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We study and solve some variations of the random K-satisfiability (K-SAT) problem—balanced K-SAT and
biased random K-SAT—on a regular tree, using techniques we have developed earlier. In both these problems as
well as variations of these that we have looked at, we find that the transition from the satisfiable to the unsatisfiable
regime obtained on the Bethe lattice matches the exact threshold for the same model on a random graph for
K = 2 and is very close to the numerical value obtained for K = 3. For higher K , it deviates from the numerical
estimates of the solvability threshold on random graphs but is very close to the dynamical one-step-replica-
symmetry-breaking threshold as obtained from the first nontrivial fixed point of the survey propagation algorithm.
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I. INTRODUCTION

Random K-satisfiability (K-SAT) is a random constraint
satisfaction problem in which one tries to find a satisfying
assignment for a randomly generated logical expression in
conjugate normal form, which is an AND of M clauses. Each
clause consists of an OR of K Boolean literals, which are
chosen randomly from a set of N Boolean variables. As
the constraint density (α = M/N) increases, the number of
satisfying assignments decreases. In the limits of M → ∞
and N → ∞, the system is known to have a sharp threshold
in constraint density αc below which the probability of finding
satisfiable assignments approaches 1 and above which it
vanishes [1,2].

The problem is originally defined on a random graph (RG),
but because of the presence of loops, this is hard to solve
exactly for arbitrary K . Hence, the location of a sharp threshold
αc is known rigorously only for K = 2 [3]. For higher K ,
only upper and lower bounds on this threshold are proven
[4]. However, using nonrigorous but powerful methods from
statistical physics, namely, the replica and cavity methods,
estimates for the threshold are obtained, which seem to be
very close to the values obtained numerically [5–7].

The replica and cavity methods also predict that the
solvability threshold is only one of many thresholds that exist
in the problem as the number of constraints is increased. Before
the solvability transition occurs, it is conjectured that the set of
solutions (or satisfying assignments) first breaks up into a large
number of well separated clusters at the clustering transition
αd [5,8]. As the number of constraints further increases, it is
argued that there is, first, a condensation transition [9] in which
the number of clusters changes from being exponentially
numerous to subexponential and a freezing transition beyond
which some variables take the same value in all the solutions
of a given cluster [10,11]. Although, again, it is hard to prove
rigorous results about the existence of these transitions on a
random graph (however, in a recent result, Ref. [12] rigorously
proves the existence of a clustering transition in some random
constraint satisfaction problems), the cavity method is able to
predict numbers very close to those observed numerically. In
addition, it is conjectured [13] that the threshold for clustering
on a random graph is exactly equal to the reconstruction

threshold on the corresponding tree (roughly defined, a tree
graph is said to be reconstructible if the value that the root
takes can be determined by the variable values at the leaves),
supplying a further motivation for comparing results obtained
theoretically on tree graphs with those obtained numerically
for random graphs.

Recently, we have studied the random K-SAT defined on a
regular d-ary rooted tree [14]. By fixing the boundary, we could
calculate the moments of the number of solutions (averaged
over all possible instances of the logical expression) exactly.
Of more relevance to this paper, we also studied the probability
(or fraction of instances) of having a satisfiable assignment as
a function of tree depth.

For a tree, this probability may be written as a recursion
relating the distribution at one level of the tree to the next
level. We solved for the fixed point of these recursions to find
that the behavior of the probability matches the behavior of
K-SAT on a random graph at least qualitatively, i.e., it shows
a continuous transition for K = 2 and a first order transition
for K � 3. In addition, we found that the value of α(K), at
which this transition takes place, is very close to the value of
the dynamical transition αd (K) obtained for random graphs
using the cavity method.

In this paper, we compare the value of α(K) obtained from
our recursions to the solvability threshold obtained for the
same problem (theoretically for 2-SAT and numerically for
higher K) on regular random graphs (RRGs). This is the
natural analog of our tree computation for random graphs. We
make this comparison not only for the random K-SAT studied
earlier [14], but also for two variants of the random K-SAT,
which we solve on a d-ary rooted tree. We find in all cases that,
for K = 2, the threshold obtained via the tree calculations
matches the known exact value for a regular random graph.
For higher K , we have studied the problem numerically on
regular random graphs and find that the threshold estimated
on the tree is very close to the threshold obtained numer-
ically for K = 3, although deviating more and more as K

increases. Interestingly, as before [14], the values obtained
by our method are also very close to the value predicted for
the clustering transition by dynamical one-step-replica-
symmetry-breaking (1-RSB) calculations on a random graph
for these models [15,16]. In this paper, we suggest an
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explanation for this fact by working out a connection between
our approach and survey propagation (SP). This is especially
interesting considering the fact that, in our formalism, we
consider the space of all realizations as opposed to the space
of solutions considered in survey propagation.

