For the unpatterned substrate, the
value lies below the mean simulated value [Fig. 4(b)]. This
was expected as the simulation assumes that each correlated
region only represents perfectly hexagonally packed NPs.
Figure 4(a) shows that any variation from perfect hexagonal
packing will decrease the value of �an. Given this and the
comparison to the background measurement, we are confident
that anisotropy in ordering exists in our systems. While the
order parameter indicated the existence of anisotropy on the
patterned substrate, some possibility exists that this anisotropy
that we detected was not caused by the pattern. To corroborate
the conjecture that the patterned substrate was the primary
driver of ordering, the direction of anisotropy, as measured by
the complex order parameter, �an/6, was compared with the
direction of the patterned lines. �an was divided by 6 because
the system’s sixfold symmetry limited the angular range for
the bond angles to 2π/6. The patterned lines were measured to
be at 25◦ ± 3◦. The mean and standard deviation of �an/6 were
found using the same method for calculating the mean and
standard deviation of �an, resulting in �an/6 = 21.8◦ ± 0.5◦.
To verify this result, we also plotted a histogram of the
measured angles. We expected the distribution of angles to
reflect a Gaussian distribution with circular symmetry. The
von Mises distribution can be used as a circular analog to a
Gaussian distribution [50,51]. The general form of the von
Mises distribution, P (x), is

P (x) = eb cos(x−a)

2πI0(b)
, (7)

where a is the mean of the distribution, 1/b indicates the
spread of the distribution, and I0(b) is a modified Bessel
function of the first kind. A total of four fitting parameters
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FIG. 6. (Color) The black (square data points) line is the measured
number of bonds that are oriented within an angular range, measured
relative to the x axis of one of the SEM images of a patterned substrate.
The red (light), solid line is a von Mises (circular analog to a normal
distribution) fit to the data. Based on the fit, the peak in the distribution
occurs at 22.8◦ ± 1.3◦, agreeing with the direction of the patterned
elements as well as the angle measured by �an. The blue line (lower
line with circle data points) shows the equivalent bond-orientation
data for the unpatterned substrate.

were employed: (1) a and (2) b as previously described; (3) an
additive constant to account for the background signal in the
data; and (4) a multiplicative constant as the histogram is not
normalized whereas the probability distribution is. The data
and the von Mises fit for the patterned substrate and the data
for the unpatterned substrate are shown in Fig. 6. Additionally,
a more detailed description and results of the fitting are given
in the Supplemental Material (Table S1) [31]. The mean value
from the von Mises fit, 22.8◦ ± 1.3◦, which was obtained from
fitting the data in Fig. 6, agreed with the calculated values from
both the anisotropy complex order parameter and the direction
measures from the image. The anisotropy order parameter
indicated that some anisotropy existed in the system beyond
that of background noise. That the direction of the anisotropy,
as calculated from the anisotropy order parameter and as
measured by the distribution of angles, aligns with the direction
of the pattern design suggests that the anisotropy in particle
ordering is a result of the anisotropy in the pattern design.

IV. CONCLUSIONS

We have successfully measured the degree of order present
in NP monolayers fabricated through EPD using three previ-
ously developed statistical measures of order, and a measure
of order described in this paper. The measures of order were
extracted from scanning electron microscope images of the
NP monolayers. To apply the statistical measures, we first
developed methods to analyze the images. The first method
successfully segmented the images into regions with particles
and regions without particles. The next method optimized
the identification and location of the NPs. Segmentation
and particle identification and location then facilitated the

acquisition of accurate measures of order within the mono-
layers. Additionally, we developed a complex order parameter
that was used to identify anisotropies in bond orientations.
The complex order parameter provided both a magnitude
and direction to the order. Characterizations of the order
parameter, achieved by simulating bond angles, showed both
the importance of the standard deviation of the measurements
in a set of oriented bonds and the importance of the sample
size relative to the correlation length of the system. Because
the sample size had a strong influence on the magnitude of
the anisotropy order parameter, we developed a method for
obtaining a background measurement.

The four measures of order were applied to NP monolayers
deposited on patterned and unpatterned substrates to determine
the effect of patterning of order. The pattern was designed
with the intention of engendering anisotropy in the bonds
between the particles. From the four measures of order,
we determined that the pattern did increase ordering within
the monolayer. Specifically, the pattern slightly increased the
bond-orientational order and engendered anisotropy within the
NP bonds. The correlation between the increase in anisotropy,
and the pattern characteristics were confirmed by equivalence
among the direction of the designed anisotropy and the
associated directions measured in the NP bonds. However,
the pattern did not increase translational order or reduce the
number of defects present.

The four measures of order discussed herein could be
applied to assess monolayers deposited under various elec-
trophoretic deposition voltages, external magnetic fields, and
on various electrodes to study the effects of these vari-
ables on ordering. The measures could also be applied to
NP monolayers deposited using other techniques, such as
Langmuir-Blodgett and evaporation assisted self-assembly.
In future work on three-dimensional nanoparticle crystal
growth, techniques such as grazing-incidence small-angle
x-ray scattering (GISAXS) could be used to complement
the data analysis approaches discussed here. GISAXS can
be used to measure order over larger areas than is currently
practical using direction imaging. Further, GISAXS can assist
in measuring the degree of order in the third dimension, which
is not easily analyzed using direct imaging.
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