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Fragility and hysteretic creep in frictional granular jamming
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The granular jamming transition is experimentally investigated in a two-dimensional system of frictional,
bidispersed disks subject to quasistatic, uniaxial compression without vibrational disturbances (zero granular
temperature). Three primary results are presented in this experimental study. First, using disks with different
static friction coefficients (μ), we experimentally verify numerical results that predict jamming onset at
progressively lower packing fractions with increasing friction. Second, we show that the first compression
cycle measurably differs from subsequent cycles. The first cycle is fragile—a metastable configuration with
simultaneous jammed and unjammed clusters—over a small packing fraction interval (φ1 < φ < φ2) and exhibits
simultaneous exponential rise in pressure and exponential decrease in disk displacements over the same packing
fraction interval. This fragile behavior is explained through a percolation mechanism of stressed contacts where
cluster growth exhibits spatial correlation with disk displacements and contributes to recent results emphasizing
fragility in frictional jamming. Control experiments show that the fragile state results from the experimental
incompatibility between the requirements for zero friction and zero granular temperature. Measurements with
several disk materials of varying elastic moduli E and friction coefficients μ show that friction directly controls
the start of the fragile state but indirectly controls the exponential pressure rise. Finally, under repetitive loading
(compression) and unloading (decompression), we find the system exhibits pressure hysteresis, and the critical
packing fraction φc increases slowly with repetition number. This friction-induced hysteretic creep is interpreted
as the granular pack’s evolution from a metastable to an eventual structurally stable configuration. It is shown
to depend on the quasistatic step size �φ, which provides the only perturbative mechanism in the experimental
protocol, and the friction coefficient μ, which acts to stabilize the pack.
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I. INTRODUCTION

The “jamming” framework [1] has been proposed as an
overarching, unifying description governing the behavior of
a wide variety of disordered materials, including glasses,
colloids, foams, and granular media via the jamming phase
diagram with three axes representing temperature T , shear
stress �, and inverse packing fraction 1/φ. Of particular
interest is a point J at zero temperature and zero shear stress
along the inverse packing fraction axis (1/φ) predicted to
have special properties. This point J is the critical packing
fraction φc at which a frictionless granular pack undergoes a
sharp transition from an athermal, particulate gas to a stiff,
disordered solid. Numerics [2], mean-field theories [3,4], and
experiments [5] all show that many interesting properties arise
at this transition.

Being amenable to theoretical treatment, several early stud-
ies concentrated on idealized systems composed of frictionless
particles and have contributed to the understanding of granular
jamming. A growing body of numerical [6–10] and experimen-
tal [11–13] studies, however, conclusively demonstrate that
interparticle friction substantially alters jamming behavior.
Friction plays a significant role in granular materials: not
only is it technologically relevant (e.g., in compression and

*Present address: Collective Interactions Unit, OIST Graduate
University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa,
Japan 904-0495; bandi@oist.jp

sintering of ceramics [14]), but friction also radically alters
the mechanical behavior of materials (e.g., in sedimentary
rocks [15]). Understanding the role of friction in granular
jamming therefore becomes relevant and important.

This article, which contributes to this growing body of re-
sults, presents an experimental study of frictional granular jam-
ming of a loose, granular pack comprising a two-dimensional,
bidisperse system of disks subjected to quasistatic, uniaxial
compression (loading) and decompression (unloading). The
following experimental results and their interpretations are
presented.

(i) By employing disks with different static friction coeffi-
cients, we verify numerical predictions [7,16] for the effect of
friction on the onset of jamming.

(ii) We show that the pressure scaling differs remarkably
between the first and subsequent loading cycles. In the first
cycle, as the system’s boundaries are moved in to achieve
an increasingly tighter packing, a fragile state is observed
where the pressure exhibits an exponential rise P ∝ eφ/χP

over a range of packing fractions (φ1 < φ < φ2), followed
by a deviation from exponential scaling for φ > φ2. This
exponential rise in pressure is simultaneously reflected in
an exponential decrease in particle displacements over the
same range of packing fractions, implying the simultaneous
existence of jammed and unjammed clusters in the evolv-
ing granular pack. This fragile state is characterized by
developing contact stresses being spatially correlated with
disk displacements. It is shown to arise as a consequence
of nonzero friction which is known to introduce protocol
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dependence on experimental measurements and is in accord
with prior experimental observations [5,11]. These results
are interpreted as a percolation of stressed contacts which
exponentially decrease the fractional area enclosed within
stress chains (defined by a threshold stress) over the range
of packing fractions (φ1 < φ < φ2). The fragile state and its
associated stress percolation mechanism fall within a broader
set of recent results that show existence of a fragile regime in
the approach to jamming, including contact percolation [17],
contact dynamics in granular glasses [13], and shear induced
jamming that causes force network percolation [12].

We note the term fragile here denotes a mechanically
metastable configuration—it is easily destroyed under the
slightest external perturbation such as nonzero granular tem-
perature, as we show later in the article. This state should not
be confused with fragility in glass formers as defined by Angell
[18] to distinguish between strong and fragile glasses which
exhibit Arrhenius and Vogel-Fulcher behavior, respectively
[19]. Although related to glasses within the broader context
of disordered systems, this work does not concern itself with
glass phenomenology in particular.

(iii) Under repetitive loading and unloading, we observe the
critical packing fraction φc at which the granular pack jams
progressively increases to higher values, thereby exhibiting
creep. At the same time, the pressure curves for the loading-
unloading cycles exhibit hysteretic responses. Relevant in
the geophysical context [20,21], this hysteretic creep is
experimentally shown to arise from interparticulate contact
friction.

In Sec. II, we present a brief review of frictionless granular
jamming and how friction changes the predictions expected
to hold under idealized conditions. In Sec. III, we explain our
experimental setup and the experimental protocol we follow
in conducting our measurements. The main results of this
study are presented in Sec. IV, followed by discussion and
interpretation of these results in Sec. V, with a brief summary
of results in Sec. VI.

II. BACKGROUND: GRANULAR JAMMING

A. Ideal jamming

The primary motivation for the jamming proposal [1] was
to provide a common framework to describe the nonequi-
librium behavior of a wide variety of disordered materials.
O’Hern et al. [2] conducted extensive numerical studies with
frictionless particles interacting via soft, finite-range, repulsive
potentials at zero temperature and zero applied shear stress;
henceforth, we refer to this set of specifications as ideal
granular jamming. They reported many interesting properties
of the ideal jamming transition around φc that have since been
verified by mean-field theories [3,4] and experiments [5]. For
a finite number of particles N , φc is a configuration-dependent
random variable, the full width at half maximum of whose
distribution was empirically determined [2] to follow the
formula w = w0N

−� (where w0 = 0.16 ± 0.04 and � =
0.55 ± 0.03). O’Hern et al. found φc is sharply defined in
the limit of infinite system size (N → ∞), where φc coincides
with random close packed density (φRCP = 0.64 in 3D and 0.84
in 2D), a concept first introduced by J. D. Bernal [22–24]

to understand liquids which are structurally disordered by
construction. We note, however, that difference of opinion
exists within the community both with respect to the definition
of random close packing [25] itself, as well as its coincidence
with φc in granular jamming [26,27]. These divergent opinions
notwithstanding, the existence of a φc where the jamming
transition occurs is not in question.

