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Processes that are far both from equilibrium and from phase transition are studied. It is shown that a process
with mean velocity that exhibits power-law growth in time can be analyzed using the Langevin equation with
multiplicative noise. The solution to the corresponding Fokker-Planck equation is derived. Results of the numerical
solution of the Langevin equation and simulation of the motion of particles in a billiard system with a time-
dependent boundary are presented.
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I. INTRODUCTION

The problem of processes that are far from equilibrium
is not completely solved nowadays. The theory of phase
transitions is one of the greatest achievements in this field.
The interpretation of nonequilibrium steady states that are
far from phase transition is the most challenging and current
tasks for researchers. A wide variety of systems in physics,
technology, and biology can be modeled as a set of chaotically
moving noninteracting accelerated particles whose mean
velocity is always proportional to tα . The balance of random
and deterministic effects remains constant, and therefore
thermodynamic parameters of the system can be defined. It
is obvious that such a process is irreversible, and we call it a
quasistable process. Experimental and computational studies
presented in the literature have explored the similarities in the
behavior of these systems.

We will demonstrate some examples of acceleration pro-
cesses in different physical models corresponding to different
values of α. Two types of models are considered. In the
billiard-like systems (particles in nonstationary random force
fields, Galton board, and billiards with moving walls) particles
gain energy for acceleration from collisions with scatterers
and external fields. Such an interaction of a system with a
thermostat depends on velocities of particles. On the contrary,
active Brownian particles have an internal source of energy.
They can be used for description of living or technical objects.
We assume that probability distribution is known and can be
factored into the distributions of velocity and coordinates. The
probability density function (PDF) of velocities differs from
the Maxwell distribution function and is time-dependent. This
circumstance makes it possible to investigate the transport
properties of this system and to define effective temperature,
entropy, and other thermodynamic parameters.

When α < 1/2, fast particles move at relatively large times
in the presence of nonstationary random force fields with
correlations that rapidly decrease in space, but not necessarily
in time. The general feature of the time dependence of the
averaged kinetic energy lies in the fact that it depends only on
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whether the force is conservative or not. When it is conserva-
tive, the velocity asymptote is t1/5 regardless of the details of
the potential and of the dimension of space. For a nonconserva-
tive force, the power law is different: t1/3 in all dimensions [1].
The acceleration law is also t1/3 if the oscillation axis of
scatterers is fixed and uniform throughout the Lorentz gas [2].

If α = 1/2, the friction for the Brownian particle is
negligibly small and the kinetic energy of surrounding particles
is greater than the energy of Brownian particle. The noise
intensity does not depend on velocity.

The Galton board is a vertical (or inclined) board with
interleaved rows of pegs. A ball thrown into the Galton board
moves under gravity and bounces off the pegs on its way down
[3]. The dynamics of ball velocity corresponds to α = 2/3. It
is one of the simplest mechanical devices where nonstationary
transport occurs and a good example of a billiard system.

A billiard is a system where noninteracting point particles
(or one particle) in free motion undergo elastic collisions with
a set of fixed scatterers. A billiard with oscillating scatterers
is the model of a thermodynamic process in an open system.
The noise intensity linearly depends on velocity, since the rate
of collisions with scatterers is proportional to the velocity of
a particle. Consequently α = 1, and a linear increase in mean
velocity is known as Fermi acceleration [4–6]. Such an exactly
linear increase corresponds to negligibly small displacement
of scatterers. Thus, the scenario 1/2 < α � 1 is possible for
the system with noticeable displacement of scatterers when
the rate of collision depends on the velocities of particle(s)
and scatterers.

The aforementioned billiards are important for the analysis
of fundamental problems. It is shown that macroscopic behav-
ior of several far-from-equilibrium systems can be interpreted
in terms of equilibrium statistical mechanics [7]. Quantum
manifestation of classical chaos in a microwave resonator is
also described using a billiard system [8].

