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Inelastic collapse in one-dimensional driven systems under gravity
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We study inelastic collapse in a one-dimensional N -particle system when the system is driven from below
under gravity. We investigate the hard-sphere limit of inelastic soft-sphere systems by numerical simulations to
find how the collision rate per particle ncoll increases as a function of the elastic constant of the sphere k when
the restitution coefficient e is kept constant. For systems with large enough N � 20, we find three regimes in e

depending on the behavior of ncoll in the hard-sphere limit: (i) an uncollapsing regime for 1 � e > ec1, where
ncoll converges to a finite value, (ii) a logarithmically collapsing regime for ec1 > e > ec2, where ncoll diverges as
ncoll ∼ log k, and (iii) a power-law collapsing regime for ec2 > e > 0, where ncoll diverges as ncoll ∼ kα with an
exponent α that depends on N . The power-law collapsing regime shrinks as N decreases and seems not to exist
for the system with N = 3, while, for large N , the size of the uncollapsing and the logarithmically collapsing
regime decreases as ec1 � 1–2.6/N and ec2 � 1–3.0/N . We demonstrate that this difference between large and
small systems exists already in the inelastic collapse without external drive and gravity.
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I. INTRODUCTION

The inelastic hard-sphere system is one of the simplest mod-
els of granular media. It consists of rigid spheres that interact
with each other only through instantaneous inelastic collisions.
Minimum ingredients of the granular systems are taken in this
system, for which the efficient event-driven algorithms have
been developed for molecular-dynamics simulations [1–3] as
well as sophisticated kinetic theories for analytical study (see,
for example, Ref. [4]).

With this idealization of the granular media, however, it
has been known that an infinite number of collisions among
a finite number of particles can occur in a finite length of
time. This phenomenon is called inelastic collapse [5,6]. The
process of collisions involved in inelastic collapse has been
studied for one-dimensional (1D) [5,6] and two-dimensional
(2D) systems [7–11], and the conditions for inelastic collapse
have been obtained in some situations [5–10].

One of the simplest cases is freely cooling granular gas, in
which the inelastic hard-sphere system develops freely without
any external forces [7,10]. In 2D systems, it has been shown
that the particles that partake in the inelastic collapse form a
stringlike linear structure in the case of frictionless particles
[7], while they form a stringlike zigzag pattern for the case of
the frictional particles [10]. Another simple case is a simple
shear flow, where the collapsing particles have been shown
to form a linear string structure typically oriented along the
direction 45◦ from the flow direction [11].

In hard-sphere idealization, once the inelastic collapse
occurs, the system cannot proceed further without additional
assumptions for the dynamics, such as those in the contact
dynamics [12,13]. A simple way to escape from this difficulty
is to suppress the inelastic collapse by employing the velocity-
dependent restitution coefficient that goes to 1 as the colliding
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velocity goes to zero [14,15].1 In actual systems with finite
rigidity, the inelastic collapse should never occur.

Although the inelastic collapse is a singular behavior in
the idealized system of the infinitely hard spheres with a
constant restitution coefficient, its relevance to some physical
behaviors has been suggested. In flowing configurations, it has
been demonstrated by numerical simulations that there exists
a strong correlation between the force chain network and the
chainlike structure formed by particles that collide repeatedly
with each other in the hopper flow [17]. Inelastic collapse
has also been discussed in connection with the formation of
correlation in shear flow [18].

To study how inelastic collapse affects system behavior in
physical situations, it is natural to investigate the soft-sphere
system with finite rigidity and see how the inelastic collapse
appears in the hard-sphere limit. If you take, however, a simple
limit of the infinite elastic constant with finite dissipation
parameters, the resulting restitution coefficient tends to 1,
therefore the inelastic collapse does not occur. Thus the
pertinent hard-sphere limit for this purpose is the limit of the
infinite elastic constant with keeping the resulting restitution
coefficient constant by making the dissipation parameter
infinite.

Mitarai and Nakanishi studied such a limit by examining the
limiting behavior of the collision rate ncoll for 2D gravitational
flow [19]. The hard-sphere limit was taken as the limit of the
infinite elastic constant k with the restitution coefficient e being
kept constant. They found that ncoll converges to a finite value
in the collisional flow regime, while it diverges as ncoll ∼ kα

as k → ∞ in the frictional flow regime. The exponent α was
estimated to be about 0.4 in their case, i.e., 2D gravitational
flow on a flat slope with ten layers of particles and the
restitution coefficient e = 0.7. More recently, Brewster et al.

1This is actually not a completely fictitious model because the
dissipation often decreases for low velocity collisions in real systems
[16].
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studied three-dimensional gravitational flow and obtained
α � 0.25 for the system with 90–100 layers of particles on a
rough slope and e = 0.88 [20]. Although the divergence of the
collision rate implies the emergence of inelastic collapse in the
hard-sphere limit, a simple consideration of the exponentially
decreasing collision time interval would give the logarithmic
divergence, and the mechanism for the power-law divergence
has not been understood yet.

Motivated by these findings of the power-law divergence in
the gravitational slope flow, in this paper we take a closer look
at the problem in an even simpler system, namely a 1D inelastic
particle system under gravity with an external excitation from
the bottom of the system. The external excitation at the bottom
is supposed to mimic the excitation by random collisions
of particles with the slope in the gravitational flow, and our
1D system is intended to capture only the particle motion
perpendicular to the slope. By numerical simulations, we will
show that even this simple model exhibits the power-law
divergence of the collision rate, ncoll ∼ kα .

This paper is organized as follows. In Sec. II, we begin by
introducing our model and describe a method to study the hard-
sphere limit of soft spheres in our simulations. The system with
N = 3 is analyzed to show the logarithmic behavior ncoll ∼
log k in the hard-sphere limit. In Sec. III, after describing the
simulation procedure, first we present the simulation results
for the systems with a small number of particles (N = 3–6);
only the logarithmic behavior in the hard-sphere limit is
observed for N = 3 while the power-law divergence regime
appears for the larger system in the smaller e region. Then we
show the simulation results of systems with a large number
of particles (N � 20) and demonstrate that there exist three
distinct regimes for the limiting behavior of ncoll in e. We
discuss the origin of these limiting behaviors based on the
simulation results of inelastic collapse in 1D free space. A
summary and conclusion are given in Sec. IV.

