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Microscopic origin of thermodynamic entropy in isolated systems
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The quantum entropy is usually defined using von Neumann’s formula, which measures lack of information
and vanishes for pure states. In contrast, we obtain a formula for the entropy of a pure state as it is measured from
thermodynamic experiments, solely from the self-entanglement of the wave function, and find strong numerical
evidence that the two are in agreement for nonintegrable systems, both for energy eigenstates and for states
that are obtained at long times under the evolution of more general initial conditions. This is an extension of
Boltzmann’s hypothesis for classical systems, relating microscopic motion to thermodynamics.
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I. INTRODUCTION

The emergence of thermodynamics from underlying
microscopic motion is still unclear. One of the hardest
concepts to understand is that of entropy. Classically, the
microscopic state of a system can be thought of as a single
point in phase space and as it evolves, this point wanders
in this space, filling up more of it as time progresses.
Boltzmann’s hypothesis relates the entropy to the volume that
can be filled, and shows how microscopic motion determines
large-scale thermodynamic properties [1]. For a generic, that
is, a nonintegrable, system, ergodicity implies that this volume
will be the hypersurface of constant energy, but for integrable
systems, the volume accessible depends on the initial
conditions so that such systems will not thermalize. There are
many different approaches and definitions for understanding
entropy [2], but here we will be concerned with the
experimental thermodynamic definition that is obtained, for
example, by doing calorimetry measurements as related to the
flow of heat. Classically, these thermodynamic measurements
are not influenced by knowledge of the microscopic state of a
system. For example, computer simulations are often used to
predict thermodynamic quantities, such as entropy. However,
microscopic knowledge of the system allows one to extract
work out of it by the well-known example of Maxwell’s
demon. This would violate the second law of thermodynamics
unless we correspondingly reduce the entropy to take into
account this microscopic information [2]. Therefore classically
there are two distinct uses of the word entropy: (i) obtained
by performing macroscopic thermodynamic measurements,
which we will call the thermodynamic entropy, and (ii) a
measure of the lack of available information about a system’s
state.

Even at the classical level, there are very few systems where
ergodicity can be proved and the quantum mechanical situation
is far less clear. Knowledge of the system through observation
does alter the state of the system, so that it is not apparent
if the thermodynamic entropy is altered by this process. For
a system with density matrix p, the von Neumann entropy
Svn = — Tr(p In p), which is identically zero for any system in
a pure state, including an energy eigenstate. Because the state
of the system is known completely, this reduces its entropy to
zero as in case (ii). But what does this do to entropy (i)? If we do
thermodynamic measurements on systems in pure states, that
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is, where the state is known completely to the experimenter,
does this alter the thermodynamic entropy that is measured?

Furthermore, the quantum ensemble definition of entropy,
case (i), is simply related to the density of states of the energy.
But if the system is in a single energy eigenstate, it might
appear to be impossible to get the density of states. This would
argue that thermodynamic entropy measured for systems in
pure states would be different than for a system coupled to
an external environment. Such questions until recently were
purely theoretical but now with the emergence of experiments
that study the thermalization of isolated quantum systems or
lack thereof [3,4], a proper understanding of the microscopic
origins of entropy has become increasingly important.

Here we find convincing evidence that for pure states, there
is a way of defining an entropy as in case (i) for a nonintegrable
quantum mechanical system with a large number of degrees of
freedoms, which is identical to the thermodynamic definition,
and give an explicit prescription for its construction from a
knowledge of the eigenstate alone, thus successfully linking
the thermodynamic entropy with its underlying microscopic
origins. Throughout this work we will be concerned with
the thermodynamic limit of a large number of degrees of
freedom N and will not consider nonextensive corrections
to the entropy for finite systems. We will show that despite the
limited sizes attainable numerically, it is possible to probe this
large N limit. Furthermore in this limit, the microcanonical
and canonical ensembles give identical results [1]. Therefore
we can freely choose which ensemble to consider. In both cases
the thermodynamic entropy will coincide with the statistical
mechanical definition of entropy measured in either ensemble.