The billiard model explains anomalous transfer properties,
such as superdiffusion [9] and gives an opportunity to improve
the efficiency of thermoelectric materials and to create systems
in which transport coefficients are independent [10]. For
instance, an extremely high value of the diffusion coefficient
for gold nanoclusters on a graphite substrate [11,12] is a result
of the Fermi acceleration.
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Another interesting example is the phenomenon of thermal
rectification. A thermal rectifier is a device in which the
magnitude of the heat flow depends on the sign of the imposed
temperature gradient. It can also be modeled as a billiard
system [13].

From a physical point of view, the above acceleration
processes result from the deposition of external energy.

The scenario α → ∞ corresponds to the exponential
growth of mean velocity [14]. This is also realized in the
theory of active Brownian particles, such as a conglomerate of
almost noninteracting cells and organisms. The energy supply
is provided by velocity-dependent friction that may become
negative in the range of small velocities [15–17].

The basic method of investigation of the above acceleration
processes is numerical simulation. The purpose of this work
is the analytical description of statistical characteristics of
such processes. The acceleration with the power-law time
dependence of the mean velocity can be due to deterministic
and noise sources that are taken into account using the
Langevin equation. This equation is specifically constructed
to balance the intensities of both acceleration sources. We
have found the solution to the corresponding Fokker-Planck
equation (FPE) [18] for an arbitrary initial distribution. The
results are supported by numerical simulations of linear and
nonlinear growth of mean velocity.

II. LANGEVIN AND FOKKER-PLANCK EQUATIONS
FOR ACCELERATION PROCESS

The the above quasistable process can be described using
the Langevin stochastic differential equation (SDE):

v̇(t) = avμ(t) + vγ (t)ξ (t), (1)

where ξ (t) is the Gaussian white noise with 〈ξ (t)〉 = 0 and
〈ξ (t)ξ (t + τ )〉 = 2Dδ(τ ), γ < 1, and a � 0.

When the noise term vγ ξ (t) is absent, we have a simple
differential equation, and its solution is proportional to t1/(1−μ).
On the other hand, if the deterministic term avμ is omitted, we
obtain the Wiener process for v1−γ and the mean velocity is
proportional to t1/(2−2γ ). Thus, the noise or deterministic term
dominates on a large time scale if μ �= 2γ − 1. Below we
assume that μ = 2γ − 1. Then Eq. (1) describes a Bessel pro-
cess [19] for γ = 0 and squared Bessel process for γ = 1/2.
Note, however, that there are different naming conventions, and
sometimes a squared Bessel process is referred to as Bessel
process [20].

If this equation is interpreted in the Stratonovich sense, the
corresponding Fokker-Planck equation for PDF w(v,t) can be
written as [18,21]

∂w

∂t
= − ∂

∂v
[(a + Dγ )v2γ−1w] + ∂2

∂v2
[Dv2γ w]. (2)

The function w(v,t) satisfies the initial and boundary
conditions

w(v,0) = f (v), va/D+γ ∂

∂v
vγ−a/Dw(v,t)

∣∣
v=0 = 0,

(3)
lim

v→∞ va/D+γ ∂
∂v

vγ−a/Dw(v,t) = 0.

Here f (v) is a nonnegative function that satisfies normal-
ization condition. The boundary conditions correspond to the
fact that the probability current vanishes at the boundaries
v = 0 and v = ∞.

A. Uniqueness of the solution

Introducing the operator

L̂ = D
∂

∂v
va/D+γ ∂

∂v
− va/D−γ ∂

∂t
, (4)

we rewrite Eq. (2) as

L̂ vγ−a/Dw(v,t) = 0. (2′)

The corresponding conjugate operator is

L̂∗ = D
∂

∂v
va/D+γ ∂

∂v
+ va/D−γ ∂

∂t
. (5)

For differentiable functions u1 and u2 we have

u1L̂u2 − u2L̂∗u1 = ∂

∂t
[−va/D−γ u1u2]