The two variants of K-SAT studied in this paper are biased
random K-SAT and balanced K-SAT. In biased random K-
SAT, each variable is negated with probability 1 − p (for p =
1/2, this reduces to the uniform random K-SAT). In balanced
K-SAT, each variable is constrained to occur negated and non-
negated an equal number of times. We have also studied a
generalization of balanced K-SAT, which we call f -balanced
K-SAT where a literal occurs f times as one kind and 1 − f

as another kind.
The plan of the paper is as follows: In Sec. II, we explain

the d-ary rooted tree on which we define various variants
of random K-SAT. In Secs. III and IV, we study the biased
random K-SAT and balanced K-SAT on the tree and compare
the SAT-UNSAT (unsatisfiability) thresholds on the tree with
the thresholds obtained on random graphs and regular random
graphs. In Sec. V, we explain the connection between our
approach and the survey-propagation algorithm, which goes
towards understanding why the numbers we get as an estimate
of the solvability transition also happen to be very close to
the numbers obtained via dynamical 1-RSB calculations for
the clustering transition. We summarize our results and
conclude in Sec. VI.

II. THE MODEL

We define the K-SAT problem on a tree as follows. Consider
a regular d-ary tree T in which every vertex has exactly d

descendants. The root of the tree x0 has degree d, and its
d edges are connected to function nodes {c1,c2, . . . ,cd}. Each
function node has degree K , and each of its K − 1 descendants
{xi = x1,x2, . . . ,xk−1} is the root of an independent tree (see
Fig. 1). Hence, the root has a degree d, whereas, all the other
vertices on the tree (except the leaves which have a degree =1)
have a degree d + 1. Each vertex can take only two values: −1
or 1. Each function node is associated independently with a
clause φ(x0,x1, . . . ,xk−1) = �0 ∨ �1 ∨ · · · �k−1. Here, �i is one
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FIG. 1. 3-SAT on a rooted tree of depth 2 and d = 2. Only the
clauses neighboring the root are labeled. Surface variables (or leaves)
are depicted by •’s. Variable x0 is at depth 2, variables x1–x4 are at
depth 1, and the leaves are at depth 0. Dashed (full) lines between a
variable and a clause indicate that it is negated (non-negated).

of the two literals xi or xi , depending on whether xi is joined
to the function node by a dashed or a solid line (see Fig. 1).

An assignment σ of all the variables on the tree is a solution
iff φ = 1 for all the clauses on the tree. One configuration of
dashed and solid lines on the tree defines a realization R.

We study the probability that a realization has no solution on
this tree for a fixed boundary. A realization with no solution is
one for which not a single assignment of the variables provides
a solution. This can happen if there is even a single variable
on the graph, which, whether it takes the value −1 or 1, causes
at least one clause to be unsatisfied. Such a variable then
is a variable that can take 0 values by our definition, and a
realization that is not solvable has at least one variable of this
type.

On the tree graph, we can define the probabilities of a
variable taking zero, one, or two values on the corresponding
subtree. We define pi(0) as the conditional probability for a
variable xi to cause a contradiction in the subtree of which it
is the root, given that all the other variables in the subtree can
take at least one value. We can then estimate the probability of
a realization having a solution (or the fraction of realizations
that have solutions) by calculating the quantity �i[1 − pi(0)]
where the product is over all the variables in the graph. The
tree structure of the graph gives us a way to calculate pi(0)
through recursions.

Below, we define some of the quantities in terms of
which these recursions are written. We define Pn(0) to be
the probability that (or the fraction of realizations in which)
a variable at depth n can neither take the value −1 nor can
take the value 1 without causing a contradiction in its subtree.
Here, by depth n, we mean a node that is n levels away from the
leaves (see Fig. 1). Note that because of the tree structure and
because of the definition of the specific quantity we are looking
at, all variables xi at depth n will have the same probability
Pn. The probability that a variable at depth n can take only
one of the two values −1 or 1 is defined to be Pn(1) [the
boundary nodes have P0(1) = 1, for example]. Similarly, the
probability that a variable at depth n can take both values
is Pn(2) = 1 − Pn(0) − Pn(1). For the problems we looked
at, we are interested in the recursions for these quantities deep
within the tree as in Ref. [14] so that we can get rid of boundary
effects.

III. BIASED RANDOM K -SAT

We consider a model where each variable has a fixed degree
d + 1 and a variable appears as non-negated with probability
p. For p = 1/2, this corresponds to the uniform random K-
SAT [14]. This model was also studied in Ref. [15] for K = 3
on random graphs using the replica and cavity methods.

A. Biased random K -SAT on a tree

Let us first calculate Pn+1(0) for variable x0 (assuming it
is at depth n + 1), given these quantities for its descendants.
Assume variable x0 has a degree d (by definition), and assume
it is not negated on d1 of these clauses. Variable x0 will not be
able to take the value −1 in the case when at least one of the
d1 clauses is not satisfied by the K − 1 variables at the other
end. In this case, there will be at least one unsatisfied clause if
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x0 takes the value −1. Similarly, if at least one of the d − d1

clauses, which are satisfied by x0, also is not satisfied by the
K − 1 variables at the other end, then x0 cannot take the value
1 either.