II. ONE-DIMENSIONAL MODEL OF GRANULAR FLOW

A. Model

We consider the 1D model by focusing the particle motion
only perpendicular to the slope (see Fig. 1). The particles are
allowed to move only along the z axis under the influence of
gravity and the lowest particle is excited by the bottom floor.

Let us consider N identical particles with mass m and
diameter d. The particles are numbered from the bottom
starting with i = 1, and can interact only with their adjacent
particles through the soft-sphere interaction. The excitation
by the random collision with the slope is represented by the
thermal floor located at the bottom z = 0. When the lowest

thermal floor

flow

1D model

gravity

2D model

FIG. 1. (Color online) A schematic representation of the relation
between the granular slope flow and the 1D driven system.

particle (i = 1) collides with the bottom, it comes off with a
random velocity v by the Maxwell-Boltzmann distribution

p(v) = mv

kBT0
exp

(
− mv2

2kBT0

)
, (1)

where T0 is the temperature of the thermal floor and kB is the
Boltzmann constant.

The interaction between soft spheres is given by the so-
called spring-dashpot model [2,21]. Let zi and vi denote the
coordinate and the velocity of particle i, respectively. Then the
overlap between the adjoining two particles i and i + 1 is given
by xi,i+1 ≡ d − (zi+1 − zi). The relative velocity between i

and i + 1 is denoted as vi,i+1 ≡ vi − vi+1 = dxi,i+1/dt . Then,
the force fi,i+1 exerted on particle i by particle i + 1 is given
by

fi,i+1 =
{−kxi,i+1 − Dmvi,i+1 (for xi,i+1 > 0),

0 (for xi,i+1 � 0).
(2)

The first term of Eq. (2) represents the elastic force by
the Hookean law with the elastic constant k. The second
term denotes the dissipative force proportional to the relative
velocity vi,i+1, where D is the damping constant. The force
acting on the particle i + 1 by the particle i is given by fi+1,i =
−fi,i+1. Note that the dissipative force is discontinuous at
xi,i+1 = 0.

The equation of motion for the particle i is then given by

m
dvi

dt
= −mg + fi,i+1 − fi−1,i , (3)

where g is the gravitational acceleration. For our linear force
law of Eq. (2), the duration time of contact for a binary collision
τc is constant and given by

τc = π√
(2k/m) − D2

. (4)

B. Hard-sphere limit

For the linear force law in Eq. (2), the restitution coefficient
e of a binary collision is given by

e ≡ −vi,i+1|t=τc

vi,i+1|t=0
= exp(−Dτc), (5)

using the duration time τc of Eq. (4). By solving this for D,
we obtain

D =
√

2k

m

(ln e)2

π2 + (ln e)2
. (6)

The hard-sphere limit is defined as the limit of k → ∞ with
keeping e constant. Thus, in this limit D diverges as D ∝ k1/2

and τc goes to zero as τc ∝ k−1/2.

C. Inelastic collapse

Bernu and Mazighi [5] have studied N inelastic hard
spheres thrown against a wall in the 1D system and showed
that inelastic collapse can occur if e is less than a critical value
ewall
c (N ). They gave an analytical expression for ewall

c (N ) using
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FIG. 2. Schematic diagram for particle motion in the three-body
inelastic collapse in the one-dimensional free space.

the independent collision wave (ICW) model:

ewall
c (N ) = tan2

[
π

4

(
1 − 1

N

)]
. (7)

This is exact for the case of N = 2 but is an approximation
for N > 2 because the model ignores interaction between
collision waves. Using another model called the cushion
model, McNamara and Young [6] have obtained an estimate
for the minimum number of particles Nwall

c that is required for
collapse when the restitution coefficient is e:

Nwall
c (e) = ln[4/(1 − e)]

1 − e
. (8)

This result becomes exact in the limit e → 1. Comparison
between the ICW model and the cushion model has been
discussed in Refs. [6,22], and the numerical simulations show
that the former is more accurate for N < 15 while the latter
is better for N > 15. In the large-N limit, both of the models
give ewall

c → 1, but the asymptotic forms are

ewall
c,ICW ≈ 1 − π

N
(9)

for the ICW model and

ewall
c,cushion ≈ 1 − 1

N
ln(4N )

(
1 − ln ln 4N

ln 4N

)
(10)

for the cushion model.
The inelastic collapse can also occur in free space in the

1D system if e is less than a critical value ec(N ). A schematic
picture of the three-body inelastic collapse is given in Fig. 2.
McNamara and Young [6] have shown that the three-body
inelastic collapse can occur if e < ec(3) ≡ 7 − 4

√
3 by using

the 3 × 3 matrix M that relates the final velocities v′ =
(v′

1,v
′
2,v

′
3) of the three particles after two successive collisions

with their initial velocities v = (v1,v2,v3) as v′ = Mv.
For N = 4, the critical value can be evaluated as ec(4) =

ewall
c (2) because of the symmetry in the order of collisions. If

such symmetry in the order of collision process is assumed for
N > 4, one may obtain the relation

ec(2N ) = ewall
c (N ), (11)

but numerical simulations have shown that the relation Eq. (11)
is not valid for large N [22].

