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Fundamental issues in nonlinear wideband-vibration energy harvesting
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Mechanically nonlinear energy harvesters driven by broadband vibrations modeled as white noise are
investigated. We derive an upper bound on output power versus load resistance and show that, subject to
mild restrictions that we make precise, the upper-bound performance can be obtained by a linear harvester with
appropriate stiffness. Despite this, nonlinear harvesters can have implementation-related advantages. Based on the
Kramers equation, we numerically obtain the output power at weak coupling for a selection of phenomenological
elastic potentials and discuss their merits.
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I. INTRODUCTION

Energy harvesting from motion is a means to power wireless
sensor nodes in constructions, machinery, and on the human
body [1,2]. A vibration energy harvester contains a proof
mass whose relative motion with respect to a frame drives
a transducer that generates electrical power. Linear resonant
devices are superior when driven by harmonic vibrations at
their resonant frequency, but perform poorly for off-resonance
conditions. As real vibrations may display a rich spectral
content, sometimes of a broadband nature, there has been
considerable interest in using nonlinear suspensions to shape
the spectrum of the harvester’s response to better suit the
vibrations [3–12]. The wider spectral response of nonlinear
devices is expected to be beneficial for broadband vibrations.

The studies so far indicate some advantages of nonlineari-
ties for broadbanded vibrations, but little is known about which
conditions make a nonlinear harvester favorable compared to
a linear one. This is due to the lack of adequate theory and due
to the studies being concerned about specific experimental or
numerical examples of nonlinear harvesters that are compared
to specific examples of linear harvesters that could have
been chosen differently. Furthermore, several studies do not
consider the role of electrical loading which is known to
have a dramatic influence on the consequences of mechanical
nonlinearities for the output power [13].

White noise is widely used in physics and engineering
[14–17] and is also important in studying broadband energy
harvesting [13,18–23]. If the vibration spectrum is flat over the
frequency range of the harvester, the harvester itself provides
a cutoff, making the infinite bandwidth of white noise a
meaningful idealization. White noise approximates colored
noise with correlation time sufficiently short compared to the
characteristic times of the system. Aspects of a nonlinear har-
vester’s performance hinging on a finite correlation time and
not present for white noise are, albeit interesting, necessarily
relying on a limited vibration bandwidth. Therefore, white
noise is a good case for investigating broadband performance.

Here we investigate theoretically the behavior of mechani-
cally nonlinear energy harvesters driven by a Gaussian white
noise acceleration. We derive rigorous upper bounds on the
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output power for arbitrary elastic potential and show that
subject to mild restrictions on the device parameters, it is
possible to find a linear device that performs equally well as
the upper bound. We give a compact expression for the output
power that we use to numerically investigate the weak coupling
limit of harvesters for different quartic polynomial potentials
taking electrical loading fully into account.

II. MODEL AND NOTATION

An energy harvester model that is not technology specific
is shown in Fig. 1. The corresponding state space equations
with a linear electromechanical transducer and a nonlinear
mechanical suspension can be written as

ẋ = v, (1)

mv̇ = −U ′(x) − �q/C − bv + ma, (2)

−Rq̇ = RI = V = �x/C + q/C, (3)

where m is the proof mass, x is its relative displacement, v

is its velocity, U is the open-circuit internal energy, q is the
transducer-electrode charge, V is the output voltage, I is the
current, b is the damping coefficient, R is the load resistance,
C is the clamped capacitance, and � is the transduction factor.
The device-frame acceleration ÿ = −a is Gaussian white
noise with a two-sided spectral density Sa . The equations can
represent a piezoelectric or an electrostatic energy harvester.
An electromagnetic harvester gives the same mathematical
structure, but a different physical interpretation. We use charge
as the independent variable [24]. Using voltage instead is
physically equivalent and also common; see, e.g., [25].

Ensemble averages with respect to the stationary distribu-
tion generated by the process [(1)–(3)] will be denoted by 〈·〉.
The mean output power P = 〈V 2〉/R will be our main object
of interest. A number of other expressions for P immediately
follow by using stationarity, (1) and (3). We will use some of
these expressions without giving the derivation. All results for
linear systems are exact and taken from [13], unless otherwise
stated.

From (3), q = O(�). The second term on the right-hand
side (rhs) of (2) is O(�2) which can then be dropped in the
limit � → 0. This is the weak coupling limit, which in the
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FIG. 1. Vibration energy harvester model.

stationary state has the reduced probability density

W 0
st(x,v) = exp[−bv2/mSa − 2bU (x)/m2Sa]/Z0

st, (4)

where Z0
st is a normalization constant [26]. We denote

expectations in this limit by 〈·〉0.

III. BOUNDS AND LIMITS

In this section, we prove that a previously known lemma
on the mechanical input power of linear harvesters also
encompasses mechanically nonlinear ones, and discuss its
consequences. We then show that known asymptotic formulas
for large or small load resistances are upper bounds on
output power. Finally, we find improved bounds that are
asymptotically correct in both limits and compare to exact
results for a linear harvester.