It is easy to see that averaging over all realizations at
depth n + 1 implies averaging over all values of d1 as well
as averaging over all realizations at depth n. It is important to
note, however, that the realizations at depth n + 1 are only built
up from those realizations at depth n that do have solutions. We
define Qn as the conditional probability that a depth n variable
does not satisfy the clause above (to depth n + 1), given that
it has to be able to take at least one value (which satisfies the
subtree of which it is the root). The recursion for Pn+1(0) is then

Pn+1(0) =
d1=d−1∑

d1=1

(
d

d1

)
pd1 (1 − p)d−d1

[
1 − (

1 − QK−1
n

)d1
]

× [
1 − (

1 − QK−1
n

)d−d1
] = 1 + (

1 − QK−1
n

)d

− (
1 − pQK−1

n

)d − [
1 − (1 − p)QK−1

n

]d
. (1)

Now, we define Pn+1,−(1) as the probability that a variable
takes only one value and that value is −1 and Pn+1,+(1) as the

probability that the variable takes only one value and that value
is 1. Hence, the probability that a variable can take only one of
the two possible values is Pn+1(1) = Pn+1,−(1) + Pn+1,+(1).
Recursions for these two quantities are as follows:

Pn+1,−(1) =
d1=d∑
d1=0

(
d

d1

)
pd1 (1 − p)d−d1

[
1 − (1 − QK−1

n )d1
]

× [(
1 − QK−1

n

)d−d1
]

= [
1 − (1 − p)QK−1

n

]d − (
1 − QK−1

n

)d
, (2)

Pn+1,+(1) =
d1=d∑
d1=0

(
d

d1

)
pd1 (1 − p)d−d1

[
1 − (

1 − QK−1
n

)d−d1
]

× [(
1 − QK−1

n

)d1
]

= (
1 − pQK−1

n

)d − (
1 − QK−1

n

)d
. (3)

Hence,

Qn+1 = pPn+1,+(1) + (1 − p)Pn+1,−(1)

1 − Pn+1(0)
. (4)

This gives us the recursion,

Qn+1 = p
(
1 − pQK−1

n

)d + (1 − p)
[
1 − (1 − p)QK−1

n

]d − (
1 − QK−1

n

)d(
1 − pQK−1

n

)d + [
1 − (1 − p)QK−1

n

]d − (
1 − QK−1

n

)d
. (5)

These equations are a generalization of the recursions for Qn+1

obtained in Ref. [14] for p = 1/2. From these equations, the
threshold at which the fraction of solvable realizations goes to
zero exponentially with the depth of the tree may be extracted.
This is the solvability threshold for these models [2]. A fixed
point analysis of Eq. (5) predicts a continuous transition for
K = 2 and a first order transition for K > 2 for all 0 < p < 1
(we see no change in behavior for any nonzero value of p

though as reported in Ref. [15]). The value of d at which the
system undergoes a continuous transition for K = 2 can be
extracted by expanding to order Q2 in Eq. (5) at the fixed
point. This gives for K = 2,

Qc = 2(1 − 2dp + 2dp2)

3(d − 1)d(p2 − p)
, (6)

which implies dc = 1
2p(1−p) .

B. Comparison with results on a random graph

The calculations above should be compared with the value
of the solvability threshold on a regular random graph. On
general grounds, the value of αc corresponding to the fixed
point value dc on the tree should be (dc + 1)/K [17,18].
Hence, for 2-SAT, dc = 1

2p(1−p) is equivalent to αC = 1/2 +
1/[4p(1 − p)].

A known earlier result [19] provides us an opportunity to
compare the above value of α with the exact value of the
solvability threshold for 2-SAT. Let ri represent the degree of
ith variable on a random graph, and let ri,− and ri,+ be the
degrees of the corresponding literals. Hence, ri = ri,− + ri,+.

For 2-SAT defined on a random graph with a given literal dis-
tribution R = {r1,−,r1,+, . . .}, the location of the threshold can
be derived using the following theorem by Cooper et al. [19]:

Theorem. Let R be any degree sequence over N variables
with � = N1/11, and let F be a uniform random 2-SAT
formula with a given degree sequence R, then for 0 < ε < 1
and N → ∞, if D = ∑

i ri,−ri,+ < (1 − ε)M , then P (F is
satisfiable) → 1 and if D > (1 + ε)M , then P (F is satisfiable)
→ 0. Here, M is the number of clauses.

The theorem can be easily generalized to the case when
the degrees of the variables are distributed according to a
given probability distribution. Then, D is the average value
of

∑
i ri,−ri,+.

For biased random 2-SAT defined on a regular random
graph, since the probability distribution of the literals is
p(r+) = ( r

r+ )pr+(1 − p)r− , we get D = 〈ri,+ri,−〉N = r(r −
1)p(1 − p)N . Hence, we get rc = 1 + 1/[2p(1 − p)]. Since
αc = rc/2, we get αc = 1/[4p(1 − p)] + 1/2. This is ex-
actly the threshold obtained via the tree calculations [see
Eq. (6)].