II. EIGENSTATE THERMALIZATION HYPOTHESIS AND
ITS EXTENSION

Statistical mechanics is concerned mainly with computing
the time average of observables that depend on only a few
variables, and relates this time average to an average over
an ensemble. Thus for a system with average energy (E),
statistical mechanics posits the relation between the time
average of some observable O and its average over the
microcanonical ensemble of states, the latter being far easier
to compute

<0) = Tr(pmicro,(E)O)v 1
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where the bar on the left-hand side denotes a time average and
the microcanonical density matrix at energy Ej is

1
Prico. by = 37 > IENEL )

ales g E<Ey+AE

Here AFE is much greater than the average distance between
neighboring energy levels, but much less than the macroscopic
energy scale Eg, and Nyyes is the number of terms in the sum.
In quantum mechanics, the fluctuation in the energy can be
large [5], but in practice is taken to be small so that (E) is a
good measure of the energy. The way to see the connection
between the underlying quantum evolution needed on the left-
hand side of Eq. (1) of a generic system and the ensemble
methods of statistical mechanics has recently become much
better understood. The idea is the “eigenstate thermalization
hypothesis” (ETH) [5-7]: for large N, the expectation value
of an observable in an energy eigenstate becomes equal to the
microcanonical average at the same energy, that is,

Tl'(,OE 0) = Tr(pmicro,E O)a (3)

where p is the density matrix for the wave function |E) at
energy E, pg = |E)(E|. Put more simply, the expectation
value of O will vary very little between neighboring energy
levels for large N, implying that the expectation value of O
in any energy eigenstate is the microcanonical average (at
that energy). There is strong numerical evidence and analytic
arguments to support this for a variety of systems [5-10].
Not all systems obey this hypothesis [11,12]. In particular,
integrable systems [13] do not do so. Note that pg # Pmicro. E>
as there are a large number of constants of motion, even for
generic Hamiltonians, such as projection operators [14] that
violate Eq. (3). This is why the choice of observables satisfying
this equation is restricted.

Below we shall extend these ideas to understanding
entropy. In the thermodynamic limit statistical mechanics
posits the formula for the thermodynamic entropy Siermo =
— Tr(Omicro IN Pmicro) Where pmicro could be equivalently re-
placed with the thermal density matrix in the canonical
ensemble in the limit that we are considering. We want to
see if this can be calculated from the properties of the wave
function itself without any recourse to ensembles.

We consider homogeneous systems for simplicity with
short-range interactions and start by following the standard
textbook scenario: the system is divided into two parts, the
larger part B can act as a bath in contact with the smaller one
A thatis our system of interest. If the complete system starts out
in a pure state, then by doing a partial trace over B, the reduced
density matrix for A, p4 = Trp p becomes mixed because it
is entangled with B. This is part of a common but nonrigorous
argument for how a canonical distribution of energies emerge
for the smaller system A, where the temperature 7 is given by
the statistical mechanical relation between T and the average
energy. If the complete system was actually integrable this
argument fails and thermalization does not occur.

The entanglement entropy [15] is defined as

Sent(A, B) = —Tr(pa In py). “4)

In what follows we shall show how to relate Sg,(A,B),
which is obtained for the system A + B in isolation, to the
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statistical mechanical entropy of the subsystem A. Using
the extensivity of entropy, we can use this relation to obtain
the total statistical mechanical (and hence thermodynamic)
entropy.

If instead we considered the complete system to already
be described by the microcanonical density matrix, then
PA.micro = TTp Pmicro must behave with canonical statistics
even for integrable systems, and the entanglement entropy in
that case is SEnt,micro(A, B) = — Tr(0 4, micro In £ A micro)> which
is the statistical mechanical expression for the entropy. This
usual microcanonical, or equivalently canonical, entropy is
what one measures experimentally in thermodynamic experi-
ments. Thus

Slhermn(A) = SEnt,micro(Aa B) = - Tr(pA,micro In IOA,micm)- (5)

This argument is very similar to most treatments of entropy in
textbooks [16], however, there is more evidence than this to
support it. Rigorous analysis [17] gives an canonical entangle-
ment entropy for one-dimensional models in agreement with
the thermodynamic results [18].

This does not connect thermodynamic entropy with the
wave function of a system because the right-hand side of
Eq. (5) involves the microcanonical average and is similar to
the right-hand side of the ETH as written in Eq. (3), but differs
because of the nonlinear logarithmic factor which is not an
observable operator. Thus we ask whether we can extend the
ETH to quantities of this form; that is, for a generic quantum
system in an energy eigenstate can we replace pa micro With
p4? In other words is

Sthermo(A) = — Tr(pa In p4)? (6)

This form was recently hypothesized using other less direct
analytical arguments [19]. Although this is the thermodynamic
entropy only for asubsystem of A + B, the entropy is extensive
so we can obtain the entropy for the full system by adding the
entropies for individual subsystems together. In the particular
case of a homogeneous system, the above equation can easily
give us the thermodynamic entropy per unit volume. This
can be extended to a heterogeneous system by dividing it
into many parts, for example, a division into three, A, B,
C. The properties of the system in isolation would give
the statistical mechanical (and thus thermodynamic) entropy
as Sgnt(A,BC) + Sgnt(B,CA) 4 Sgnt(C,AB). Thus entropy
defined this way is a measure of self-entanglement.