The behavior of two quantities is of particular interest for
the ideal jamming transition. The pressure P is zero below φc

and rises continuously above φc as a power law [P ∝ (φ −
φc)ψ for φ > φc], whereas the coordination number Z = 0
below φc and undergoes a discontinuous jump to a critical
value Z = Zc at φ = φc, followed by a power-law increase
above φc, (Z − Zc) ∝ (φ − φc)β . The critical coordination
number Zc = 2D (D being the system’s dimensionality) for
frictionless particles, since φc is the system’s isostatic point at
which the total number of degrees of freedom equal the total
number of constraints providing force balance.

The definition of a contact plays a central role here. A
granular contact is said to exist when two particles come in
physical contact and propagate a stress; albeit necessary, a
stress-free physical contact is deemed insufficient. This re-
quirement gives rise to a crucial and, perhaps, little-appreciated
interpretation of the jamming transition. The discontinuous
jump in Z from 0 to Zc at φc implies that there are no contacts
in the system up to φc—it may lose floppy modes and become
rigid, but it is not stressed and, therefore, has zero granular
contacts. At φc, a pressure rise above zero simultaneously
activates contacts system wide due to stress propagation,
and Z discontinuously jumps from 0 to Zc. Because of the
additional stress requirement in contact definition, granular
jamming ideas make no allowance for a system to lie in
an intermediate regime where part of the system is jammed
and the rest is not—the only two states permitted are total
systemwide jamming or lack thereof.

B. Frictional jamming

An increasing number of studies [6–9,11–13,16,28] have
explored the role of friction and how it changes the ideal
jamming predictions. Although a general framework for
frictional packs has yet to emerge, studies indicate deviations
from ideal jamming predictions. First, in addition to the normal
component of force (FN ), friction gives rise to a tangential
component (FT ). Second, the preparation method and history
of the pack become important for frictional packs [28].
Treating the tangential force component as a new independent
degree of freedom (at least for low friction coefficients) sets the
critical coordination number at φc to lie in the range D + 1 �
Zc � 2D, i.e., hypostatic configurations are permissible. The
condition Zc < 2D implies that frictional packs can jam at
φc < φRCP, with φc progressively decreasing with increasing
μ before asymptoting to a constant value that has been
termed random loose packing density φRLP [16]. φRLP is an
empirically determined value from numerical simulations; its
theoretical underpinnings are not well understood [10]. The
same arguments made against the definition of φRCP [25] apply
to φRLP.

Recent experiments in frictional systems also demonstrate
a percolation mechanism in stress [12] en route to jamming
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as well as in the steady-state contact dynamics [13] within the
jammed regime. An experimental study by Cheng et al. [11]
has also reported jamming of particles into a metastable config-
uration due to interparticle friction, which is readily destroyed
under external perturbation or, alternatively, application of
nonzero granular temperature.

III. EXPERIMENT

A. Description of the experimental setup

Figure 1(a) shows a schematic of the experimental setup.
The system consists of a bidisperse mixture of 950 large
(diameter dL = 0.9525 ± 0.0025 cm) and 950 small (diameter
dS = 0.635 ± 0.0025 cm) disks of thickness 0.508 cm. The
disks are placed in a chamber, with dimensions L = 25.9 cm
and W = 48.2 cm (L is the compression direction), consisting
of two glass plates held 0.635 cm apart by means of an acrylic
frame that runs along the system’s perimeter. Two movable
boundaries are placed on the acrylic frame with aluminum
plates that can slide back and forth within the chamber from
opposite ends. The transverse boundaries are held fixed. The
positions of the movable boundaries are controlled by two
micrometers with a precision of 0.001 cm. Taking variations
in radii into account for the given system of 1900 disks, this
translates to a precision �φ = 1 × 10−5 in the packing fraction
and, hence, serves as the lower bound on the quasistatic step
size (�φ). All measurements reported in this article, however,
were made at a quasistatic step size of �φ = 1 × 10−4,
3.5 × 10−4, or 7 × 10−4. The packing fraction (φ) is defined as
the ratio of the area occupied by the disks to the total chamber
area. The packing fraction is, therefore, controlled by changing
the chamber area in this experiment. A set of six sensors
[labeled A through F in Fig. 1(a)] placed along the boundaries
measure the global two-dimensional pressure (N/m). Visual
measurements using a Nikon D-90 camera (12.3 megapixel
resolution) yield positions and displacements of individual
disks.

Measurements were performed with disks machined from
different materials spanning a range of experimentally de-
termined static friction coefficients. The majority of the
measurements were conducted with polymer disks that ex-
hibit stress birefringence or photoelastic response (PE, static
friction coefficient μ = 0.19, elastic modulus E = 2.5 GPa).
Measurements were also performed with photoelastic disks
lubricated with graphite dust (PEG, μ = 0.14, E = 2.5 GPa),
photoelastic disks soaked in ethanol for 24 h which changed the
modulus (PEA, μ = 0.19, E = 0.004 GPa), lexan polycarbon-
ate disks intentionally machined rough to obtain a high friction
coefficient (LEX, μ = 0.22, E = 2 GPa), and Teflon disks
with an intrinsically low friction coefficient (TEF, μ = 0.06,
E = 0.5 GPa).

B. Measurement of static friction coefficient μ

A schematic of the apparatus used to measure the static
friction coefficient is shown in Fig. 1(c). Four disks (of the
same material) of diameter dL = 0.9525 cm are arranged as
shown in Fig. 1(c). The upper disk and the two bottom disks are
held fixed and not allowed to rotate. A mass M is suspended

FIG. 1. (a) Experimental schematic: The system consists of 950
large and 950 small disks (ratio of radii 1:1.5). Two movable
boundaries at opposite ends control the system’s packing fraction
φ and are used to provide uniaxial, quasistatic compression. Force
sensors labeled A through F in the schematic measure the boundary
pressure. The image is contrast enhanced data for φ = 0.8113.
(b) Side view schematic of force sensor placement within the
compression boundary. When the micrometer (left) pushes on the
boundary plate to its right, the force sensor registers the cumulative
force of the boundary plate and granular pack. (c) Schematic of
the static friction coefficient measurement apparatus. Four disks of
diameter dL = 0.9525 cm are placed in contact with each other as
shown in the schematic. The three outer disks are held fixed and
have no translational or rotational degrees of freedom. The middle
disk can be rotated by means of an external lever. A normal force
FN = MNg is applied by a suspended weight of mass MN on the top
disk. This force is transferred to the disk sandwiched in the middle,
which in turn transfers it to the two bottom disks at an angle of 30◦.
A tangential force FT = MT g applied on the middle disk allows it
to slip at a critical force, which allows determination of the static
friction coefficient μ for the disks.
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TABLE I. Experimentally determined values of μ for indicated
materials (abbreviations defined in text) and their elastic modulii E

(supplied by manufacturer).

Material Friction Coefficient μ Modulus E (GPa)

PE 0.19 2.5
PEG 0.14 2.5
PEA 0.19 0.004
LEX 0.22 2.0
TEF 0.06 0.5

from the upper disk such that a force Fa = Mg is applied
vertically down by the upper disk onto the central disk. A
tangential force Fm = mg is applied on the central disk (free
to rotate) via a pulley system where a mass m is attached to
the pulley with diameter dp = 1.887 cm. Mass is added to
m until slip events occur. In practice, the weights are placed
in a receptacle of mass 29 g, hence Fm = (m + 29)g. Due
to the torque ratio, the actual tangential force applied on the
central disk is FT = Fmdp/d. The normal force on the central
disk arises from the three (one top and two bottom) disks
in contact with it. The vertical disks apply a normal force
FNu = Fa , whereas the bottom disks must balance this vertical
force. Hence, Fa is equally divided between the two bottom
disks giving Fa = 2FNb cos θ . The total normal force is FNu +
2FNb = Fa + Fa/ cos θ = Fa(1 + 1/ cos θ ).