D. Asymptotic analysis for N = 3

In this subsection, we examine the asymptotic behavior of
the total number of collisions ntot in a single collapsing event
in the hard-sphere limit for the cases of N = 3 and show that
ntot ∼ log k in the k → ∞ limit. The system with N = 3 is the

smallest one where inelastic collapse can occur, since the floor
provides a thermal drive, thus inelastic collapse can happen
only in a sequence of collisions among particles. Then, we can
argue the behavior of ntot by considering a collision process
of the three-body inelastic collapse in the hard-sphere limit, as
shown in Fig. 2. In this case, the time between the (n − 1)th
collision and the nth collision, t

(n)
12 , between the same pair of

particles, say 1 and 2, behaves as

t
(n)
12 ≈ qt

(n−1)
12 ≈ qnt

(0)
12 , (12)

where q is a constant smaller than unity (see Appendix A).
Now, let us discuss the case of the soft spheres with a finite k

and e < ec(3). In this case, initial binary collisions can follow
a sequence similar to the inelastic collapse, but eventually
all of the three particles are in contact after a finite number
of collisions, and then fly away from each other with very
small relative velocities. We estimate the total number ntot of
collisions before all three particles are in contact at the same
time. Similar estimation has been done for the case of a single
inelastic soft sphere bouncing on a floor to show ntot ∼ log k as
k → ∞ [19]. The three-body-collapse-like collision process
shows essentially the same behavior, as we will show in the
following.

First of all, the collision interval t
(n)
12 for the case of the

soft-sphere system is given by

t
(n)
12 ≈ qt

(n−1)
12 + �t12, (13)

with the correction term �t12 in comparison with Eq. (12)
because the collision duration τc is finite. It can be shown (see
Appendix B) that

�t12 = −f τc, (14)

where f is positive and a function of e. Substituting Eq. (14)
into Eq. (13), we obtain

t
(n)
12 ≈ qt

(n−1)
12 − f τc ≈ qnt

(0)
12 −

n−1∑
i=0

qif τc

= qnt
(0)
12 − 1 − qn

1 − q
f τc. (15)

The number of collisions ntot before all three particles are in
contact at the same time is given by the smallest n that satisfies
the condition t

(n+1)
12 � 2τc, because two successive collisions

between particles 1 and 2 cannot be shorter than twice the
duration time. Thus, by requiring the relation

t
(ntot)
12 � 2τc (16)

for ntot � 1 and substituting Eq. (15), we obtain

qntot t
(0)
12 ≈

(
2 + 1 − qntot

1 − q
f

)
τc. (17)

ntot diverges and qntot goes to zero in the limit k → ∞ because
τc ∝ k−1/2 and 0 � q < 1. Thus, Eq. (17) can be written as
qntot t

(0)
12 ∼ ak−1/2, where a is a coefficient that depends on e.

Therefore, we obtain ntot,

ntot ∼ − 1

2 log10 q
log10 k + const. (18)
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If we assume that the frequency r of such a three-body process
is independent of k, the collision rate is ncoll ∼ rntot and thus
ncoll ∼ log k in the hard-sphere limit.

III. SIMULATION RESULTS

The main quantity studied in this paper is the collision rate
per particle ncoll defined as the average number of collisions
(including collisions with the floor) per particle per unit time
for various values of parameters, k, e, N , and T0. We carried
out numerical simulations to investigate ncoll in the hard-sphere
limit. After describing the simulation procedure, we present
the results for a small number of particles 3 � N � 6 first,
and then for a large number of particles N � 20. We find a
qualitative difference between the two cases.

A. Simulation procedure

Numerical simulations are performed using the second-
order Runge-Kutta method with the time step dt = τc/100,
where τc is the duration time of binary collision given by
Eq. (4). All particles are initially placed in such a way that
there is no overlap between particles and velocities are given
randomly. After waiting for a sufficiently long time for the
system to go through an initial transient, we start taking data
for various quantities and their time average.

For numerical data, we employ the unit system where
the particle mass m, the diameter d, and the gravitational
acceleration g are unities,

m = d = g = 1. (19)

We set the temperature of the thermal floor kBT0 = 1 unless
otherwise stated. For a given set of N and e, we measure the
collision rate ncoll for k = 105, 106, 107, 108, 109, and 1010.

Each collision event between two particles or between a
particle and the floor is defined by their contact. The collisions
between particles last for some duration time and they are
counted every time colliding particles separate, while the
collisions with the floor are assumed to be instantaneous. The
total number of collisions Ncoll includes the collisions between
particles and those between a particle and the floor, and the
collision rate per particle ncoll is defined by

ncoll = Ncoll/(NT ), (20)

where T is the simulation time length. We set T = 104 for
N < 50 and T = 103 for N � 50.

B. Small systems

Let us first consider systems with a small number of
particles, in which a series of collisions occurs in a simple
manner. Figure 3 shows the collision rates per particles, ncoll,
as a function of k for various values of e on the system with
N = 3–6. For the system of N = 3 [Fig. 3(a)], the logarithmic
behavior of ncoll is clearly observed for e < ec(3) = 7 − 4

√
3,

as has been suggested from the analysis in Sec. II D. On the
other hand, for e > ec(3), ncoll converges to a finite value as k

becomes large. It should be noted, however, that ncoll increases
faster than log10 k for e = 0.0718 � ec(3).

For the systems with N = 4, 5, and 6, such a region where
ncoll increases faster than log10 k extends toward the smaller
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FIG. 3. (Color online) Collision rate per particle ncoll vs log10 k

for various values of the restitution coefficient e for the systems with
N = 3 (a), 4 (b), 5 (c), and 6 (d).

e region than ec(N ), e < ec(N ), as is seen in Fig. 3. Here, ec(N )
represents the critical restitution coefficient of the inelastic
collapse for the free N -particle system evaluated by the ICW
model with Eqs. (7) and (11),

ec(N ) = tan2

[
π

4

(
1 − 2

N

)]
, (21)

which we expect to be accurate for small N .
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FIG. 4. (Color online) Collision rate per particle ncoll vs e, plotted
for k = 105–1010 for the systems with N = 3 (a), 4 (b), 5 (c), and
6 (d). The vertical dotted lines are at the restitution coefficient of
ec(3), ec(4), . . . , ec(N + 1) from left to right.
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In Fig. 4, ncoll is shown as a function of e for k = 105–1010

on the system with N = 3–6. One may notice that the curves
have irregular-looking fine structures. We confirmed, however,
that their statistical errors are small enough and that these fine
structures are reproducible if we change sequences of random
numbers in the simulations. Some of the larger structures
coincide with the critical restitution constants ec(n) with
(n = 3, . . . ,N + 1), which are shown by the vertical dotted
lines in Fig. 4. In the case of N = 3 [Fig. 4(a)], one can observe
a sharp peak at ec(3), and the peak value of ncoll increases faster
than log10 k as k increases. For e < ec(3), ncoll increases by a
near constant when k becomes 10 times larger, which suggests
that ncoll increases logarithmically, as is discussed above.