− ∂

∂v

[
Dva/D+γ

(
u2

∂u1

∂v
− u1

∂u2

∂v

)]

≡ ∂Q

∂t
− ∂P

∂v
. (6)

Let G be simple region in the plane (t,v) with boundary
∂G. Let u1 and u2 be such that Q(v,t) and P (v,t) are
defined and continuous and have continuous partial derivatives
∂Q/∂t and ∂P/∂v in closed region Ḡ. Integrating with respect
to v and t , we obtain [22]∫

G

(u1L̂u2 − u2L̂∗u1) dv dt

= −
∮

∂G

va/D−γ u1u2 dv + Dva/D+γ

×
(

u1
∂u2

∂v
− u2

∂u1

∂v

)
dt, (7)

where the contour integral is calculated in the positive
direction. Expression (7) is Green’s formula for operator L̂.

Now assume that the solution to Eq. (2) exists and satisfies
the initial and boundary conditions (3). Also assume that

lim
v→∞ v2γ w(v,t)

∂

∂v
vγ−a/Dw(v,t) = 0. (8)

Let us show that the solution is unique under the above
assumptions.

We will proceed by contradiction. Assume that two different
solutions to Eq. (2) w1(v,t) and w2(v,t) exist and satisfy
identical initial and boundary conditions. Then, function
w̃(v,t) = w1(v,t) − w2(v,t) is the solution to the following
system of equations:

L̂ vγ−a/Dw̃(v,t) = 0, w̃(v,0) = 0,
(9)

va/D+γ ∂
∂v

vγ−a/Dw̃(v,t)
∣∣
v=0 = 0.
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FIG. 1. Integration domain.

Let us use Green’s formula (7). Figure 1 demonstrates
region G, which is bounded on the right-hand side by arbitrary
t0. Choosing u1 = 1 and u2 = [vγ−a/Dw̃(v,t)]2, we obtain∫

G

L̂[vγ−a/Dw̃(v,t)]2dv dt

= −
∮

∂G

vγ−a/Dw̃2(v,t)dv

+Dva/D+γ ∂

∂v
[vγ−a/Dw̃(v,t)]2dt. (10)

Using condition (9), we derive

L̂(vγ−a/Dw̃)2 = 2D
∂

∂v
va/D+γ vγ−a/Dw̃

∂

∂v
vγ−a/Dw̃

−2vγ−a/Dw̃
∂w̃

∂t

= 2vγ−a/Dw̃ L̂ vγ−a/Dw̃

+ 2Dva/D+γ

(
∂

∂v
vγ−a/Dw̃

)2

= 2Dva/D+γ

(
∂

∂v
vγ−a/Dw̃

)2

. (11)

Integrating along the boundary ∂G with allowance for
Eqs. (8) and (9), we obtain

2D

∫
G

va/D+γ

(
∂

∂v
vγ−a/Dw̃

)2

dv dt+
∫

t0

vγ−a/Dw̃2 dv = 0.

(12)

The integrands are essentially nonnegative, hence
∂(vγ−a/Dw̃)/∂v = 0 inside G and w̃(v,t0) = 0. We have
w̃(v,t) = 0 for any v and t , since t0 > 0 is arbitrary. Two
different solutions that satisfy the initial and boundary condi-
tions (3) and Eq. (8) cannot exist. Thus, the solution is unique.

Since the probability current is defined as

�(v,t) = −Dva/D+γ ∂

∂v
vγ−a/Dw(v,t), (13)

condition (8) is equivalent to

lim
v→∞ vγ−a/Dw(v,t)�(v,t) = 0. (8′)

The limiting values are w(∞,t) = 0 and �(∞,t) = 0, since
the infinite velocity is impossible.

B. Existence of the solution

Let us find a particular solution to Eq. (2) represented as

w(v,t) = φ(v)ψ(t). (14)

Substituting expression (14) into Eq. (2) and separating
variables, we obtain

ψ ′(t)
ψ(t)

= −[(a + Dγ )v2γ−1φ(v)]′ + [Dv2γ φ(v)]′′

φ(v)
= −λ.