The ratio of the total normal force applied to the total
tangential force required for a slip to occur in the central disk
provides a measure of the static friction coefficient μ. Plugging
in values for dP /dL = 1.98 and (1 + 1/ cos θ ) = 2.15 with
θ = 30 ◦, we get

μ = FT

FN

= FmdP /d

Fa(1 + 1/ cos θ )
= 1.98Fm

2.15Fa

= 0.92
Fm

Fa

. (1)

Values of the static friction coefficients for each of the materials
used in this study are listed in Table I.

C. Experimental protocol

We initially place all disks in the interrogation chamber
in random positions and move the boundary plates to an
initial packing fraction chosen a priori to fall comfortably
in an unjammed state. The disks are subject to friction (with
the glass bottom, the boundary and with each other) and
the system jams below the random close packed density
φRCP ≈ 0.84. After each quasistatic step, a 10-s time-trace of
all six boundary sensors is collected at a sampling frequency
of 1 KHz followed by a digital image of the whole system.
The time-averaged value of the trace constitutes the pressure
measured by the boundary sensor at a particular value of
φ. The boundaries are then moved through a quasistatic
step (�φ), and the procedure is repeated. The only control
parameter in this experiment is the quasistatic step �φ. No
other external excitation or perturbation is applied. As a
consequence, this experiment studies the pack evolution at
“zero granular temperature.” Unlike ideal jamming, real-world
experiments have to contend with friction. Usually, frictional
effects are circumvented by applying a granular temperature

via acoustic excitation or vibration of boundaries that relax
frictional stresses. In the absence of any such mechanism
in this experiment, frictional effects become fully manifest.
The ideal jamming requirements of zero temperature and zero
friction are, experimentally, mutually incompatible. Meeting
the zero friction requirement violates the zero temperature
requirement and vice versa. Second, we do not tap the system
after each quasistatic step to mimic annealing in simulations
[5]. Tapping the system in experiments (or annealing in
simulations via gradient minimization or alternative methods),
no matter for how short a duration or how weak in amplitude, is
tantamount to application of an effective granular temperature
which violates the zero temperature requirement. In order to
understand the role of granular temperature, we performed
one experimental run, discussed below, where the system is
subjected to gentle (but systematically uncontrolled) tapping
after each quasistatic step.

D. Experimental systematics

The noise floor (instrumental noise) of the boundary
pressure sensors is about 0.1 N/m. Accordingly, sensors
C-F [see Fig. 1(a)] placed along the immovable transverse
direction register 0.0 ± 0.1 N/m pressure when the system
is unjammed. On the other hand, sensors A and B [see
Fig. 1(a)] placed along the movable, compression direction
register an offset of about 11 N/m. As shown in Fig. 1(b),
the compression axis sensors were placed within the movable
boundary plate. As per the experimental protocol, the initial
boundaries were set to a predetermined packing fraction that
lies well below the jamming threshold. At this point the
micrometers were detached from the boundary, and a baseline
pressure trace was recorded to measure the instrumental noise.
This was considered prudent, despite the sensors being driven
by homebuilt voltage regulator circuits designed for stability
against thermal drift. Furthermore, the 10-s pressure time-trace
recorded at 1 KHz averages the instrumental noise. Like the
transverse axis sensors (C–F), the compression axis sensors (A
and B) also register 0.0 ± 0.1 N/m pressure reading when the
micrometers are detached from the boundary plates. When,
however, a micrometer comes in contact with the boundary
plate and pushes against it, a pressure offset of 11 N/m is
registered. This pressure jump for compression axis pressure
can be seen in the inset of Fig. 4(a). When the micrometers
are advanced through a quasistatic step �φ, they directly push
against a stainless steel plug that protects the sensor housed in
a groove within the boundary plate. The sensor in turn pushes
against the boundary plate. As a consequence, the boundary
plate’s friction with the bottom glass plate gives rise to the
11-N/m offset.

In the data presented in the following [in particular, please
see the inset of Fig. 4(a)], a 11-N/m offset was added to
the pressure signals for immovable transverse axis sensors to
render them co-incident with the compression axis pressure
scaling. Offset addition to transverse axis pressure was
preferred over offset subtraction of compression axis signals
for a practical reason. Offset subtraction of compression signal
causes some fluctuations to go negative, causing chopping of
negative fluctuations when the data is plotted on a log-linear
scale [Fig. 4(b)].
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In order to ascertain the magnitude of this systematic
error in measured compression pressure, we modified the
arrangement of pressure sensors. In particular, rather than
measure the pressure at a position between the compression
micrometer and the movable boundary, two sensors (as
opposed to one) at the two ends of the movable plate were
placed near a very small and light frame located near the disks.
This did reduce the offset to 0.25 ± 0.01 N/m, but the need for
a small and light frame also means it bends at the center due
to the slight, unavoidable bulge of the sensors required so they
alone make contact with the frame. This creates a different
systematic error in the experiment. The results obtained were
very similar in this case, but we place more confidence in the
more extensive measurements made with the first design.

As the compression boundary moves in and mobilizes an
increasing fraction of disks, the friction between disks and
the bottom glass plate is registered through a linear ramp of
small, but measurable, slope in pressure. A portion of this ramp
is discernible in the prejamming threshold data presented in
Fig. 4(b). The presence of a top glass confining plate was
also considered. The number and variety of runs with this
modified apparatus were small compared to those taken with
the primary apparatus whose results we discuss here. The
general characteristics of the results are the same for both
experiments.

Although photoelastic disks were employed to discern
the spatial stress distribution, the photoelastic threshold was
rather high due to high stiffness of the material used. As a
result, photoelastic stress signals were not visible well into the
rise in the system’s global pressure measured with boundary
sensors. Due to this design property, we were unable to provide
measurements of the coordination number Z in this study.

IV. RESULTS

A. First loading cycle: Jamming onset in presence of friction

Here we discuss the role of friction on the onset of jamming
when the pack is compressed the first time from a random
initial configuration. Silbert et al. have shown [7,16] that the
critical coordination number Zc as well as the critical packing
fraction φc at which jamming occurs shift to progressively
lower values with increasing friction coefficient, due to the
additional structural stability provided by the tangential forces.
Analysis for jamming [7] and for the unjamming transition [16]
reached similar conclusions. In Fig. 2 we plot the pressure P

versus packing fraction φ for disks with different friction coef-
ficients (Z is not measured for reasons discussed in Sec. III D).
Treating commencement of pressure rise as the jamming onset
condition, we confirm the numerical prediction of Silbert et al.
that jamming onset does occur at lower packing fractions with
increasing friction. Whereas jamming onset also represents
the jamming transition in ideal jamming, the same is not true
in this experiment. Here the term jamming onset marks the
nucleation of the first jammed cluster within the system. Unlike
ideal jamming, which is marked by an abrupt transition, in this
experiment the jamming transition proceeds smoothly through
a stress percolation mechanism, as we discuss in Sec. IV B.