To compare the behavior of biased random 2-SAT on
a random graph and on a regular random graph, we also
calculated the threshold for biased random 2-SAT on a random
graph. In this case, the degree of a variable is not fixed but is
distributed according to a Poisson distribution. For this, we
get D = 〈ri,+ri,−〉N = Np(1 − p)〈r〉2. The threshold then is
given by the equation,

2p(1 − p)〈rc〉 = 1. (7)
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FIG. 2. (Color online) Scaled numerical data for p = 1/2 for ran-
dom 3-SAT on a regular random graph. The inset shows the unscaled
value of the fraction of unsatisfied formulas as a function of α.

Since αc = 〈rc〉/2, we get αc = 1/[4p(1 − p)]. As can
be seen from the above result, the SAT-UNSAT transition
threshold for the Poisson distributed degree depends only on
the average degree of the graph. Also, from the foregoing
calculations, we see that, for the same p, the random 2-SAT
defined on a regular graph has a higher threshold. For example,
for the most well studied case of p = 1/2, the threshold value
of αc on the random graph is 1, whereas, on the regular random
graph, it is 3/2.

For K > 2, there is no equivalent of the above theorem for
random graphs. Hence, we performed numerical simulations
for K = 3 and 4 for regular random graphs. Although a lot
of numerical work exists on K-SAT on random graphs [1,2],
random K-SAT on regular random graphs has not been studied
much numerically. After generating 105 random configurations
of the logical expression, we count the number of solutions
using the RELSAT algorithm [20]. Figures 2 and 3 contain plots
and finite size scaling data for K = 3 and 4 for p = 1/2.
We have compared the value of the threshold for the regular
random 3-SAT on the tree and on random graphs in Table I for
different values of p. Unlike 2-SAT, the values do not match
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FIG. 3. (Color online) Scaled numerical data for p = 1/2 for ran-
dom 4-SAT on a regular random graph. The inset shows the unscaled
value of the fraction of unsatisfied formulas as a function of α.

TABLE I. Comparison of the threshold for biased random regular
3-SAT on a tree and on a RRG for various values of p.

p Tree RRG numerics

0.5 4.16 4.36 ± 0.03
0.45 4.22 4.45 ± 0.05
0.4 4.53 4.75 ± 0.05
0.35 5.13 5.30 ± 0.05
0.3 6.16 6.28 ± 0.05

exactly, but the tree calculations predict a threshold which is
close to the threshold on a regular random graph.

For p = 1/2, we have also compared the threshold obtained
on the tree and from simulations of a regular random graph
with that on a random graph (see Table II). As expected, the
difference between the model defined on a regular random
graph and the random graph goes down with increasing K . As
we go to higher K , the mismatch between the threshold on
the tree and a regular random graph increases. Interestingly,
the value of the threshold obtained from tree calculations is
very close to the value obtained via the 1-RSB cavity method
for the dynamical glass transition (αd ) [7]. We will comment
more on this in Sec. V.

IV. BALANCED K -SAT

Balancing literals adds a dependency between variables,
that complicates the problem. In balanced K-SAT, each literal
is constrained to occur negated or non-negated exactly half
the time. This model was shown to have higher complexity
than random K-SAT [21]. It is also a harder problem for
standard SAT solvers as they depend on variable selection,
which exploits the difference in literal degrees. In the usually
studied version of the problem with N nodes having an average
degree r , the number of literals appearing with either sign is
Nr/2. As mentioned earlier, apart from studying the above, we
also study a variant of the problem where the number of literals
of one kind is f Nr , whereas, the number of the opposite kind
is (1 − f )Nr for any 0 < f < 1. For f = 1/2, the problem
is the usual one. For this case, bounds on the threshold have
been derived in Ref. [22] using the second moment method.
For K = 3, the problem has also been studied by Castellana
and Zdeborová [16] using the cavity method.

A. Balanced regular K -SAT on a tree

Now, besides fixing the degree of variables to be (d + 1),
we also fix the degree of the literals. Let a variable occur
negated (non-negated) exactly (d + 1)/2 times. We define q

TABLE II. Comparison of the threshold for random K-SAT on a
tree, a RRG, and a RG for p = 1/2. In the last column, we have also
reported values of αd on a random graph. The starred values are exact
values of the threshold as obtained using Ref. [19].

K Tree RRG numerics RG numerics [2] αd on RG [7]

2 1.5 1.5∗ 1∗ 1
3 4.166 4.36 ± 0.03 4.17 ± 0.05 3.93
4 8.4 9.86 ± 0.03 9.75 ± 0.05 8.3
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to be the integer value of (d + 1)/2. We aim to write recursions
for Qn as defined in the previous section. Although the logic
for writing these recursions is the same as before, the subtlety
here is that, because of the balancing condition, whether a
variable at depth n is negated or not in the clause connecting
it to depth n + 1 is not independent of whether it is negated
or not in the other clauses it participates in. Nevertheless, our
method is easily modified to deal with this situation. For ease
of presentation, we use the terms “downward” and “upward”
to denote a variable’s connections to clauses at lower and
higher depths, respectively. Also, since the balancing condition
crucially depends on whether d is even or odd, we first calculate
these two cases separately before presenting a general formula
valid for any value of d (including noninteger values).