(15)

Then,

ψ(t) = Ae−λt , (16)

where A is constant and Reλ � 0 because we consider only
bounded solutions. For φ(v), we obtain equation

d2

dv2
[Dv2γ φ(v)] − d

dv
[(a + Dγ )v2γ−1φ(v)] + λφ(v) = 0.

(17)

Changing the variable z = v1−γ

1−γ

√
λ
D

and introducing a

new function φ[v(z)] = z
1+a/D−3γ

2(1−γ ) χ (z), we can transform this
equation to standard form of Bessel equation:

z2 d2χ

dz2
+ z

dχ

dz
+

[
z2 −

(
a/D + γ − 1

2(1 − γ )

)2]
χ = 0. (17′)

The general solution is

φ(v) = v
1+a/D−3γ

2

[
c1(λ)Jν

(
v1−γ

1 − γ

√
λ

D

)

+ c2(λ)Yν

(
v1−γ

1 − γ

√
λ

D

)]
, (18)

where ν = a
2D(1−γ ) − 1

2 � − 1
2 .

The solution to Eqs. (2) and (3) can be presented as a
superposition of particular solutions such as Eq. (14). Due
to continuity of parameter λ, the solution can be written as

w(v,t) = v
1+a/D−3γ

2

∫ ∞

0
e−λt

[
c1(λ)Jν

(
v1−γ

1 − γ

√
λ

D

)

+ c2(λ)Yν

(
v1−γ

1 − γ

√
λ

D

)]
dλ. (19)

Let c2(λ) = 0, and we find c1(λ) using the initial condition.
Substituting t = 0, we obtain from Eq. (19):

f (v)v− 1+a/D−3γ

2 =
∫ ∞

0
c1(λ)Jν

(
v1−γ

1 − γ

√
λ

D

)
dλ. (20)

The right-hand side of this equation is the Hankel transform
of the function c1(λ). Assuming that f (v)v− a/D+γ−1

2 ∈ L1(R+),
we can find it by means of inverse transform (ν � −1/2) [23]:

c1(λ) =
∫ ∞

0
f (ṽ)ṽ− 1+a/D−3γ

2 Jν

(
ṽ1−γ

1 − γ

√
λ

D

)
ṽ1−2γ

2(1 − γ )D
dṽ.

(21)
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Substituting this expression into Eq. (19), changing the
order of integration, and using [24], we obtain

w(v,t) =
∫ ∞

0
e−λt

∫ ∞

0
f (ṽ)

(
v

ṽ

) 1+a/D−3γ

2

Jν

(
ṽ1−γ

1 − γ

√
λ

D

)

× ṽ1−2γ

2(1 − γ )D
dṽJν

(
v1−γ

1 − γ

√
λ

D

)
dλ

= v1−2γ

2(1 − γ )Dt

∫ ∞

0
f (ṽ)

(
v

ṽ

) a/D+γ−1
2

× e
− v2−2γ +ṽ2−2γ

4(1−γ )2Dt I a/D+γ−1
2(1−γ )

[
(vṽ)1−γ

2(1 − γ )2Dt

]
dṽ, (22)

where Iν(z) is the Infeld function. Introducing a new dimen-
sionless parameter

ρ = v2−2γ

4(1 − γ )2Dt
, (23)

we can rewrite probability distribution in a short form:

w(v,t) = (2 − 2γ )ρ

v

∫ ∞

0
f (ṽ)

(
ρ

ρ̃

) a/D+γ−1
4(1−γ )

× e−ρ−ρ̃ I a/D+γ−1
2(1−γ )

(2
√

ρρ̃)dṽ. (22′)

Let v tend to zero. To check that the solution satisfies the
boundary condition we represent the Infeld function as a power
series [25]:

Iν(2
√

ρρ̃) = (ρρ̃)ν/2
∞∑

k=0

(ρρ̃)k

k!�(ν + k + 1)
. (24)