III. NUMERICAL EXACT DIAGONALIZATION

Now we employ exact diagonalization on a number of
systems to determine if Eq. (6) is satisfied, and how it scales
with system size. Because system sizes are still far from the
thermodynamic limit, finite size effects are prohibitively large.
However, instead of using extensivity to directly compute the
left-hand side of Eq. (6) from the full thermodynamic entropy
Sthermo(A + B), we can minimize finite size effects by asking,
equivalently, using Eq. (5), does

—Tr(palnps) = — Tr(pA,micro In pA,micro)? @)

In other words, although the thermodynamic limits of these two
approaches are equivalent, finite size effects are much smaller
in the formulation of the second approach. Qualitatively, the
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finite size corrections with this approach are related to the size
of the Hilbert space, not the number of particles in the system,
which is also why numerical work on ETH [5,7] also works
so well.

We study systems that have been previously shown to give
rise to energy eigenstate thermalization. Following some of
these previous studies [8—10] we consider spinless fermions
and hard core bosons on a one-dimensional lattice with nearest
neighbor (NN) and next nearest neighbor (NNN) hopping, and
interaction. The hopping strengths for NN and NNN are # and
t’, likewise we denote the interaction strengths V and V’. We
study these systems for parameters where they are known to
obey ETH and for integrable parameters where they do not.
Following previous work, we use periodic boundary conditions
in the subspace with wave vector k = 1, rather than £k = 0 to
avoid a parity symmetry. Throughout this work we set the
energy scaletohavet =V =h = 1.

For both the fermions and hard core boson cases, t’ = V' =
0.96 which is nonintegrable and should obey the ETH. We
calculate the entanglement entropy for each energy eigenstate
for a range of different bath and system sizes. Our largest size
was N = 27 lattice sites with N, = 6 particles. We trace over
the bath sites and calculate the entanglement entropy Eq. (4),
and do this as a function of the number of lattice sites of
A, denoted m. For these cases, we plotted the entanglement
entropy as a function of m. As is well known [20] Sen(2) =
Sent(N — m) so for m > N /2 the entanglement entropy must
go back down to zero. As we display in the supplementary
information [21] in the case of hard core bosons, it is very
close to linear behavior over a substantial range of m, for the
nonintegrable case, as is expected due to the extensive nature
of entropy.

However, the behavior for integrable systems t' = V' =0
is more erratic and the linearity depends much more strongly
on the eigenvector. Similar results were also obtained for
the fermion model as well as is shown in the supplementary
material.

We directly checked to see if Eq. (7) is supported nu-
merically. We calculated the left-hand side of this equation
for different values of m and because of the linearity of the
entanglement entropy with m, the results are insensitive to this
value. In Fig. 1 it is shown for m = 4. We also calculate the
microcanonical reduced density matrix by taking the partial
trace of Eq. (2). We average the reduced density matrix over
100 neighboring eigenvectors, and use that to calculate the
entanglement entropy as done on the right-hand side of Eq. (7).
The result for 6 hard code bosons on 27 sites is shown in
Fig. 1(a). The solid line is no microcanonical averaging (n = 1)
that has been shifted down by 0.02 because it coincides very
well with the other plots in this graph. The circles show the
microcanonical average over n = 100 neighbors. The two data
sets are very close to each other in most of the range where the
density of states is high and one has eigenstate thermalization.
The square points show the entanglement entropy with no
microcanonical averaging (as in the solid curve) and average
this over 100 neighboring energy levels. The *“+ * plot will be
discussed below. The value of 100 neighbors was used because
the density of energy levels is more than several hundred per
unit energy, over the range shown, and so the energy levels
in the averages are indeed close together. We have verified
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FIG. 1. (a) The entanglement entropy Sew(A,B) [Eq. (4)], for a
nonintegrable system of 6 hard core bosons on 27 sites where A has 4
sites and B has 23. The solid line shows the entanglement entropy of
individual energy eigenvectors n = 1, which has been shifted by 0.02
from the other plots for clarity. The circles show the microcanonical
entropy obtained by averaging the density matrix over n = 100
neighboring eigenvectors. The + symbols show the entanglement
entropy of a wave function that is a random superposition of 100
neighboring levels. The squares show the entanglement entropy for
single eigenstates (n = 1) averaged over 100 neighboring energy
levels. (b) The same as in (a) but for an integrable system ¢t = V' = 0.
The solid line has been omitted because the variance in these values
is very large, see Fig. 2.

that using a fixed energy window instead of a fixed number of
neighbors leads to very similar results.