1. When d is odd

Since each variable occurs in d + 1 clauses, the only
realizations that are allowed are when it is negated and not
negated in exactly (d + 1)/2 = q clauses. This leads to one
literal occurring q times and the other occurring q − 1 times
among the downward clauses. The upward clause then contains
the literal which appeared as a minority among the downward
clauses. Since the two cases of whether the minority literal is
a negation or a non-negation are entirely equivalent, it suffices
to look at only one of these two cases.

Now, we need to consider two situations separately—when
the minority literal is true or when the majority literal is true.
In the former case, the variable is guaranteed to satisfy the
upward clause, whereas, in the latter case, it is guaranteed to
unsatisfy the upward clause.

The equations for Pn(0), Pn(1), and Qn can be written as
before. They are as follows:

Pn+1(0) = [
1 − (

1 − QK−1
n

)q][
1 − (

1 − QK−1
n

)q−1]
, (8)

Pn+1,−(1) = [
1 − (

1 − QK−1
n

)q](
1 − QK−1

n

)q−1
, (9)

Pn+1,+(1) = [
1 − (

1 − QK−1
n

)q−1](
1 − QK−1

n

)q
, (10)

and

Pn+1(1) = Pn+1,−(1) + Pn+1,+(1). (11)

Here, Pn+1,−(1) denotes the probability of the majority
literal being true, and Pn+1,+(1) denotes the probability of
the minority literal being true. The equation for Qn is then

Qn+1 =
(

Pn+1,−(1)

1 − Pn+1(0)

)
. (12)

A fixed point analysis of this equation exhibits a continuous
transition for K = 2 and a discontinuous transition for K � 3.
For K = 2, the transition occurs at d = 1. For K = 3 and
d = 7, the fixed point equation has only one trivial solution
(Q = 0), whereas, at d = 9, it has three solutions, suggesting
a first order transition point in between these two values of d.

2. When d is even

In this case, it is not possible to have exactly (d + 1)/2
literals of one sign associated with every variable. Every
variable has, hence, d/2 (or q) literals of one sign and d/2 + 1
(or q + 1) literals of the opposite sign. Balancing is achieved

by ensuring that, for a graph of N variables, exactly half the
number of variables has, on average, q literals of one sign,
whereas, the other half has q literals of the opposite sign.

As before, whether the minority number q denotes negated
or non-negated variables is equivalent, and we need only
consider one of these cases. For a given sign of q literals,
we need to again consider two distinct cases: All q’s of
the minority literals occur among the downward clauses, or
(q − 1)’s of the minority literals occur among the downward
clauses and one in the upward clause. The former possibility
occurs with probability q/(2q + 1), and the latter occurs with
probability (q + 1)/(2q + 1). The equation for Pn(0) is now

Pn+1(0) = [
1 − (

1 − QK − 1
n

)q−1][
1 − (

1 − QK − 1
n

)q+1] q

2q + 1

+ [
1 − (

1 − QK−1
n

)q][
1 − (

1 − QK−1
n

)q] q + 1

2q + 1
.

(13)

The first term accounts for the case when all the majority
literals occur among the downward clauses, and the second
term accounts for the equivalent case when the minority
variables all occur among the downward clauses. As before,
for each of these two situations, the probability that the variable
in question cannot take either value is that at least one of the
clauses this variable satisfies as well as at least one of the
clauses that this variable unsatisfies are also unsatisfied by
the other variables which participate in them.

Similarly, Qn is the probability (conditional on the node
being able to take at least one value) that a node at level n takes
the one value that unsatisfies the upward clause. This happens
when the node satisfies either the majority or the minority
literals which all occur among the downward clauses.

This gives

Qn+1 = q

2q + 1

([
1 − (

1 − QK−1
n

)q+1](
1 − QK−1

n

)q−1

[1 − Pn+1(0)]

)

+ 1 + q

2q + 1

([
1 − (

1 − QK−1
n

)q](
1 − QK−1

n

)q

[1 − Pn+1(0)]

)
.

(14)

On solving for the fixed point, this equation indicates a
continuous transition for K = 2 between d = 0 and d = 2 and
a first order transition for K = 3 between d = 8 and d = 10.

3. For general d

Although the tree is defined for integer values of d, we can
extend the above recursions to noninteger values. One way
to achieve this is the following. For any arbitrary value of
d, consider that a variable can occur negated in q clauses a
fraction y of the times and in q + 1 clauses a fraction 1 − y

of the times where q is defined as before. The value y = 1/2
corresponds to even d, whereas, y = 1 corresponds to odd d.
So, we have

yq + (1 − y)(q + 1) = d + 1

2
. (15)

Note that the actual degree of the nodes is always 2q + 1.
So, for each variable, there is always one more of a literal of
one sign over the other when (d + 1)/2 is not an integer. The
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parameter y ensures that, on average, the number of literals of
either kind per node is always (d + 1)/2 by fixing the fraction
of nodes with one more negation over a non-negation or vice
versa. This procedure works for any d, including nonintegral
values since all that is needed is to fix y accordingly from the
above equation.