Substituting this expression into Eq. (22′), we obtain

w(v,t) ∼ va/D−γ e−ρ

∞∑
k=0

ρk

k!�(ν + k + 1)

∫ ∞

0
f (ṽ)ρ̃ke−ρ̃dṽ

� va/D−γ e−ρ

∞∑
k=0

ρkkke−k

k!�(ν + k + 1)
. (25)

By the ratio test [26] the series converges absolutely if ρ is
bounded. Substituting this expression into Eq. (3), we see that
the resulting solution satisfies the boundary condition:

va/D+γ ∂

∂v
[vγ−a/Dw(v,t)]

∣∣∣∣
v=0

∼ va/D+1−γ |v=0 = 0. (26)

The proof that the PDF (22) satisfies the second boundary
condition (3), and Eq. (8) is trivial. Thus, the derived solution
to the Fokker-Planck equation is unique.

For f (v)v−a/2D ∈ L2(R+) the conditions imposed upon the
parameter a can be relaxed [27]:

a

D
> γ − 1. (27)

III. RESULTS AND DISCUSSION

A. The moments of velocity

Let us derive an analytical expression for the moments of
velocity. Using Ref. [24], we obtain the nth moment from

Eq. (22):

Mn(t) =
�

[
n+1+a/D−γ

2(1−γ )

]
�

[ 1+a/D−γ

2(1−γ )

] [4(1 − γ )2Dt]
n

2(1−γ )

∫ ∞

0
f (ṽ)

× 1F1

[
n

2(γ−1)
,
1+a/D − γ

2(1 − γ )
,− ṽ2−2γ

4(1−γ )2Dt

]
dṽ.

(28)

If the initial condition is a δ function

w(v,0) = δ(v − v0), (29)

where v0 is the initial particle velocity, the solution to FPE is

w(v,t) = v1−2γ

2(1 − γ )Dt

(
v

v0

) a/D+γ−1
2

e
− v2−2γ +v

2−2γ
0

4(1−γ )2Dt

× I a/D+γ−1
2(1−γ )

[
(vv0)1−γ

2(1 − γ )2Dt

]
. (30)

Then the mean velocity is

v̄(t) =
�

[ 2+a/D−γ

2(1−γ )

]
�

[ 1+a/D−γ

2(1−γ )

] [4(1 − γ )2Dt]
1

2(1−γ )

× 1F1

[
1

2(γ − 1)
,
1 + a/D − γ

2(1 − γ )
,− v

2−2γ

0

4(1 − γ )2Dt

]
.

(31)

For large time t � v
2−2γ

0
4(1−γ )2D

, the information on the initial
distribution is lost, and the PDF tends to

w(v,t) = 2(1 − γ )

�
[ 1+a/D−γ

2(1−γ )

] [4(1− γ )2Dt]−
1+a/D−γ

2(1−γ ) va/D−γ e
− v2−2γ

4(1−γ )2Dt ,

(32)

while the mean velocity tends to

v̄(t) =
�

[ 2+a/D−γ

2(1−γ )

]
�

[ 1+a/D−γ

2(1−γ )

] [4(1 − γ )2Dt]
1

2(1−γ ) . (33)

0 300 600 900 1200
0.000

0.005

0.010

0.015

0.085

0.090

w
(v

,t
)

v

t=1000

delta

uniform

Rayleigh

t=500

t=10

FIG. 2. (Color online) Time evolution of various initial distribu-
tions (γ = 1/2, a = 0.54, D = 0.08).
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γ =0.6

v̄
γ=0.5

γ=0.4

FIG. 3. (Color online) Plot of the mean velocity vs time at various
values of γ (a = 1, D = 0.5): results of (solid lines) analytical and
(dots) numerical calculations.

Note that distribution (32) for γ = 1/2 and a = 0 coincides
with distribution from Ref. [4].