The range of friction coefficients 0.06 � μ � 0.22 for
disks employed in this study yields friction-dependent values
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FIG. 2. (Color online) P vs φ (quasistatic step size �φ =
1 × 10−4). The packing fraction φ at which system pressure starts
increasing monotonically falls with increasing static friction coeffi-
cient μ. The change in pressure slopes arises from different elastic
moduli of the materials used.

of the critical packing fraction φc that are greater than
the asymptotic steady value corresponding to random loose
packing (φRLP); one would need higher μ to reach RLP
conditions. Nevertheless, the experimental values of φc we
measure for the experimental values of μ are close to those
obtained in numerical simulations of Silbert et al. (see Fig. 1
and Table 1 of Ref. [16]). Since we use different materials with
varying elastic moduli, the slopes of the pressure curves vary
between the materials. As a counterpoint, a quick comparison
of PE and PEG data shows that the two plots have the same
slope since they have the same modulus. Since PEA disks are
softer, however, they have a shallower slope in comparison
to PE data, but the pressure rise does approximately coincide
for both PE and PEA data since they share the same friction
coefficient. The slight difference in the φ value of pressure rise
start between PE and PEA can be attributed to configuration-
dependent fluctuations that naturally arise among different
experimental runs.

In Fig. 3, we show the variation of the critical packing
fraction φc as a function of the disk friction coefficient μ. In
particular, the quantity 1 − φc/φRCP, the fractional deviation
from the expected zero friction random close packed value
φRCP, increases consistently with a linear dependence on μ,
again agreeing with numerical simulations [16].

B. First loading cycle: Fragile behavior

We next consider the shape of the pressure curve itself by
comparing the pressure signal for the first and second jamming
cycles. Figure 4(a) plots P from one compression boundary
sensor versus φ for the first and second jamming cycles for
photoelastic disks (PE). The continuous increase in P for the
first cycle differs qualitatively from the more abrupt change in
slope for the second cycle. The lateral shift in P is a signature
of a friction-induced hysteretic response which progressively
shifts φc to higher values as the system is repeatedly jammed
and unjammed (discussed below in Sec. IV C). The vertical
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FIG. 3. (Color online) Deviation of fractional φc with respect
to φRCP vs μ for materials described in Fig. 2. The error bars are
estimates as opposed to statistical averages over many runs.

shift in P within the flat (unjammed) regime for the first cycle
[black circles in Fig. 4(a)] is traced to the friction between the
movable boundary plates plus the mobilized fraction of disks
and the glass bottom as explained in Sec. III B. At the end of
the first loading cycle, when the system is decompressed, the
boundary plates only move back until stresses in the pack are
relieved. Further quasistatic reverse stepping of micrometers
does not cause continued backward motion of boundary plates
to their initial positions. Instead, the micrometers decouple
(loss of physical contact) from the boundary plates. For this
reason, the unjammed regime observed during the second
compression cycle [red squares in Fig. 4(a)] does not show
the vertical shift in P . During the first cycle, the boundaries
move in and push the disks towards a jammed configuration.
When unjammed and jammed again, the contacts that were
developed at the end of the first jamming cycle are reactivated,
and the stresses build up as the system is subjected again to
uniaxial compression.

To better understand the smooth increase in P for the first
jamming cycle, Fig. 4(b) plots P versus φ on a log-linear
scale. One sees three distinct regimes in the pressure curve.
In the unjammed (consolidation regime) P is essentially flat,
modulo a shallow ramp due to friction between disks and
bottom glass plate. The second regime is characterized by
an exponential increase in P beginning at φ1 ≈ 0.8093. The
solid line in Fig. 4(b) is an exponential fit to the data P ∝ eφ/χP

with χP = 0.00195. Note that although the range of φ for the
exponential regime is small, the increase in P over that interval
is almost one decade. The pressure eventually deviates from
this exponential regime and settles to a regime that seems
to fit well with linear scaling [dashed line in Fig. 4(b)] P ∝
(φ − φ2). Due to a limited range of pressure data for φ > φ2, it
is not clear whether this regime scales linearly or algebraically
(P ∝ φψ ) with the exponent ψ being marginally greater than 1.
The inset in Fig. 4(a) plots P from all four boundaries against φ
on a linear scale. The remarkably good collapse of the pressure
curves atop one another strongly suggests that anisotropic
effects arising from uniaxial compression are not detected

FIG. 4. (Color online) (a) P vs φ (linear scale) for the first
(black circles) and second (red squares) compression cycles. The
pressure scaling is gradual for the first cycle as compared to the
more abrupt transition during the second cycle where φc is indicated.
The inset plots the pressure from all four boundaries (same vertical
and horizontal scale). No anisotropy is observed in the pressure
signal. (b) P vs φ for the first jamming cycle (log-linear scale)
shows the existence of an intermediate regime where pressure scales
exponentially. The solid line is an exponential fit to the data P ∝ eφ/χP

with χP = 0.00195, and the dashed line is a linear fit. The values of
φ1 and φ2 are indicated in the plot.

by the pressure sensors. This isotropy may result from our
geometry for which the aspect ratio is L/W = 0.54 and would
probably not persist for large aspect ratios, i.e., L/W � 1.

Although this exponential pressure scaling for the first
loading cycle seems to contradict the predicted [2,3,5] power
law for P across the jamming transition, as we will discuss
below, it can be explained through a stress percolation
mechanism. The predicted power-law scaling (approximately
linear1) is, however, recovered for subsequent jamming cycles

1The best fit of the data to the form P ∝ (φ − φc)β yields β = 1.1,
consistent with Ref. [5].
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FIG. 5. (Color online) (a) Fraction of disks moving Nm/NT vs
φ showing a constant region for φ < φ1 and exponential decay for
the fragile regime (φ1 < φ < φ2) with χN ≈ 0.001. (b) Normalized
displacement variance σ/d̃ relative to a state near φ2 showing a linear
decrease for φ < φ1 and an exponential decrease with χσ = 0.0007
for the fragile regime (φ1 < φ < φ2). (c) Image of the superposition
of the difference in the stress network (black lines) and the magnitude
of disk displacements between φ = 0.8095 and φ = 0.8105. Arrows
indicate φ1 and φ2.

as shown for the second jamming cycle in Fig. 4(a), where
φc = 0.8118 is determined by the point at which P starts to
rise.

We now look at the behavior of disk displacements.
Figure 5(a) shows the fraction of disks moving a distance
greater than about 1% of a mean disk diameter2 as a function
of φ where Nm is the number moving and NT = 1900 is the
total number of disks. The fraction is constant at about 0.3
up to φ1 = 0.8094, after which it decreases rapidly up to
the jamming value φ2 = 0.8124. The decrease is consistent
with an exponential e−φ/χN with χN ≈ 0.001. The variance
of individual disk displacements σ [normalized by d̃ =
(dL + dS)/2 = 0.794 cm] relative to a state near the jamming

2There are smaller displacements below our threshold that may
behave differently as a function of φ.

threshold3 is shown in Fig. 5(b) as a function of φ. One again
observes two distinct regimes: a linear one that corresponds
to the unjammed (consolidation) regime where the pressure
curve in Fig. 4(b) is flat and a second one in which the variance
decreases exponentially with σ ∝ e−φ/χσ with χσ = 0.0007.
This exponential drop in displacement variance occurs over the
same interval in φ as the exponential regime of the pressure
curve in Fig. 4(b) as indicated by the arrows depicting φ1 and
φ2. The presence of disk displacements in the exponential
regime, where a percolating force network already exists,
suggests that the particles that are part of the force network
still undergo small displacements and deformations, which in
turn allows visible displacement inside the network region,
eventually leading to the refining of the network.