The fixed point equation in this case for a general y is
exactly the same as Eq. (14) for the case of y = 1/2.

Hence, we can perform a fixed point analysis of this
equation for noninteger d. We get dc = 1 and, hence, αc =
(dc + 1)/2 = 1 for K = 2 and dc = 8.65 ± 0.05 for K = 3,
which gives αc = (dc + 1)/3 = 3.23.

4. f-balanced regular K-SAT

If instead of fixing the ratio of negated to non-negated
variables to be 1/2, we assume that it is some general fraction
f , then again it is easy to write the fixed point recursion.
For any general f , if q is the integer value of f (d + 1), then
we have to now consider two kinds of nodes: one for which
the difference between the minority and the majority literals
is d + 1 − q and the other for which the difference between
the two is d − q. The value of y fixes the fraction of these
two kinds of nodes. The value y = 1 − f corresponds to the
case when f d is an integer, and the value y = 1 corresponds
to the case when f (d + 1) is an integer. For general y, we
have

yq + (1 − y)(q + 1) = f (d + 1). (16)

The equation for Pn(0) is now

Pn+1(0) =
((

1 − F
q−1
n,K

)(
1 − F

d+1−q

n,K

) q

d + 1

+ (
1 − F

q

n,K

)(
1 − F

d−q

n,K

)d + 1 − q

d + 1

)
y

+
((

1 − F
q

n,K

)(
1 − F

d−q

n,K

)q + 1

d + 1

+ (
1 − F

q+1
n,K

)(
1 − F

d−q−1
n,K

)d − q

d + 1

)
(1 − y).

Here, we have defined Fn,K = 1 − QK−1
n for ease of presen-

tation.
As before, to get the fixed point equation for Qn, we need

only consider the cases when the literal that is satisfied occurs
entirely among the downward clauses,

Qn+1 = y

(
(d − q + 1)

(
1 − F

q

n,K

)
F

d−q

n,K

(d + 1)[1 − Pn+1(0)]

+ qF
q−1
n,K

(
1 − F

d+1−q

n,K

)
(d + 1)[1 − Pn+1(0)]

)

+ (1 − y)

(
(d − q)

(
1 − F

q+1
n,K

)
F

d−q+1
n,K

(d + 1)[1 − Pn+1(0)]

+ (q + 1)Fq

n,K

(
1 − F

d−q

n,K

)
(d + 1)[1 − Pn+1(0)]

)
. (17)

B. Comparison with a random graph

Balancing the literals makes the problem more constrained.
For a given distribution of degrees, D = 〈r+r−〉 = f (1 −
f )〈r2〉 in the case when each literal is chosen with one
sign f times and the other sign (1 − f ) times. Applying
the theorem described in Sec. III B results in the following
threshold equation for f -balanced 2-SAT:

2f (1 − f )〈r2〉 − 〈r〉 = 0. (18)

Hence, in the balanced literal case, the threshold is sensitive
to the underlying distribution through the second moment. For
f = 1/2, we have the lowest threshold, and the equation in
that case is as follows:

〈r2〉 − 2〈r〉 = 0. (19)

Interestingly, this equation is exactly the same as the
equation for the percolation threshold on a random graph with
a given degree distribution [23]. As argued by Molloy [24], the
SAT threshold cannot be lower than the percolation threshold.
This implies that the most constrained 2-SAT problem for
a given degree or variable distribution is the one where the
literals are exactly balanced (f = 1/2).

For balanced 2-SAT on regular random graphs, 〈r2〉 = r2,
and hence, αc = 1/[4f (1 − f )]. We have compared this with
the threshold obtained from the fixed point analysis of Eq.
(17), and it matches exactly. For example, for f = 1/2, we get
αc = 1.

We have also considered balanced 2-SAT with a Poisson
distributed degree on a random graph. Unlike the regular
random 2-SAT, here, the threshold for any arbitrary degree dis-
tribution depends on its second moment. For balanced 2-SAT
with a Poisson distributed degree on a random graph, 〈r2〉 =
〈r〉 + 〈r〉2. Substituting in Eq. (18) gives 〈rc〉 = [ 1

2f (1−f ) − 1],
and hence, αc = 1/[4f (1 − f )] − 1/2. This gives αc = 1/2
for f = 1/2. Note that this is also the percolation threshold
for Erdős-Réyni random graphs. This suggests that the model
with balanced literals and a Poisson degree distribution on a
random graph has the lowest SAT-UNSAT threshold among
all possible models for K = 2.

For K > 2, as in biased random K-SAT, the values obtained
from the tree calculation seem to give a lower bound on
the threshold value obtained numerically on regular random
graphs (see Table III). We have also simulated balanced SAT
on random graphs for K = 3 and 4 for f = 1/2. Figures 4
and 5 plot the values of the fraction of unsatisfied formulas as
a function of α for balanced 3-SAT and 4-SAT, respectively,
on a regular random graph. Figures 6 and 7 show the same
quantity for 3-SAT and 4-SAT on a random graph. Within
numerical precision, the threshold on a random graph is lower

TABLE III. Comparison of the threshold for balanced K-SAT on
trees, RRGs, and RGs (see also Figs. 4–7). The starred values of the
threshold obtained using Ref. [19] in the table are exact.