For N = 3–6, there are a couple of features in common.
First, a sharp peak appears at ec(n) (n = 3, . . . ,N − 1) and the
peak at ec(3) is highest. Secondly, a dip appears at e slightly
larger than ec(N ). Our simulation results (not shown here)
suggest that this dip still exists for N = 10, becomes unclear
for N = 25, and completely disappears for N = 30.

C. Large systems

1. Collision rate in the large-k limit

For large systems, the power-law divergence of the collision
rate dominates, but we can see clearly that there exists a region
of restitution coefficient where ncoll diverges definitely slower
than the power law. In Fig. 5, we plot ncoll for N = 25 as a
function of k for various values of e [Figs. 5(a)–5(c)] and as a
function of e for various values of k [Fig. 5(d)]. It is clear in the
logarithmic plot of Fig. 5(c) that ncoll converges for e � 0.9 and
diverges in the power law for e � 0.8. The exponent α in the
power-law regime depends on e, but is nearly constant α � 0.2
for e � 0.6, as can be seen from Fig. 5(c). In Fig. 5(d), we also
observed that the value of ncoll itself is nearly independent of e

for any value of k for e � 0.6, where the exponent α is nearly
constant.

In the following, we will examine the transition region
between the converging regime to the diverging regime
carefully. Let us denote the lower limit of the restitution
of the converging region by ec1 and the upper limit of the
power-law diverging region by ec2. A close look at the
region 0.8 < e < 0.9 in the semilogarithmic plots of Figs. 5(a)
and 5(b) reveals that there are two regimes within the region
where ncoll diverges: the convex regime and the concave
regime as a function of log10 k. In the convex regime, ncoll

diverges faster than log10 k, suggesting that it is a part of the
power-law regime. In the concave regime, the divergence is
slower and it seems that ncoll eventually shows the logarithmic
divergence,

ncoll ∼ b(e,N ) log10 k + const (22)

in the large-k limit with the coefficient b that depends on e

and also on N . The lower limit of the converging regime ec1

is determined as the upper limit of the divergence; the data are
fitted to Eq. (22) in the asymptotic region, and ec1 is the point
where b = 0. On the other hand, the value of ec2 is estimated
by the boundary between the convex and the concave regime.
Using these procedures, we obtain that ec1 � 0.894 and ec2 is
somewhere between 0.878 and 0.884 for N = 25. The values
of ec1 and ec2 are determined for several values of N , and
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FIG. 5. (Color online) Collision rate per particle ncoll for N = 25.
ncoll − log10 k is plotted for (a) e = 0.80–0.90 with an increment 0.01
from top to bottom. (b) e = 0.87–0.90 with an increment 0.002 from
top to bottom. log10 ncoll − log10 k is plotted for (c) e = 0.1–1.0 with
an increment 0.1. (d) ncoll − e is plotted for k = 105–1010 from bottom
to top with the inset that shows a close-up near the critical values
ec1 ≈ 0.894 and ec2 ≈ 0.88.

plotted with error bars in the 1/N -(1 − e) plane in Fig. 6. One
can see that they fit very well to the lines

(
1 − efit

c1

) = 2.6

N
,

(
1 − efit

c2

) = 3.0

N
. (23)

Note that their functional form is the same as the asymptotic
form of ewall

c,ICW in Eq. (9).
We further examine b(e,N ) in Eq. (22) as a function of both

e and N by simulation data. From Eq. (23), we expect that
b(e,N ) is expressed by a simple function of (1 − e) − A/N

with a constant A ≈ 2.6. This is actually what we find in
Fig. 7(a), where we plot b(e,N )/N5/2 against (1 − e) − 2.6/N

for various values of N and e in the logarithmic scale. One can
see that the data collapse on a straight line with the slope 2,
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FIG. 6. (Color online) Bifurcation diagram for the three regimes.
The critical values of ec1 and ec2 are plotted for N = 20, 25, 30,
40, 50, 100, and 150. The error bars show ambiguity of the results
in the procedure. The dashed and the dashed-dotted lines show the
fitting lines for ec1 and ec2 by (1 − efit

c1) = 2.6/N and (1 − efit
c2) =

3.0/N , respectively. The shaded region represents the region where
the partially condensed state appears; its boundary is estimated at
N = 20, 25, 30, 50, 100, and 150.

which means

b(e,N ) ∼ N5/2[(1 − e) − 2.6/N ]2, (24)

from which we confirm the asymptotic form

ec1 � 1 − 2.6

N
. (25)

It should be noted that this result is very close to the critical
values of e below which clustering starts in the 1D granular
system driven by a vibrating bottom plate, i.e., ec ≈ 1 − 2.5/N

[23] and ec ≈ 1 − 2.6/N [24].
Based upon the above analysis, we conclude that the critical

values, ec1 and ec2, do not coincide; therefore, in addition
to the converging regime, there are two diverging regimes
in e with respect to the behavior of ncoll in the hard-sphere
limit k → ∞: (i) an uncollapsing regime, e > ec1, where ncoll
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1.5*(1-e-2.6/N)
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4
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N=100
N=150

1.5*(N(1-e)-2.6)
2

(b)