The above picture is reinforced by the data in the inset
Fig. 5(c), where the difference in the force chain network
between φ = 0.8095 and φ = 0.8105 is shown as black lines
and the spatial distribution of the magnitude of particle
displacements is shown. The correlation of new stress chain
creation (the differences) and the particle displacements, albeit
striking, is not quantitative. Qualitatively, the formation of a
new stress chain is not spatially correlated with disk displace-
ment magnitudes but rather with the presence or absence of
displacements. We followed the simple procedure described
below to quantify this spatial correlation. For each new stress
contact formed between two disks during a quasistatic step, we
considered the center of the line joining the two disk centers.
An annulus of inner radius r and outer radius (r + �r) was
considered [�r = d̃ = (dL + dS)/2, the average diameter of
one small and one large disk]. Please see the schematic inset
in Fig. 6. The ratio of the number of displaced disk centers Nd

to the total number of disk centers counted within the annulus
Nc was measured for increasing distances of r in multiples
of d̃ . The procedure was repeated for each new stress chain
formed during a quasistatic step at several radial distances r

and averaged over.
Figure 6 plots the average ratio 〈Nd/Nc〉 versus the

dimensionless radial distance (r + �r)/d̃. The bar graph
represents the value within the annular region of width �r

for increasing inner radial distance r (in multiples of d̃). The
integrated value of this quantity is plotted in (red) solid circles
representing the cumulative fraction 〈Nd/Nc〉 for the circle
of radius (r + �r). The value at r/d̃ = 1 is biased because it
can only include small disk centers (d < d̃) within that radial
distance. A little over 40% of the disks are mobilized within
(r + �r) = 3d̃ from the center of the newly formed stress
chain. 〈Nd/Nc〉 abruptly falls for (r + �r) > 3d̃ , implying a
majority of disk displacements occur within the vicinity of
a newly formed stress chain. This boundary is denoted by a
vertical dotted line in Fig. 6; this dotted vertical line is merely
a visual indicator. The ratio 〈Nd/Nc〉 
= 0 for (r + �r) > 3d̃

for two reasons. First, there are displacements in unjammed
regions of the granular pack where no new stress chains
form. Second, these displacements do contribute indirectly to

3Picking different reference states near or beyond jamming causes
a finite offset in variance of different magnitudes, but the exponential
decay is preserved with the same value of χ = 0.0007 to within
experimental precision.
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FIG. 6. (Color online) Bar graph shows the number of displaced
disk centers Nd normalized by total number of disks Nc counted
within an annulus of width �r at a radial distance r from the center
of a newly formed stress chain (see schematic in the inset) vs the
dimensionless radial distance (r + �r)/d̃ from the center of a newly
formed stress chain [d̃ = (dL + dS)/2 is the average diameter of the
large and small disk]. The solid circles (red) present the cumulative
fraction 〈Nd/Nc〉 within the radius r + �r . The vertical dotted line
is a marker indicating the radial distance beyond which an abrupt fall
in 〈Nd/Nc〉 is observed.

new stress chain formation at distances (r + �r) > 3d̃ in the
sense that they communicate displacements from the moving
boundary to the location where the stress chain forms.

To further study the nature of the different regimes observed
in global pressure measurements, we consider local properties
of disk configurations, namely the structure of stress chains.
The identified stress chains enclose domains with no measured
stress as illustrated in the insets of Fig. 7. We characterize the
stress chain networks by the mean am and variance av of the
fractional domain area (relative to the total cell area on the left
axis) and also by the mean ãm and variance ãv of the domain
area but now normalized (right axis) by the average of the area
enclosed by a triangular arrangement of small and large disks
(all large, all small, two large, two small). As indicated in the
inset images, the mean and variance decrease rapidly between
0.810 (the lowest value of φ for which we could determine
the stress chain network) and φ2 = 0.8124. For higher φ >

0.8124, the mean and variance decrease linearly with a small
slope. Fits to an exponentially decreasing function e−φ/χs as
shown in Fig. 5 yields the same value of χs = 0.00035. The
exponential decrease in am and av is another signature of
the fragile jammed state. The transition from exponential to
linear behavior occurs over a short range of packing fractions
highlighted in grayscale in Fig. 7. The end of this transition
regime coincides with φ2 = 0.8124. Solid line fits of the linear
regime are included to highlight the deviation from transition
regime to linear behavior at φ2 (please see Fig. 7).

As a control, we also conducted one experimental run
where the system was subjected to gentle (but systematically
uncontrolled) tapping after each quasistatic step during the
first compression cycle for multiple reasons. First, we wanted
to verify that our granular system reproduced the results of

FIG. 7. (Color online) Log-linear plot of the mean (•, black
solid circles in lower curve) and variance (◦, red circles in upper
curve) of stress chain domain area normalized by total area, am,
av (left axis) or by the mean area formed by connections between
different combinations of three disks in a close packed triangular
array, ãm, ãv (right axis), respectively. Insets show stress networks
and corresponding domains for φ = 0.8104 (left) and φ = 0.8148
(right). The dashed (lower curve) and dotted (upper curve) lines are
fits to a combined linear dependence with a decaying exponential (see
main text) for am and av , respectively. The grayscale region highlights
the transition from exponential to linear behavior under compression.
The solid red and black lines are markers included to indicate the end
of transition from exponential to linear behavior near φ2 = 0.8124.

Majmudar et al. [5] since the essential point of departure
between the two measurements lies in the protocol—namely
tapping the system to mimic annealing. Accordingly, we
recovered their result for the jamming transition (see Fig. 8)
although the corresponding φc is still below φRCP = 0.84. We
attribute the discrepancy to two possibilities. First, we do not

FIG. 8. P vs φ for first compression cycle where the system is
gently tapped (albeit with no systematic control) after each quasistatic
step.
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systematically control the tapping process. We merely tapped
the system along the four boundaries gently with a mallet
after each quasistatic cycle. Hence, the plot in Fig. 8 only
serves as qualitative verification. Second, the discrepancy can
be attributed to our system size, N = 1900 disks. Based on the
numerical studies of O’Hern et al. [2], where φc was shown to
be a configuration dependent random variable for finite system
size, it is possible that the control experiment we performed
had a configuration that jammed marginally below φRCP.
Finally, as noted in Sec. II A, the location of φc relative to φRCP

not withstanding, the scaling properties about φc are robust.
The control run for the first loading cycle with tapping is

an excellent example of how the presence of friction makes
pack evolution strongly protocol dependent: In the absence of
external perturbations the pack exhibits exponential scaling,
but with tapping it exhibits power-law scaling. In addition, this
control run also points to another subtle feature of the jamming
paradigm. The ideal jamming predictions are predicated on
the requirements of zero friction, zero temperature, and zero
applied stress. The results observed with and without tapping
show us zero friction and zero temperature are incompatible
requirements in the real world where one cannot escape
frictional effects, save in strong exceptions like jamming in
foam. One then begs to ask, if tapping [5] is considered
equivalent to annealing processes invoked in simulations, is
the zero temperature requirement being adhered to? Also, if
one interprets tapping as a thermal kick (rather than a constant
thermal agitation), it is tantamount to destroying the system’s
evolution history after each quasistatic step. Then are the ideal
jamming predictions a result of a protocol that renders the pack
memoryless? Whereas the hysteresis results (a memory effect)
to follow in Sec. IV C, suggest tapping destroys pack memory
in our system, we note that tapping could presumably also
destroy a developing heterogeneous configuration where the
granular solid and liquid phases coexist. It is not clear from our
experiments whether tapping destroys memory, homogenizes
an evolving heterogeneous configuration, or both. We believe
these are important issues that merit further work, since
thermalization can act both to render a system memoryless as
in the present instance or help to retain system memory [29].