K Tree RRG numerics RG numerics

2 1 1∗ 1/2∗

3 3.23 3.5 ± 0.02 3.37 ± 0.02
4 7.163 8.69 ± 0.02 8.65 ± 0.02
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FIG. 4. (Color online) Scaled numerical data for f = 1/2 bal-
anced 3-SAT on a regular random graph. The inset shows the unscaled
value of the fraction of unsatisfied formulas as a function of α.

than that on a regular random graph. As expected, however,
the difference decreases with increasing K .

The problem of K = 3 balanced SAT on regular and
random graphs was studied by Castellana and Zdeborová [16]
by using belief propagation and survey propagation. They
found that, on regular random graphs, survey propagation
started to converge towards a nontrivial fixed point for r > 9.
The corresponding value they found for random graphs was
α > 3.2. Our calculations on a tree give a nontrivial fixed
point at dc + 1 = 9.65, consistent with the results presented
in Ref. [16]. This gives us αC = 3.23 on a tree. Again, this is
very close to αd obtained in Ref. [16].

V. CONNECTION WITH SURVEY PROPAGATION
AND RECONSTRUCTION

The recursions we developed in Ref. [14] and in this
paper are connected to the well-known problem of tree
reconstruction. The reconstruction problem, as originally
defined, is a broadcast model on a tree such that information
is sent from the root to the leaves across edges which act
as noisy channels. The problem then is whether we can

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-40 -20  0  20  40

F
ra

ct
io

n 
of

 u
ns

at
is

fia
bl

e 
fo

rm
ul

a

(α - 8.69) N0.98

N = 40
N = 60
N = 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 8  8.5  9  9.5

F
ra

ct
io

n 
of

 u
ns

at
is

fia
bl

e 
fo

rm
ul

a

α

N = 40
N = 60
N = 80

FIG. 5. (Color online) Scaled numerical data for f = 1/2 bal-
anced 4-SAT on a regular random graph. The inset shows the unscaled
value of the fraction of unsatisfied formulas as a function of α.
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FIG. 6. (Color online) Scaled numerical data for f = 1/2 bal-
anced 3-SAT on a random graph. The inset shows the unscaled value
of the fraction of unsatisfied formulas as a function of α.

recover information about the root from knowledge of the
configuration of the leaves. Apart from its intrinsic interest, it
is also of interest for K-SAT because it has been shown that the
recursions developed in the reconstruction context are exactly
the same as obtained by other means (such as the replica or
cavity methods) for the dynamical glass transition on a random
graph [13] or the clustering transition for K-SAT (the value of
α beyond which the solution space is fragmented into different
clusters).

In terms of reconstruction, these fixed point recursions are
developed for the unconditional probability distribution at the
root of the tree to have a certain “bias,” namely, the fraction of
boundary conditions (bcs) (out of all boundary conditions that
have a nonzero solution set), weighted by the total number of
solutions these boundary conditions possess, that leads to the
root taking the value −1 a certain number of times and the
value 1 a certain number of times.

The fixed point equations developed in Ref. [14] and in
this paper have three differences in comparison with the one
developed in Refs. [13,25]. We look at a reduced quantity—if
the root can take two values (no matter what the bias), we
lump it together to call it Pn(2) for a level n. The quantity of
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FIG. 7. (Color online) Scaled numerical data for f = 1/2 bal-
anced 4-SAT on a random graph. The inset shows the unscaled value
of the fraction of unsatisfied formulas as a function of α.
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interest that we can now derive is a fixed point distribution
for a single number, namely, Qn ≡ Pn(1)/2[1 − Pn(0)]. This
makes our recursions similar in spirit to SP as we explain
below.

Second and more importantly, Pn(1), Pn(2), etc., give the
fraction of realizations at the root, which have a nonzero
solution set and not the fraction of boundaries.

Third, unlike in Refs. [13,25] where boundary conditions
are weighted by the number of solutions they lead to, we
do not weight the realizations by the number of solutions
they have. Rather, to get Pn(2), for example, we weight each
realization in which the root can take both values 1 and −1
equally.

To see the similarities with earlier approaches better, let us
now define the probability space over boundary conditions in-
stead of realizations. We now derive a recursion for the fraction
of boundary conditions that fix the value unambiguously at the
root (so that it is either −1 or 1) at level n, given this quantity
for level n − 1. Only those boundary conditions that lead to
solutions at level n − 1 are permitted. Note, as mentioned
earlier, this is different from tree reconstruction in that, now,
each boundary is weighted equally and not by the number of
solutions it leads to [26].