FIG. 7. (Color online) (a) b(e,N )/N5/2 vs (1 − e) − 2.6/N in the
logarithmic scale. b(e,N ) is defined in Eq. (22) and estimated from
the plots similar to those in Fig. 5(c) for various values of N and e

in the logarithmically collapsing regime. The dashed line gives a fit
by 1.5[(1 − e) − 2.6/N ]2 for b/N 5/2. (b) b(e,N )/N1/2 vs N (1 − e)
in the linear scale using the same data as in (a). The range of values
of e used to plot (a) and (b) is the following: 0.835 � e � 0.900
for N = 20, 0.876 � e � 0.900 for N = 25, 0.894 � e � 0.920
for N = 30, 0.918 � e � 0.940 for N = 40, 0.932 � e � 0.960 for
N = 50, 0.963 � e � 0.972 for N = 100, and 0.972 � e � 0.979
for N = 150.

converges to a constant value; (ii) a logarithmically collapsing
regime, ec1 > e > ec2, where ncoll diverges as ncoll ∼ log k;
and (iii) a power-law collapsing regime, e < ec2, where ncoll

diverges as ncoll ∼ kα .

2. Partially condensed state

We observe a partial condensation near the bottom around
a certain value of e. Figure 8 shows the spatial variation of
the positional fluctuation (a) and the kinetic energy (b) of each
particle for various values of e for N = 25; Fig. 8(a) shows the
standard deviation σi of the position of the particle i divided by
the one σ0 i for the elastic case e = 1, and Fig. 8(b) shows the
kinetic energy Ki of the particle i. Note that Ki = (1/2)kBT0

for any particle when e = 1.
For e � 0.91, σi/σi 0 and Ki are larger in the region closer

to the bottom and they decrease monotonically as the particle
index i increases. This is because the thermal wall at the bottom
supplies the kinetic energy to the bottom particle, and the
kinetic energy is dissipated as it is transported away from the
bottom via the inelastic collisions. However, around e � 0.9,
a dip appears near the bottom both in σi/σ0 i and Ki , and there
appears the inversion layer where the temperature increases
with i. This means that the low-temperature and high-density
domain appears near the bottom. We call this the partially
condensed state. For N = 25, the value of e � 0.9 where the
partially condensed state appears almost coincides with, but
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Particle indices      i

0.01

0.1

σ i / 
σ 0 

i
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e=0.91
e=0.90
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e=0.86
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e=0.84
e=0.83
e=0.82

(a)
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K
i
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e=0.87
e=0.86
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e=0.84
e=0.83
e=0.82

(b)

FIG. 8. (Color online) Spatial variation of the particle fluctuation
of position and the kinetic energy for e = 0.82–0.92 for the system
with N = 25. (a) The standard deviation of particle position σi of
particle i, normalized by the corresponding value for e = 1, σ0,i .
(b) The kinetic energy Ki of the particle i. The data are shown for the
cases with the elastic constant k = 1010.
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seems to be slightly larger than, ec1 � 0.894, i.e., the critical
point of the inelastic collapse.

The condensed domain with low σi/σi 0 in Fig. 8(a) extends
toward the upper part of the system as e is decreased down
to 0.84, where the whole system is condensed. That is, the
partially condensed state appears for 0.84 � e � 0.90, namely,
the partially condensed state appears both in the logarithmi-
cally collapsing and the power-law collapsing regimes.

In Fig. 6, the region for the partially condensed state is
shown by the shaded area in the 1/N–(1 − e) plane. One can
see that the upper bound of e (the lower boundary in Fig. 6)
for the partially condensed state nearly coincides with ec1 for
all of the cases examined.

3. Exponent in the power-law collapsing regime

We observed that ncoll is almost constant when e � 0.4 for
N = 25, as can be seen in Fig. 5. We examined this for the
case with N = 20–150 and found this is true for all the cases.
In Fig. 9, the exponents α for e = 0.1, 0.2, 0.3, and 0.4 are
plotted against log10 N . One can see that α does not change by
e but depends linearly on log10 N and can be fitted to

αfit = 0.18 log10 N − 0.054 � 0.18 log10 (N/2) . (26)

This logarithmic dependence of the exponent α on N means
that ncoll is given by

ncoll ∼ (N/2)0.18 log10 k (27)

for e � 0.4.

4. Effect of the floor temperature T0

We find no qualitative difference in the k dependence of
ncoll by changing kBT0 from 1 to 10 in both systems with
N = 25 and 50. We show in Table I the critical values ec1 and
ec2, and the average exponent of the power law α for kBT0 = 1
(see Sec. III C1), 2, 4, and 10 for the systems with N = 25 and
50. Here α is the arithmetic mean of the four values of α at
e = 0.1, 0.2, 0.3, and 0.4, for which α’s are almost constant
independent of e. Both the critical values and the power-law
exponent seem to be independent of T0.

10 100
N

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 α

e=0.1
e=0.2
e=0.3
e=0.4

FIG. 9. (Color online) Exponent of the power law α for e =
0.1, 0.2, 0.3, and 0.4 plotted as a function of N . The dashed line
gives a fit by 0.18 log10 N − 0.054.

TABLE I. The critical values ec1,ec2 and the average exponent of
the power law α for various values of the floor temperature T0 for
the systems with N = 25 and 50. The average exponent α is defined
as the arithmetic mean of the four values of α at e = 0.1, 0.2, 0.3,

and 0.4.