Finally, we present a result that bridges the fragile behavior
just discussed with the third primary result of this study,
namely friction-induced hysteresis and creep. In Fig. 9, we
plot the pressure from the compression boundary sensor
against packing fraction for photoelastic (PE) disks (μ = 0.19
and E = 2.5 GPa) for three different quasistatic step sizes,
�φ = 1 × 10−4, 3.5 × 10−4, and 7 × 10−4. The data belong
to the first compression cycle as evidenced by the smooth
pressure increase expected for the fragile regime. Figures 4, 9,
and 10 present data from different experimental runs of the
first compression cycle to underscore the robustness of fragile
behavior we have argued for in this subsection.

The same experimental protocol, as detailed in Sec. III C
was followed to obtain the result plotted in Fig. 9. In particular,
we emphasize that no tapping was employed (as done in
the control run described immediately above) after each
quasistatic step. All three curves follow the same slope for
the exponential χP ∼ 0.00195. These experimental runs were
repeated with varying wait times between quasistatic steps to
explore the possibility of interstep annealing; no measurable

FIG. 9. (Color online) Pressure P from the compression sensor
for the first compression cycle versus φ for PE disks (μ = 0.19)
jams at higher packing fractions with increasing step magnitude of
quasistatic compression �φ = 1 × 10−4, 3.5 × 10−4, and 7 × 10−4.

change in signal was observed. Due to the strongly athermal
nature of the system in question, the system state can only be
changed through one of two mechanisms: perturbations that
introduce a granular temperature such as the brief thermal kick
provided by tapping or the quasistatic step �φ. The result in
Fig. 9 falls in the latter category.

The pressure curves in Fig. 9 exhibit a monotonic increase
in the jamming onset as the corresponding control parameter
�φ is increased, thereby suggesting the absence of a unique
packing fraction at which a frictional pack jams into an
irregular solid. As noted in Secs, II A and II B, the notion of
a uniquely defined critical packing fraction for jamming onset
(namely random close packing φRCP and random loose packing
φRLP, respectively) is not universally accepted. Evidence to this
effect comes from several studies for both frictionless [26] and
frictional [28] systems that demonstrate a continuous range of
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FIG. 10. (Color online) P vs φ (equivalent to stress-strain
measurement) for PE disks at �φ = 1 × 10−4 exhibits hysteresis.
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packing fractions over which jamming occurs. Therefore, the
result we present in Fig. 9 is neither new, nor surprising in
itself; yet a crucial distinction exists, as we explain in the
following.

Of several sources that induce fluctuations in a granular
system, including experimental and thermal noise protocols,
configurations, annealing protocols, particle geometry and
polydispersity, and friction coefficient, the sources relevant
to this study are the experimental protocol, configuration
dependent fluctuations, and friction coefficient. Unlike sim-
ulations, it is difficult for an experiment to cycle through a
large set of configurations to seek out the average threshold
packing fraction for jamming onset. For the five independent
experimental runs presented in Fig. 9, all runs exhibited the
monotonic dependence on �φ. The configuration-dependent
fluctuations in jamming onset for a given run at a specified �φ

were never large enough to encroach on the jamming onset for
a different �φ. Whereas we are unable to entirely discount
the possibility that this effect arises from configurational
fluctuations, our tests suggest this may not be the case. This
effect is clearly protocol dependent. In addition to the tapping
mechanism which changes the nature of the fragile regime, the
dependence of jamming threshold on �φ suggests a new type
of protocol dependence.

In the thermal counterpart of jamming in liquids, namely the
glass transition, the dependence on cooling rate of the approach
to the transition is well known [30,31]. Further, in simulations
of frictional jamming, Inagaki et al. [28] established the
dependence of jamming onset φc on the annealing rate. All
granular and glass studies, however, show that the approach to
respective φc or Tg is delayed as the cooling rate is slowed. This
is in contrast with our observation that increasing �φ leads to
jamming onset at higher packing fractions. In analogy with the
cooling rate in liquids, if an analogous quasistatic rate �φ

m
(m

is the number of quasistatic steps) were considered, it remains
constant across all three runs in Fig. 9; doubling �φ halves the
number of experimental points, keeping their ratio constant.
Further, we do not apply the experimental equivalent of an
annealing protocol (interstep tapping) in these experiments.
As we explain in the following subsection on friction-induced
hysteretic creep, this result finds its origin in friction. This
result does merit the question whether φ1 → constant (modulo
fluctuations from other sources) as �φ → 0. This question is
beyond our experimental purview and is best explored through
numerical simulations which offer access to infinitesimal step
sizes.

C. Repetitive loading: Friction-induced hysteresis and creep

Following the first loading cycle, we now turn our attention
to the role of friction under repetitive loading and unloading.
Here we report two frictional effects that strongly deviate
from current jamming predictions. When the granular pack
is subjected to loading and unloading, hysteresis is observed
in the pressure versus packing fraction plot (see Fig. 10). If
subjected to repetitive loading-unloading cycles, the system
exhibits creep, whereby the packing fraction at which the
system jams progressively shifts and the hysteresis curves
evolve towards higher packing fractions. Friction-induced
hysteresis [32], as well as the rate-dependent behavior of φc
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FIG. 11. (Color online) Top: Difference between φn
c and its initial

onset value φ0
c as a function of the number of cycles of loading and

unloading n for different materials. Bottom: Same quantities for the
PE material and for different step sizes �φ. Materials and step sizes
are labeled in the plot legends as are the coefficients in the solid-line
exponential fits.

[28], have been reported recently. Because frictional jamming
is heavily dependent on preparation protocol, we are unable
to offer a comparison between our study and prior works.
Nevertheless, since our experimental setup design shares close
correspondence with standard mechanical load cell designs, it
allows us to compare our results with relevant amorphous
solids in the geophysical context (e.g., certain forms of
sandstones and sedimentary rocks).

In Fig. 11 we plot the difference in φc between the nth (φn
c )

and 0th (φ0
c ) loading-unloading cycles against the cycle number

n. In the top panel we vary the friction coefficient μ while
keeping the quasistatic step-size constant at �φ = 1 × 10−4,
whereas in the bottom panel we keep the friction coefficient
constant at μ = 0.19 for PE disks, while varying the quasistatic
step size �φ. The rate at which the pack evolves from
φc to φRCP exhibits monotonic dependence on the friction
coefficient with the pack evolution being quickest for TEF
with lowest friction coefficient, followed by PEG, PE, and,
finally, LEX with the highest friction coefficient. Also, as
shown in the bottom panel in Fig. 11, the quasistatic step-size
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�φ, which controls the magnitude of perturbation provided to
the pack also controls the pack evolution rate monotonically
at step sizes �φ = 1 × 10−4, 3.5 × 10−4, and 7 × 10−4,
thereby exhibiting rate dependence in the pack evolution in
a quasistatic sense. This rate dependence in hysteretic creep
does not imply a reduction in width of the hysteresis loop with
increasing cycle n. The hysteresis curves for all cycles, and
for all quasistatic step sizes �φ, exhibit the same area within
their loops for a given friction coefficient—this area within the
hysteresis loop is the energy dissipated due to friction. Instead,
this rate dependence implies, the lateral shift in the hysteresis
loop decreases with increasing hysteresis cycle number n.
Furthermore, once the granular pack eventually stabilizes and
no further creep is measurable, the hysteresis loop traces
over itself, while maintaining the same area (and therefore
dissipation) within the loop. The existence of hysteresis even
after creep has stopped under quasistatic perturbation implies:
(a) the friction coefficient alone controls the area within the
hysteresis curve; (b) to our best knowledge, the hysteresis does
not vanish at a finite, yet infinitesimal �φ; and (c) as we show
below, both μ and �φ control the “quasistatic creep rate.”