These equations are the same as those derived earlier in
Ref. [14], since the constraints that lead to the recursions are
the same (and are defined once we specify the model). The
only difference is that, since we are working with a typical
realization, the extra average over all realizations is no longer
allowed. The equations are, hence,

Pn+1(0) =
⎧⎨
⎩1 −

[
1 −

(
Pn(1)

2[1 − Pn(0)]

)K−1
]d1

⎫⎬
⎭

×
⎧⎨
⎩1 −

[
1 −

(
Pn(1)

2[1 − Pn(0)]

)K−1
]d−d1

⎫⎬
⎭

Pn+1(1) =
[

1 −
(

Pn(1)

2[1 − Pn(0)]

)K−1
]d−d1

+
[

1 −
(

Pn(1)

2[1 − Pn(0)]

)K−1
]d1

−2

[
1 −

(
Pn(1)

2[1 − Pn(0)]

)K−1
]d

, (20)

where d1 is a particular realization of negations at the root.
The factor of 2 in the expression Pn(1)/{2[1 − Pn(0)]} appears
because, if Pn(1) is the total fraction of bcs that determine the
root (at level n) to be either −1 or 1, then, because of symmetry,
exactly half of these configurations will not satisfy the link to
level n + 1, no matter what this link is.

If we replace Pn(1)/{2[1 − Pn(0)]} by Qn as before and
replace d1 by d/2 to specify a typical realization, then we get
the recursion,

Qn+1 =
[
1 − QK−1

n

]d/2 − [
1 − QK−1

n

]d

2
[
1 − QK−1

n

]d/2 − [
1 − QK−1

n

]d
. (21)

The fixed points for different K’s obtained from the above
equation are very close to the values obtained earlier in Ref.
[14]. In fact, in the above form, we can also relate Eq. (21) to
the form of the recursions derived in Ref. [7] in their analysis
of the SP algorithm. To see this, note that, if we substitute
z = (1 − QK−1)d/2 in Eq. (21), we get the recursion,

z =
[

1 −
(

1 − z

2 − z

)K−1
]d/2

. (22)

In the SP language, QK−1 is the same as the cavity bias
survey, and z is the analog of the probability of receiving no
supporting (or impeding) warning. Equation (22) is exactly the
recursion obtained in Ref. [7] from the SP equations when the
probability distribution over the cavity bias surveys is replaced
by a δ function, hence, ignoring the differences in the values
of these surveys between different variables i or different
realizations.

In our case, we get the recursions quite simply and without
any approximations from the way we have set up the problem
in terms of computing the fraction of solvable realizations.
It is remarkable that these two different ways of thinking of
the problem, one of which gives an estimate of the solvability
transition and the other an estimate of the clustering transition,
give the same recursions.

In another interesting analogy, the recursions in Eq. (20) are
also exactly in the spirit of the “naive reconstruction” algorithm
mentioned by Semerjian [10] where a connection is now made
with the freezing transition.

VI. CONCLUSION

In conclusion, our main contribution in this paper is that
we have been able to get the exact SAT-UNSAT threshold for
a number of models of random K-SAT on a d-ary tree. This
threshold matches exactly with the threshold on a random
graph for K = 2 and is very close to the numerical estimate
of the threshold for K = 3. In addition, the numbers we get
are equal to the numbers obtained for the dynamical glass
transition for higher K [7]. The latter is a result of the
connection with the analysis of the SP algorithm as mentioned
above. However, note that, in our way of setting up the fixed
point equations, we can directly make a connection with
the solvability transition. Usually, the solvability transition
is estimated via the complexity [7], which is defined as
the number of constrained clusters in a typical instance of
the problem. The complexity is calculated using the cavity
method—it becomes nonzero at αd and reduces in value as
α increases until it reaches 0, which is the point conjectured
to be the solvability transition. The values obtained by these
means are very close to numerics for all values of K , unlike
in our case. It would be interesting to understand whether any
analog of the complexity can be formulated for the tree.

Our fixed point equations are for a reduced or coarse-
grained probability distribution function, but for this simplified
quantity, we are able to write down an equation in closed form.
It would be very interesting to understand whether, in our
formalism, the above is also possible for the full distribution,
such as the distribution of the fraction of realizations (or
boundary conditions) that the root takes the value −1 a fraction
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β of the times and the value 1 a fraction 1 − β of the times.
For either of these cases, weighting realizations by the number
of solutions they possess is also an obvious generalization
of the results presented here, which would be useful to
investigate.

Also, as mentioned here, variations of the same recursions
seem to have connections to the clustering transition [7], the
freezing transition [10], and the solvability transition [14]. It
would be useful to quantify this better as a tree calculation
being exact would make it possible to obtain precise bounds
on these transitions.

Our study of the different cases of balancing literals and
degrees leads to the conclusion that balancing literals makes
the problem harder, whereas, balancing the degree actually
makes the problem easier. Hence, the hardest problem, from
the point of view of having the lowest SAT-UNSAT threshold is
the case of balanced literals with a Poisson degree distribution.
In this case, for K = 2, the solvability threshold is also
the percolation threshold for Erdős-Réyni random graphs,
consistent with the conjecture that the satisfiability threshold
on a graph cannot be lower than the percolation threshold on
the same graph.
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