N kBT0 ec1 ec2 α

25 1 0.894 0.878–0.884 0.20
2 0.892 0.874–0.880 0.20
4 0.892 0.872–0.880 0.20
10 0.890 0.872–0.878 0.19

50 1 0.944 0.942–0.936 0.25
2 0.944 0.938–0.942 0.25
4 0.944 0.938–0.940 0.24
10 0.944 0.934–0.944 0.24

D. Inelastic collapse in free space

To narrow down the possible origin of the power-law
divergence of the collision rate, we further simplify the system
and consider the N -particle system in the 1D free space
without the external drive and the gravity. We performed MD
simulations to see how the total number of collisions behaves
in the hard-sphere limit.
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(a) N=3

5 6 7 8 9 10 11 12
log

10
 k

10
2

10
3

10
4
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t

e=0.1
e=0.2
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e=0.4
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e=0.7
e=0.8
e=0.9
k

0.20

(b) N=25

FIG. 10. (Color online) ntot vs log10 k for various values of e

(a) for N = 3 in the log-linear scale and (b) for N = 25 in the log-log
scale. The parameters for the initial state are a = v0 = 1 and δv0 =
0.1. Each data point represents an average over 1000 realizations
by different random number ξi’s. The dashed lines in (a) show the
asymptotic behavior given by Eq. (18) with q given by Eq. (A12) for
the corresponding e values after the constants being adjusted to the
data. The dashed line in (b) is the line with the slope 0.2.
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In the initial state, N particles of the diameter d are placed
at an equal interval with the space a,

xi =
(

i − N + 1

2

)
(d + a), i = 1,2, . . . ,N, (28)

with the initial velocities

vi = −v0 sgn(xi) + δv0 ξi, (29)

where sgn(x) is the sign function and ξi’s are random numbers
distributed uniformly over the interval [−1,1); v0 and δv0 are
positive parameters.

We count the total number of collisions ntot until the relative
velocity of the end particles vN − v1 becomes positive. The
results are shown in Fig. 10 for the systems with N = 3 (a)
and 25 (b) for d = a = v0 = 1 and δv0 = 0.1. One can see
that the total number of collisions ntot behaves in an analogous
way with the collision rate ncoll in the driven system under
the gravity shown in Figs. 3(a) and 5(c). For the case of N =
3, ntot converges to a finite value when e > ec(3) � 0.0718
and diverges as log10 k when e < ec(3). The dashed lines in
Fig. 10(a) show Eq. (18) with q given by Eq. (A12) for the
corresponding e values and adjusted constants. As for the case
of N = 25, ntot diverges as kα when e � 0.6 with the exponent
close to the value α � 0.2 for the previous case with the drive
and the gravity.

IV. SUMMARY AND DISCUSSIONS

We have studied the inelastic collapse in the 1D system
under gravity with the random driving from the bottom
floor. Using MD simulations for the soft-sphere systems,
we calculated the collision rate per particle ncoll and see
how it diverges or converges in the hard-sphere limit; the
hard-sphere limit is taken by the infinite limit of the elastic
constant, k → ∞, with the restitution coefficient e being
kept constant. We have found that there are three regimes
in the restitution coefficient e: (i) the uncollapsing regime for
1 � e > ec1, where ncoll converges, (ii) the logarithmically
collapsing regime for ec1 > e > ec2, where ncoll diverges as
ncoll ∼ log k, and (iii) the power-law collapsing regime for
ec2 > e > 0, where ncoll ∼ kα . For small N systems, the
region of e for the power-law collapsing regime is small and
disappears for N = 3. On the other hand, for large-N systems,
the region for the power-law collapsing regime expands in
the way that both ec1 and ec2 approach 1, as in Eq. (23). As
for the floor temperature effect, we have checked the critical
restitution constants ec1 and ec2 and the power-law exponent
α for the system of N = 25 and 50, and found virtually
no change for all of them in the temperature range of 1 �
kBT0 � 10.

If the intervals of collisions follow a geometrical sequence
toward inelastic collapse, the logarithmic divergence of the
collision number can be understood based on the consideration
that the collision sequence terminates at the point where the
collision interval becomes comparable with the duration time
of binary collision. In the case of one particle bouncing on
a floor under gravity, it is obvious that the collision times
follow the geometrical sequence. We have shown that it holds
also for the three-particle system in 1D free space. Thus, the
logarithmic divergence of the collision rate for the externally

driven system can be understood if the inelastic collapses occur
at a certain rate and they do not interfere with each other nor
are they affected by the external drive in the hard-sphere limit,
k → ∞.

On the other hand, the power-law divergence of the collision
rate is more intriguing. It has been reported in the gravitational
slope flows [19], but our results show that it occurs in an
even simpler system, i.e., a 1D externally driven system under
gravity. If we try to understand this in the same way as above,
the collision interval should decrease as a power of collision
number. This possibility is supported by the fact that the total
number of collisions in free space also diverges in the power
law in the hard-sphere limit. If this is true, we still need to
understand how the power-law sequence of collision intervals
arises.

For the small-N systems, the collision rate shows a certain
structure as a function of e at e = ec(n) of 3 � n � N + 1,
i.e., the critical restitution coefficient for the n-particle system
in free space. For N = 3, there is a sharp peak at e = ec(3)
and a dip at e = ec(4), while for 3 < N � 6, we find peaks at
e = ec(n) for 3 � n � N − 1, a dip or a shoulder at e � ec(N ),
and a somewhat broad peak around e � ec(N + 1). Such a
structure becomes vague for larger N . Note that the relative
motion of n particles under gravity with respect to their center
of mass is equivalent to the motion in the free space as long
as they do not interact with their surrounding particles. Thus,
the structure at ec(n) for n < N should be an effect of the
inelastic collapse in which a part of the system is involved,
but we do not understand yet how it shows up as a sharp
peak or a dip structure, depending on the number of particles
involved.

For large N , it is also intriguing that the collision rate
is independent of e for a rather wide range; in the case of
N = 25, ncoll is constant in the region e � 0.6 for any k, thus
the exponent α also does not depend on e in the same region.
Within the range 20 � N � 150, ncoll is almost constant for
e � 0.4, but the power-law exponent increases depending
linearly on log N as N is increased.

One may find that some data points for N > 100 in
Figs. 6, 7(b), and 9 seem to deviate systematically from the
asymptotic fitting expressions given by Eqs. (23), (24), and
(26), respectively. This may be due to the excessive load on
particles near the floor. In the case of very large N , the load on
the particles near the floor becomes so large that the contacts
among them cannot be resolved into binary collisions but may
remain as long-lived contacts in the range of k investigated. In
such a case, the system behavior may deviate from the assumed
asymptotic forms.