Given the uncertainty in the effect of parasitic friction, it
is difficult to be confident about the functional form of the
relaxation. Significant care would be required to tease out
these relationships accurately but the qualitative dependence
on μ and �φ seems solid.

V. DISCUSSION

Having presented the results, we now discuss them vis-
à-vis ideal granular jamming, explain how they are related
to each other, and establish how they are related to prior
works. We start with the first compression cycle where fragile
behavior is observed. The critical packing fraction φc in ideal
jamming is that packing fraction at which two conditions are
simultaneously met: (i) the packing fraction at which pressure
starts rising above zero and (ii) the isostatic point where total
degrees of freedom equal the total number of constraints, i.e.,
the number of floppy modes equals D(D + 1)/2 (rigid body
rotation and translation), and all individual disk displacements
are strongly impeded. The first condition is met at φ1, the
packing fraction at which pressure starts rising above zero
(albeit exponentially and not power law). The second condition
is met, however, only at φ2 where all displacements become
very small; ergo the two conditions defining φc are well
separated by a fragile, exponential regime characterized by
simultaneous existence of nonzero pressure (jammed clusters)
and nonzero displacements (unjammed clusters). As noted in
Sec. II A, however, the definition of a contact in ideal jamming
permits the system exist in any one of two discrete states,
completely unjammed or completely jammed; an intermediate
regime as demonstrated by the fragile state is not allowed.
This anomalous behavior therefore raises several questions
vis-à-vis the ideal jamming paradigm, which we explain below.

(i) Why have prior studies that have successfully verified
the jamming predictions not reported this anomalous scaling
behavior? All prior experimental [5,33] and numerical [2]
studies to our knowledge study the unjamming transition,
i.e., they approach φc from the jammed state towards the
unjammed state. An analysis of the unjamming over jamming

transition is favored for technical reasons. Precise detection
of pressure rise commencement around φc is very difficult to
detect over numerical or instrumental noise and fluctuations
from discrete configurational adjustments during compression.
We, therefore, believe the fragile state exists in their systems
but forms part of the experimental preparation phase, which
may not have been systematically analyzed.

Two exceptions lend support to this possibility. In recent
numerical work on contact percolation transition (CPT), Shen
et al. [17] analyzed the approach to jamming transition and
show deviations (discussed below) occur prior to jamming
onset. But perhaps of greater relevance to the present study
is the earlier experimental work of X. Cheng [11] where the
jamming transition was studied by swelling tapioca pearls in
water. Of particular interest is Fig. 14 of Ref. [11] where the
structural factor (pair correlation), measured boundary force,
and mean-square particle displacements are plotted against
packing fraction. The force exhibits two distinct regimes at
packing fractions labeled φ1 and φ2, where φ2 is shown to
coincide with random close packing. The pair correlation
function exhibits two distinct peaks at φ1 and φ2. Finally, the
mean-square displacement goes through a maximum between
φ1 and φ2 and falls to zero at φ2. This behavior is related
to existence of local jammed clusters starting at φ1 which
grow until global jamming is achieved at φ2. That study traces
the source of this anomalous behavior to friction, the proof
in support being vibrational disturbances (nonzero granular
temperature) relieve these frictional contacts and recover ideal
jamming predictions (see Fig. 16 in Ref. [11] and related
discussion). Given frictional jamming exhibits sensitive de-
pendence on experimental protocol and preparation history, the
correspondence between Cheng’s experiment and the present
study is noteworthy, particularly since they follow different
experimental protocols.

(ii) Does an alternative physical mechanism explain the
fragile state? In the fragile regime, part of the system is
jammed as evidenced by nonzero pressure [Fig. 4(b)], while
the remainder is unjammed as evidenced by nonzero dis-
placements (Fig. 5). The co-incidence of exponential pressure
rise and fall in displacements with increasing φ points to the
percolation of jammed clusters across the system. Evidence of
stress percolation comes in two parts: first, the strong spatial
correlation between local disk displacements and nucleation
of new stressed contacts [Figs. 5(c) and 6] and, second,
exponential decrease in the fractional area enclosed by stress
chains (Fig. 7). The present work is not isolated in its claim of a
percolation route to jamming. Several recent studies [12,13,17]
have shown some form of percolation mechanism preceding
the jamming transition.

(iii) How does friction control the fragile state? Figure 2
presents clear evidence that the start of fragile state (or φ1) is
directly dependent on the friction coefficient. With increasing
value of the friction coefficient, the fragile state commences
at a lower packing fraction. In Fig. 12 we replot the data
presented in Fig. 2 on a log-linear scale for PE, PEG, and
PEA disks. The data for PEG and PEA are horizontally
shifted so their φ1 values coincide with that of PE disks. It
is apparent from Fig. 12 that PE and PEG disks have the same
exponential slope (P ∝ eφ/χP , χP = 0.00195). They share the
same modulus (E = 2.5 GPa) but different friction coefficients
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FIG. 12. (Color online) P vs φ in log-linear scale for the first
compression cycle. All plots have been horizontally shifted for
coincidence of φ1. The exponential pressure scaling (P ∝ eφ/χP ) for
PE and PEG exhibits same slope (χP = 0.00195) as demonstrated
by the exponential fit (solid black line), implying variation in friction
coefficient has no effect on χP . On the other hand, PEA disks with
same friction coefficient as PE, but lower modulus exhibit a shallower
exponential scaling (with χP = 0.0063, long dashed blue line) over
approximately same range of pressure as PE and PEG.

(μ = 0.19 for PE μ = 0.14 for PEG), suggesting friction has
no measurable effect on the slope of exponential pressure
scaling. In contrast, the fragile regime for PEA disks which
have same friction coefficient as PE disks (μ = 0.19) but
have much lower modulus (E = 0.004 GPa) show shallower
scaling with χP = 0.0063, implying χP depends on the
modulus. The values of χP for all materials are provided in
Table II.

The above results do not mean, however, that friction has no
effect on χP . Frictionless disks (ideal jamming conditions) un-
der compression only jam under normal stresses. Any tangen-
tial stress would cause them to slip and disturb local jammed
clusters. Therefore, nonzero friction is an essential component
for the metastability of the fragile state, even though it does
not reveal itself in the preceding discussion, because there are
two modulii entering the pressure measurement, the modulus
of the disk material and the effective pack modulus. We have
only varied the disk material modulus; the pack modulus, on
the other hand, is a function of coordination number, which in
turn depends on the friction coefficient. Hence, the effective
pack modulus is nonlinear due to coordination number; a fact

TABLE II. Experimentally determined values of the exponential
slope χP for indicated materials (abbreviations defined in text).