If the initial distribution is localized at small or medium
velocities, expression (22) is transformed into formula (32)
for sufficiently large times. Figure 2 illustrates this fact for the
δ function and uniform and Rayleigh initial distributions:

w1(v,0) = δ(v − v0), δ function
w2(v,0) = 1

ω
, v ∈ [v0,ω + v0], uniform

w3(v,0) = v
σ 2 e

− v2

2σ2 , Rayleigh

where v0 = 10, ω = 100, and σ = 40.

B. Numerical simulation

Here we present results of the numerical simulation of
Eq. (1), which was interpreted in the Stratonovich sense:

dv = av2γ−1dt +
√

2D vγ dWt, (34)

where Wt is the Wiener process. The calculations were
performed using SDE Toolbox [28] adopted for our purposes.
We used the Mersenne twister as a pseudo-random number

600 1200 1800 2400 3000 3600 4200
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

w
(v

,t
)

FIG. 4. (Color online) Probability density function at t = 200
(γ = 0.7, a = 0.7, D = 0.05): (solid line) analytical solution and
(histogram) numerical results.

FIG. 5. (Color online) Trajectory of particle in the billiard.

generator and a Milstein integration scheme with a time step
of 1. Figure 3 compares analytical and numerical results for
the mean velocity for various values of γ under the δ function
initial condition. Note that 1000 realizations were averaged.

Figure 4 shows analytical and numerical results for the
PDF at t = 200. We use the parameters γ = 0.7, a = 0.7, and
D = 0.05, and Rayleigh initial distribution with σ = 20. The
averaging was performed over 100 000 realizations of random
process.

C. Application to billiards with oscillating scatterers

The billiard theory is well developed and provides the
methods to find Fermi acceleration for different types of
billiard geometry and boundary motion. Here we compare
the results of a direct simulation of the motion of a particle
in the Sinai billiards with stochastically oscillating scatterer
boundary and the results obtained using the Fokker-Planck
equation.

We simulate the billiard system as a 20 × 20 square with a
circular scatterer with a radius of 6 that is located at the center
of the square. The scatterer with fixed center exhibits stochastic
oscillations. Let the scatterer boundary oscillate with velocity
u(t) = u0 cos φ(t), where u0 is constant amplitude and φ(t) is

0 5 10 15 20 25
0

100

200

300

400

v̄

30×104

FIG. 6. (Color online) Plot of the mean velocity of particle vs
time: (solid line) analytical solution and (circles) results of simulation.
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0

5

10

15

20

25

σ2

×104

30×104

FIG. 7. (Color online) Plot of the dispersion of velocity vs time:
(solid line) analytical solution and (circles) results of simulation.

a δ-correlated random phase with uniform distribution on the
interval [0, 2π ]. We use the static wall approximation (SWA)
[29], in which the displacement of the scatterer boundary is
disregarded and the momentum exchange between particle
and scatterer upon impact is taken into account. Figure 5
demonstrates an example of the trajectory in such a billiard.
The Fermi acceleration can be written as [5]

aF = 2〈u2(t)〉
3λ

, (35)

where λ = π�/P is the mean free path, � is the area
of the accessible billiard regionm and P is the scatterer
perimeter. Drift and diffusion coefficients of the Fokker-Planck
equation are D(1)(v) = aF and D(2)(v) = 2aF v, respectively
[5]. Therefore, we have γ = 1/2, a = 0, and D = aF /2. We
average 5000 realizations with random directions of initial
velocity of particle v0 = 10. The amplitude of boundary
velocity oscillations is u0 = 0.3.

Figures 6–10 show the results of the numerical simulation
and analytical solution. For coefficient of skewness γ1 and
kurtosis excess γ2 limiting values are 2

√
2 and 12, respectively.

0 5 10 15 20 25
0.0

0.5

1.0

1.5

2.0

2.5

3.0

30×104

γ1

FIG. 8. (Color online) Plot of the coefficient of skewness of
velocity vs time: (smooth line) analytical solution and (jagged line)
results of simulation.