It is found that there appears a partially condensed state
where some particles near the bottom condense with lower
kinetic energy. The region where the partially condensed state
appears in the 1/N − (1 − e) plane covers the logarithmically
collapsing regime; it starts barely inside the uncollapsing
regime and extends somewhat into the power-law collapsing
regime. The condensed state near ec1 contains only a few
particles, but the number of condensed particles increases
as e decreases. The fact that the partially condensed state
starts almost at ec1 suggests that the inelastic collapse causes
the condensation, but it remains to be understood how a
small number of particles can condense by the inelastic
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collapse at e ≈ ec1, which is much larger than ec(n) for
small n.

The partially condensed state has already been observed
in 1D granular systems driven by a vibrating bottom plate
in various forms of vibration. In the case of sinusoidal
vibration, the condensed state has been shown to appear for
N (1 − e) � 2.5 [23], and in the cases of a sawtooth vibration
and a piecewise quadratic vibration, for N (1 − e) � 2.6 [24].
Our result shows that the partially condensed state appears
below ec1, which means N (1 − e) � 2.6 from Eq. (25). These
results are in agreement with each other and show that the
point where the system starts to condense is not sensitive to
the driving mode.

In summary, we have demonstrated that inelastic collapse
occurs in a 1D driven system under gravity as the diverging
collision rate in the large-k limit while keeping the restitution
coefficient e constant. By numerical simulations, we found
that there are three regimes for the way that the collision
rate diverges, i.e., the uncollapsing regime, the logarith-
mically collapsing regime, and the power-law collapsing
regime.

APPENDIX A

In this Appendix, we consider the three-body inelastic
collapse of the inelastic hard spheres in the free space and
derive the asymptotic behavior Eq. (12) of the time t

(n)
12 between

two successive collisions between the particles 1 and 2.
Let t (n) be the time of the nth collision between the particles

2 and 3 and t ′(n) be the time of the nth collision between the par-
ticles 1 and 2, and define t

(n)
1 = t ′(n) − t (n) and t

(n)
2 = t (n+1) −

t ′(n) (see Fig. 11). Similarly, the particle velocities just after t (n)

are v
(n)
i (i = 1,2,3), those just after t ′(n) are v′(n)

i (i = 1,2,3).
The relative velocities are denoted by v

(n)
21 = v

(n)
2 − v

(n)
1 and

v
(n)
32 = v

(n)
3 − v

(n)
2 . The separation between the particles 1 and

2 at t (n) is denoted by x
(n)
21 and that between the particles 2 and 3

at t ′(n) is denoted by x ′(n)
32 .

The times t
(n)
1 and t

(n)
2 are then written as

t
(n)
1 = x

(n)
21∣∣v(n)
21

∣∣ , t
(n)
2 = x ′(n)

32∣∣v′(n)
32

∣∣ , (A1)

respectively. The separations x
(n)
21 and x ′(n)

32 can also be
expressed as

x
(n)
21 = v′(n−1)

21 t
(n−1)
2 , x ′(n)

32 = v
(n)
32 t

(n)
1 , (A2)
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FIG. 11. Schematic picture of collision sequence occurring in the
three-body inelastic collapse in the free space.

respectively. Combining Eqs. (A1) and (A2), we can write

t
(n)
1 = v′(n−1)

21∣∣v(n)
21

∣∣ v
(n−1)
32∣∣v′(n−1)
32

∣∣ t
(n−1)
1 . (A3)

Using v
(n−1)
21 = − 1

e
v′(n−1)

21 and v
(n)
32 = −ev′(n−1)

32 , we can further
rewrite it as

t
(n)
1 = 1

e2

v
(n)
32∣∣v(n)
21

∣∣ v
(n−1)
32∣∣v(n−1)
21

∣∣
(

v
′(n−1)
21

|v′(n−1)
32 |

)2

t
(n−1)
1 . (A4)

This relation can be expressed using the ratio of the relative
velocities m(n) = v

(n)
32 /v

(n)
21 and m′(n) = v′(n)

32 /v′(n)
21 as

t
(n)
1 = 1

e2

m(n)m(n−1)

(m′(n−1))2
t

(n−1)
1 . (A5)

The sequence of m(n) and m′(n), which are completely
determined by the collision laws and the initial condition m(0)

(or m′(n)), has been studied by Constantin et al. [25]. We briefly
summarize their results that are relevant for our purpose in
this Appendix. Upon a collision between particles 1 and 2,
velocities after the collision (v′

1,v
′
2) and before the collision

(v1,v2) are related by(
v′

1

v′
2

)
=

(
1−e

2
1+e

2
1+e

2
1−e

2

)(
v1

v2

)
. (A6)

From this collision law, we can deduce the following relations:

m(n) = −e
m′(n−1)

1 + b m′(n−1) , (A7)

m′(n) = −1

e

(
m(n) + b

)
, (A8)

where b ≡ (1 + e)/2. If e < ec(3) = 7 − 4
√

3 and m(0) (or
m′(0)) is such that the collision sequence continues infinitely,
i.e., the inelastic collapse occurs, then m(n) and m′(n) should
converge to the stable fixed-point values

m∗ = 1

2
(−b +

√
b2 − 4e), (A9)

m′∗ = 1

2e
(−b −

√
b2 − 4e), (A10)

which are real when e � ec(3).
Therefore, if both n and n′ are so large that m(n) ≈ m(n′) ≈

m∗ and m′(n) ≈ m′(n′) ≈ m′∗, Eq. (A5) can be written as

t
(n)
1 ≈

(
m∗

e m′∗

)2

t
(n−1)
1 ≈

(
m∗

e m′∗

)2(n−n′)

t
(n′)
1 . (A11)

It is straightforward to show(
m∗

e m′∗

)2

= 1 − 6e + e2 − (1 + e)
√

1 − 14e + e2

1 − 6e + e2 + (1 + e)
√

1 − 14e + e2
≡ q

(A12)

and 0 � q < 1 for 0 � e < ec(3). If we start to count the
number of collisions at n′, i.e., if we set n′ = 0, then we have

t
(n)
1 ≈ qn t

(0)
1 . (A13)
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Because of symmetry with regard to an exchange of parti-
cles, t

(n)
2 should have the same property, and we finally obtain

t
(n)
12 = t

(n)
1 + t

(n−1)
2 ≈ qn t

(0)
12 , (A14)

which is Eq. (12).