Material φ1 μ E (GPa) Exponential slope χP

PE 0.8093 0.19 2.5 0.00195
PEG 0.8131 0.14 2.5 0.00195
PEA 0.8079 0.19 0.004 0.0063
LEX 0.7778 0.22 2.0 0.00135
TEF 0.8298 0.06 0.5 0.0021

also evident from power-law scaling of P versus φ curves,
equivalent to stress-strain relations, in ideal jamming. From
that relation [P ∝ (φ − φc)ψ ] one can discern the nonlinear
effective modulus must be ψ − 1. We note two subtleties
that arise here. First, all experimental, and most numerical,
P versus φ curves are measured for finite systems, and
the asymptotic approach of ψ in the thermodynamic limit
(large system size) is not understood. This would be the
ideal limit at which to study the nonlinear elastic constants.
Albeit subtle, nonlinear elastic constants play a central role in
elastoplastic responses of amorphous solids [34,35]. Further,
since the Coulomb yield criterion (FT � μFN ) provides
only a lower bound on the value of the tangential stress
component, it is not possible to experimentally or theoretically
learn how friction controls the coordination number and,
therefore, the effective pack modulus. Empirical deduction
from numerical simulations may be able to shed some light on
this relationship but, at this point, one can only say that friction
controls the exponential slope χP indirectly via effective pack
modulus.

(iv) Why is fragile behavior not observed during subsequent
compression cycles? When we decompress the system after the
first compression cycle, the stresses in the pack are relieved
and the boundaries move just enough to relax the system. The
disks, however, are left in the final configuration in which they
found themselves at the end of the first compression cycle.
If the granular pack is subjected to a second compression,
the contacts that existed at end of the first compression
cycle are immediately activated everywhere across the system
simultaneously at a critical packing fraction φc. This situation
exactly corresponds to the sudden system wide emergence of
stressed contacts at φc.

In Fig. 13, we plot the pressure P against the packing
fraction φ for the second compression cycle. We recall that
jamming theory predicts zero pressure below φc. At φc

when the system satisfies the isostatic condition, and all
constraints are activated simultaneously across the system,
a rise in pressure is recorded with a power-law scaling
[P ∝ (φ − φc)ψ ]. Prior experiments by Majmudar et al. [5]
have demonstrated the power-law increase in pressure with an
exponent of 1.1. Our experimental data are fit very well with
an exponent of 1.15 (see solid line fit for the experimental data
in Fig. 13) and are in very good agreement with the results in
Ref. [5]. Given that Majmudar et al. tapped their system after
each quasistatic step, which we do not, the agreement in the
exponent is indeed remarkable.

The incompatibility between zero friction and zero temper-
ature raises another important question about what it means
for a frictional granular pack to be structurally stable. As
argued in Ref. [7], with increasing friction a granular pack
can jam at φc < φRCP, and the isostatic point can occur at
D + 1 � Zc � 2D. At zero temperature but nonzero friction,
repetitive loading data (Fig. 11) exhibit evolution in φc,
implying there must be an increase in Zc at each cycle which
we are unable to measure due to experimental shortcomings.
Nevertheless, a straightforward physical interpretation for
hysteretic creep may be presented from the granular jamming
perspective. Due to friction, the system jams at φc into a
metastable configuration and will remain so indefinitely unless
perturbed externally (recall, the disks are macroscopic and
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FIG. 13. (Color online) P vs φ for the second compression cycle
in linear scale shows the predicted power law scaling for granular
jamming transition for all four boundaries. The pressure rise is abrupt
and is in contrast with the gradual (exponential) rise observed for the
first compression cycle. The solid line is the best power-law fit to
the experimental data with a power law exponent of 1.15. The long-
dashed line representing the best linear fit to the data demonstrates
that the experimental data does not follow linear scaling.

not susceptible to thermal fluctuations). Any external driving
(e.g., tapping or jiggling) relieves frictional stresses in the
system (at least partially if not all of them) and destroys this
metastable configuration. In the absence of such external drive,
the only perturbative mechanism available to the system is the
magnitude of the quasistatic step (�φ) which is equivalent
to strain. Hence, it follows that with each loading-unloading
cycle, the system evolves ever so slightly through a series of
metastable configurations towards a final, stable configuration.
The magnitude of �φ therefore directly controls the pack
evolution as shown in the bottom panel of Fig. 11. Furthermore,
whether or not a given value of �φ can evolve the system
from one metastable configuration to the next depends on the
static friction coefficient μ which controls the degree of a
configuration’s stability—the higher the friction coefficient,
the more stable a configuration is. The rate at which φc evolves
therefore must be a function of μ and �φ. Indeed, as shown
in Fig. 11, the difference (φn

c − φ0
c ) between φc for the nth and

0th cycles depends on �φ and μ.
Interestingly, strain-dependent creep and hysteresis are

also observed in viscoelastic materials, which represent an
entirely different class of amorphous media. Viscoelastic
media (unlike purely elastic materials) are characterized by the
presence of both an elastic and viscous component. For this
reason, whereas purely elastic materials dissipate no energy
on application and subsequent removal of a load (reversible
process), a viscoelastic medium does dissipate energy via
viscosity (irreversible process) [21]. This is seen through the
presence of hysteresis in the stress-strain curve, with the area
under the hysteresis loop being equal to the energy lost during
the loading cycle. Viscosity being resistance to thermally
activated plastic deformation, viscous and viscoelastic media

lose energy through a loading cycle, i.e., plastic deformation
results in energy dissipation, a property uncharacteristic of a
purely elastic material’s reaction to a loading cycle.

More specifically, viscoelasticity is a molecular rearrange-
ment. Application of stress to a viscoelastic material, e.g.,
a polymer, cause parts of the long polymer chain to change
their positions. This rearrangement is termed viscoelastic creep
[36]. Polymers retain their solid properties, even as parts of
their chains undergo rearrangement in order to accompany
the stress, and as this occurs, it creates a back stress in
the material. When the magnitude of back stress equals
that of the the applied stress, the material ceases to exhibit
creep. Unlike viscoelastic media where creep and healing of
metastable polymer configurations are thermally activated, in
the athermal granular system considered here, the quasistatic
strain is the only perturbative mechanism available by which
the system creeps towards its ultimate stable configuration
at φRCP. Whereas the dissipative mechanism available to
viscoelastic amorphous media is supplied by viscosity, in
the granular system it comes about through friction. Such
viscoelastic behavior has been observed in naturally occurring
granular packs in the geophysical context, namely sandstone
and sedimentary rocks [15,20]. Particularly noteworthy is that
our loading protocol is very similar to loading procedures
followed in measuring mechanical properties of geophysical
rock samples in standard load cells.

VI. SUMMARY

In summary, we have presented experimental results for
a system of bidispersed, frictional disks subjected to uniaxial
compression. We verify the numerical predictions for frictional
jamming [7,16], whereby jamming is shown to occur at
progressively lower packing fractions with increasing friction
coefficient. We also show the first compression cycle exhibits
exponential increase in pressure and a corresponding expo-
nential fall in displacements over a range of packing fractions
φ1 < φ < φ2. We show this exponential scaling separates the
two conditions that define the critical packing fraction φc.
We compare our data against published experimental and
numerical results and delve into how friction controls this
regime in a nontrivial manner. To put our work in perspective, it
falls within a class of recent results that demonstrate some form
of percolation mechanism arising prior to jamming transition,
with stress percolation presenting the route to jamming in the
present case. Finally, we find hysteretic creep under repetitive
loading-unloading cycles and experimentally trace its source to
friction. Despite our inability to reliably measure coordination
numbers, our experiments help explain the various regimes
arising in frictional granular jamming.

In conclusion, this article shows jamming in the presence of
friction demonstrates rich behavior beyond the ideal jamming
scenario. Several subtle, yet important questions arise, as
discussed throughout this article. Some of them lie beyond
experimental purview where numerical simulations can lend
crucial support. Resolution of these questions should aid in
development of a tractable theory of frictional jamming, in
turn, aiding advances in both fundamental (statistical and
condensed matter physics) and applied (materials physics and
geophysics) realms alike.
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