0 5 10 15 20 25
0

3

6

9

12

15

18

γ2

30×104

FIG. 9. (Color online) Plot of the coefficient of kurtosis excess of
velocity vs time: (smooth line) analytical solution and (jagged line)
results of simulation.

Clearly, the analytical and numerical results for a billiard
system are in agreement.

Note that the Fokker-Planck equation technique correctly
describes behavior of particle in billiard only after sufficiently
large number of collisions. An alternative approach based on
the use of the Chapman-Kolmogorov forward equation and
lacking this disadvantage was introduced in Ref. [30].

IV. SUMMARY

There are many physical processes of different nature with
a mean velocity that exhibits power-law growth in time. This
acceleration can have regular and random sources. In this
paper we describe them using the Langevin equation with
multiplicative noise. This equation is specifically constructed
in such a way that none of acceleration sources dominates. A
wide variety of different physical systems can be described
in a similar manner. Therefore, it is important to develop
the fundamental thermodynamic approach to these processes
[6,31]. We propose a semiphenomenological approach that
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FIG. 10. (Color online) Probability density function at t =
300 000: (solid line) analytical solution and (histogram) results of
simulation.

042133-6



VELOCITY DISTRIBUTION FOR QUASISTABLE . . . PHYSICAL REVIEW E 87, 042133 (2013)

makes it possible to describe the general features of time
dynamics.

In this work the solution to the corresponding Fokker-
Planck equation with an arbitrary initial distribution is derived.
The existence and uniqueness of the solution are proven. It is
demonstrated that the results obtained using the solution to
FPE are similar to the results of the billiard simulation. It is
also shown that the asymptotic behavior is independent of the
initial conditions.

The results can be useful not only in physical applications.
A particular case of the problem under study is the generalized
Bessel process that is widely used in, e.g., population dynamics
and financial markets.
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APPENDIX: VELOCITY DISTRIBUTION
FOR QUASISTABLE DECELERATION

Here we briefly present the results for a particle whose
mean velocity decreases with time. A particular example of this

model is one-dimensional active transport with particles with
hard-core interactions (single-file system). In such models, the
biased particle decelerates, and its mean velocity decreases as
t−1/2 (γ = 2) [32].

Let γ > 1. We assume that f (v)v− a/D+γ−1
2 ∈ L1(R+) and

a � 0, or f (v)v−a/2D ∈ L2(R+) and
a

D
< γ − 1. (A1)

Using the approach from Sec. II B, we obtain the solution
to the Fokker-Planck equation (2):

w(v,t) = v1−2γ

2(γ − 1)Dt

∫ ∞

0
f (ṽ)

(v

ṽ

) a/D+γ−1
2

× e
− v2−2γ +ṽ2−2γ

4(1−γ )2Dt I a/D+γ−1
2(1−γ )

[
(vṽ)1−γ

2(1 − γ )2Dt

]
dṽ. (A2)

It is easy to demonstrate that the conditions of uniqueness
of the solution are satisfied. Here, as distinct from Eq. (22), we
deal with a heavy-tailed distribution. Thus, the nth moment of
velocity converges only for

a

D
< γ − 1 − n. (A3)

In this case Eq. (28) is still valid.
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[19] K. Itô and H. P. McKean, Jr., Diffusion Processes and Their
Sample Paths (Springer, Berlin, 1996).

[20] E. Martin, U. Behn, and G. Germano, Phys. Rev. E 83, 051115
(2011).

[21] W. T. Coffey, Y. P. Kalmykov, and J. T. Waldron, The Langevin
Equation: With Applications to Stochastic Problems in Physics,
Chemistry, and Electrical Engineering (World Scientific,
Singapore, 2004).

[22] W. Kaplan, Advanced Calculus (Addison-Wesley, Reading,
2002).

[23] G. N. Watson, A Treatise on the Theory of Bessel
Functions (Cambridge University Press, New York,
1945).

[24] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
Series, and Products (Elsevier/Academic Press, Amsterdam,
2007).
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