In contrast, in Fig. 1(b), for the integrable case #’ = V' = 0,
the fluctuations are much larger and that the microcanonical
average is much further from the entanglement entropy for
individual eigenstates. The solid curve is not shown because
it fluctuates rapidly over a very wide range, resulting in
much lower square points that deviate significantly from the
other plots. Similar results are seen in the one-dimensional
spinless fermion system. To quantify this difference further,
we examine the standard deviation of the fluctuation of the
entanglement entropy for both the integrable and nonintegrable
cases.

We calculated the standard deviation o (S) of the entangle-
ment entropy Senc(A, B) around the maximum of the curves in
Fig. 1 for different lattice sizes, 16, 18, 20, 25, and 27, all with
six particles in Fig. 2. o (S) is computed over 100 neighboring
energy levels, and this is shown as a function of the density of
states on a log-log plot for both the hard core boson models
(B) and spinless fermions (F), and for both the nonintegrable
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FIG. 2. The fluctuations in the entanglement entropy for both
nonintegrable (generic) and integrable systems of six hard core bosons
(B) but with a different number of lattice sites, and the same quantity
for the spinless fermion model (F). The standard deviation of the
entanglement entropy Se,(A,B) is plotted against the density of
states. This is done around the point of maximum entanglement
entropy.

and integrable cases. As is apparent, the integrable fluctuations
are substantially higher. This is also the case for observables as
has been shown previously [7]. The behavior as a function of
the density of states and system size is qualitatively different.
The fluctuations are diminishing much more rapidly in the
nonintegrable case. This is similar to the slower diminution
of fluctuations of observables predicted for integrable versus
nonintegrable systems, where in the first case we expect a
power law decrease as a function of the number of degrees
of freedom and in the second case it is predicted to be an
exponential [5].

The above studies provide excellent numerical evidence
for the equivalence of the thermodynamic entropy of non-
integrable systems with the entanglement entropy when the
wave function is in an energy eigenstate. We also studied
two-dimensional hard core bosons and fermions and reached
the same conclusion (see supplementary materials [21]). Now
we ask what happens with more general initial states. If one
starts the system off in a state with fluctuations in energy in a
window, then we can ask how this evolves for long times. We
expect the thermalization of observables, and that the entropy
should also be the thermodynamic entropy. We can test to see
if this is the case numerically.

Over long times, the energy eigenvector components of
nonintegrable wave functions will have random phases [22].
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Therefore we test this case to see if the entanglement entropy
still looks like the microcanonical entanglement entropy. In
Fig. 1(a) the + line computes the entanglement entropy at
each energy by using wave functions that are the superposi-
tion of 100 neighboring energy eigenvectors with Gaussian
amplitudes and random phases. As can be seen, this matches
the predictions of the microcanonical entanglement entropy
very well, and the same conclusion is also reached in the
fermion case. The closeness of the reduced density matrix to
the canonical result is expected for general initial conditions
where many energy eigenstates are present [23,24]. Our above
analysis shows that for generic systems, when the system is
put in an energy eigenstate, we still obtain the microcanonical
entropy, which is crucial, as otherwise thermodynamics would
fail in this important case. Therefore the equivalence of
thermodynamic and the entanglement entropy for long times
should be correct, starting from a wide range of initial states.

IV. CONCLUSIONS

We can now answer the questions that we originally posed.
Although the statistical mechanical entropy is most simply un-
derstood from the density of states, for a generic Hamiltonian,
the self-entanglement of a single energy eigenstate can be used
to obtain the same result as well. Knowledge of neighboring
levels is not necessary as this entropy as we have seen, is a
property of a single energy energy eigenvector. Going back
to our earlier comparison with classical physics, we can now
answer our original question. A complete knowledge of the
system’s quantum state does not affect its behavior with respect
to macroscopic measurements of the entropy. An experimenter
who measured a systems’s state precisely, will in subsequent
measurements obtain the same answers as someone who is not
made privy to this information, despite the latter describing
the system in a mixed state. For long times, a system in a
pure state and one in an statistical ensemble have identical
thermodynamic entropies in the limit of large systems. This is
because the entropy in such experiments measures the system’s
self-entanglement, not the lack of knowledge of it.

Note added. After completion of this work [28], related
work on weak and strong typicality was published [25].
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