APPENDIX B

In this Appendix, we turn to the problem of the three-
body inelastic-collapse-like collisions among the inelastic soft
spheres and derive the asymptotic behavior Eqs. (13) and (14)
of the time t

S(n)
12 between the instants of the end of contact

at two successive collisions between the soft particles 1 and
2. We use superscript S for quantities that are defined for
soft particles in this Appendix in order to distinguish them
from the corresponding quantities defined for hard particles in
Appendix A.

Let t̃ S(n) and tS(n) be the times of the beginning and the
end of contact at the nth collision between the particles 2
and 3, respectively (see Fig. 12). Similarly, let t̃ ′S(n)

and
t ′S(n) be the times of the beginning and the end of contact
at the nth collision between the particles 1 and 2. We define
the time intervals during which the particles move freely
as t

S(n)
1 ≡ t̃ ′S(n) − tS(n) and t

S(n)
2 ≡ t̃ S(n+1) − t ′S(n). Using the

duration time τc of contact for a binary collision [see Eq. (4)],
t

S(n)
12 can be represented as

t
S(n)
12 = t

S(n)
1 + t

S(n−1)
2 + 2τc, (B1)

because two collisions occur during the time t
S(n)
12 .

We denote the relative distance between the particles 1
and 2 just before the nth collision between the particles 2
and 3 as x̃

S(n)
21 , and that just after the collision as x

S(n)
21 .

Similarly, the relative distance between the particles 2 and
3 just before the nth collision between the particles 1 and 2
is x̃ ′S(n)

32 , and that just after the collision is x ′S(n)
32 . The relative

distances just before and just after a collision are related as
follows:

x
S(n)
21 = x̃

S(n)
21 + V

(n)
1 τc, (B2)

x ′S(n)
32 = x̃ ′S(n)

32 + V
(n)

3 τc, (B3)

where V
(n)

1 is the relative velocity of the center of mass of the
particles 2 and 3 with respect to the particle 1, and V

(n)
3 is the

tS(n)

v3
(n)

v2
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v1
(n)

v’ 3
(n)

v’ 2
(n)

v’ 1
(n)

x
21

(n )~
x

21
(n )

tS(n)~
t’ S(n) t’ S(n)~

x ’
32

(n )~ x ’
32

(n )

tS(n+1)

x
21

(n+1 )~

~

τc τct1
S(n)

3
2

1

t2
S(n)

S S
S S

S

3

2
1

3
2

1

I I I I I t

FIG. 12. Schematic picture of collision sequence occurring in the
three-body inelastic-collapse-like collisions among the inelastic soft
spheres in the free space.

relative velocity of the particle 3 with respect to the center of
mass of the particles 1 and 2,

V
(n)

1 ≡ v
(n)
3 + v

(n)
2

2
− v

(n)
1 = v

(n)
21 + 1

2
v

(n)
32 , (B4)

V
(n)

3 ≡ v
(n)
3 − v

(n)
2 + v

(n)
1

2
= v

(n)
32 + 1

2
v

(n)
21 . (B5)

The relation Eqs. (A1) and (A2) for the hard particles should
be modified for the soft spheres as

t
S(n)
1 = x

S(n)
21

|v(n)
21 |

, t
S(n)
2 = x ′S(n)

32

|v′(n)
32 |

, (B6)

and

x̃
S(n)
21 = v′(n−1)

21 t
S(n−1)
2 , x̃ ′S(n)

32 = v
(n)
32 t

S(n)
1 , (B7)

respectively. Combining Eqs. (B2), (B3), (B6), and (B7), we
can write

t
S(n)
1 = v′(n−1)

21∣∣v(n)
21

∣∣ v
(n−1)
32∣∣v′(n−1)
32

∣∣ tS(n−1)
1

+ 1∣∣v(n)
21

∣∣
[

v′(n−1)
21∣∣v′(n−1)
32

∣∣V (n−1)
3 + V

(n)
1

]
τc. (B8)

Substituting Eqs. (B4) and (B5) into Eq. (B8) and using
the ratio of the relative velocities m(n) and m′(n) defined in
Appendix A, t

S(n)
1 + τc can be expressed as

t
S(n)
1 + τc = 1

e2

m(n)m(n−1)

(m′(n−1))2

(
t

S(n−1)
1 + τc

)
+ 1

2
m(n)

[
1

(em′(n−1))2
− 1

]
τc. (B9)

Note that the sequence of the particle velocities v
(n)
i (i = 1,2,3)

and that of m(n) and m′(n) are completely determined by the
collision laws and their initial conditions regardless of whether
the particles are hard or soft. Using the relations Eqs. (A7)
and (A8) and the fact that m(n),m′(n)

< 0 in the collapselike
collision processes, it can be shown that the second term on
the right-hand side of Eq. (B9) is negative.

If m(n) and m′(n) converge sufficiently fast to their stable
fixed-point values m∗ and m′∗, and we start to count the number
of collisions after m(n) ≈ m∗ and m′(n) ≈ m′∗ are reached, we
can write

t
S(n)
1 + τc ≈ q

(
t

S(n−1)
1 + τc

) + m∗

2

[
1

(em′∗)2
− 1

]
τc (B10)

for any n � 1.
Because of symmetry with regard to an exchange of

particles, t
S(n)
2 should have the same expression as Eq. (B10).

Substituting Eq. (B10) into Eq. (B1), we finally obtain
Eqs. (13) and (14):

t
S(n)
12 = qt

S(n−1)
12 − f τc, (B11)

where

f ≡ −m∗
[

1

(em′∗)2
− 1

]
, (B12)

which is a positive function of e.
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