A. Power balance

The important observation that the mean input power is
Pin = mSa/2 was made in [19] where it was proved for
linear harvesters. For our nonlinear system and � = 0, all
power is dissipated in the damper, (4) implies the equipartition
theorem, and Pin = b〈v2〉0 = mSa/2. For general �, consider
the input energy

∫ t2
t1

mavdt over a time interval. When the
actually continuously differentiable a is modeled as white
noise, the appropriate stochastic representation of the energy
is a Stratonovich integral mv ◦ da [27]. We have mv ◦ da =
mvda + mSadt/2, where vda is an Ito integral and has zero
expectation [26,28]. The input-energy expectation is then
mSadt/2, which yields the stated expression for Pin.

The observation means that η = 2P/mSa is an efficiency
that should be maximized, as opposed to linear narrowband
harvesting where power transfer is maximized. It also implies
a power balance,

P = mSa/2 − b〈v2〉. (5)

For linear harvesters, η → 1 as k2Qm → ∞, where k2 =
�2/KC � 1 is the transducer electromechanical coupling
factor, K is the open-circuit stiffness, and Qm is the open-
circuit quality factor [13]. Hence, it is impossible to improve
significantly on a linear harvester that is already very efficient.
The device in [29], for example, has k2Qm ≈ 7.8 resulting in
η ≈ 0.79. The great number of harvesters, especially those
with small volume, that perform substantially below their
theoretical maximum [2] suggests that the weak coupling
regime nevertheless has great practical relevance.

B. Asymptotic formulas as bounds

The load resistance determines the electrical time scale
τ = RC distinguishing different regimes of operation. When

τ is the fastest scale, i.e., τ → 0, we have [13]

P ∼ �2〈v2〉τ/C ∼ �2〈v2〉0τ/C = �2τmSa/2bC. (6)

From (3), it is readily proved that P = �2τ 〈v2〉/C −
τ 3〈İ 2〉/C � �2τ 〈v2〉/C. One can also show that 〈v2〉 � 〈v2〉0.
Hence, both asymptotic relations in (6) are upper bounds on
the output power. We note that the bounds are valid for any U

that permits a stationary distribution and that the output power
is otherwise independent of U when τ → 0.

When the electrical time scale is the slowest in the system,
i.e., when τ → ∞, we have [5,13]

P ∼ �2〈(x − 〈x〉)2〉/τC ∼ �2〈(x − 〈x〉0)2〉0/τC. (7)

The leftmost asymptotic formula in (7) is also an upper bound.
This is seen by using (3) to find

P = �2〈(x − 〈x〉)2〉/τC − 〈(q − 〈q〉)2〉/τC, (8)

which gives the inequality when dropping the second term.
The rightmost asymptotic formula in (7) need not be an upper
bound, as can be inferred already from linear theory. We note
that (7), in contrast to (6), is strongly dependent on U as it is
proportional to 〈(x − 〈x〉)2〉.

The maximum power as a function of τ must necessarily
be found at an intermediate value of τ between the small-τ
and large-τ regimes. Since the output power is, respectively,
insensitive and sensitive to the nature of U in these two
regimes, the degree to which the maximum power can be
improved by mechanical nonlinearities is an open question.

C. Improved power bounds and the linear case

We now address the potential benefits of nonlinear devices
by deriving improved power bounds and comparing to linear
behavior. Define z = q − 〈q〉 − D(x − 〈x〉) − Bv and find the
values of the constants B and D that minimize 〈z2〉. Eliminate
covariances between x and q using �〈xq〉 + 〈q2〉 = 0 and use
P = �〈qv〉/C and (8) to write the minimum value as

〈z2〉 = τC

�2

〈(q − 〈q〉)2〉
〈(x − 〈x〉)2〉P − C2P 2

�2〈v2〉 . (9)

Next, use this to eliminate the variance of q in (8) and rearrange
to obtain P = (1 − 〈z2〉/τCP )Pu1 � Pu1, where

Pu1 = �2

C

τ 〈v2〉〈(x − 〈x〉)2〉
〈(x − 〈x〉)2〉 + τ 2〈v2〉 . (10)

We see that (10) agrees with (6) and (7) in their respective
limits and is a tighter bound.

The quantity ωm =
√

〈v2〉/〈(x − 〈x〉)2〉 can be used to
eliminate the displacement variance in (10). Using P =
mSa/2 − b〈v2〉 � Pu1, we find a lower bound on 〈v2〉 which
we substitute back into the power balance equation to obtain
P � Pu2, where the new bound is

Pu2 = mSa

2

�2τ/Cb

1 + �2τ/Cb + ω2
mτ 2

. (11)

Pu2 is manifestly less than Pin and is asymptotically approach-
ing the exact result at both of the extreme limits of τ .

We can interpret ωm as the root-mean-square frequency
of the spectrum [30] of the displacement δx = x − 〈x〉. This
follows from representing the variances in terms of the spectral
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densities Sδx δx(ω) and Svv(ω) = ω2Sδx δx(ω) of δx and v,
respectively, which gives

ω2
m = 〈v2〉

〈δx2〉 =
∫ ∞
−∞ ω2Sδx δx(ω)dω/2π∫ ∞

−∞ Sδx δx(ω)dω/2π
. (12)

The most optimistic estimate of output power permitted by
(11) is found for load resistances such that ωmτ = 1 and is

Pu2,Opt = (mSa�
2/2Cb)/(2ωm + �2/Cb). (13)

This can be compared to the exact output power of an optimally
loaded linear harvester which is

PLin,Opt = (mSa�
2/2Cb)/(2ω0 + b/m + �2/Cb), (14)

where ω0 is the open-circuit resonance. The two power
expressions differ only in terms in the denominators: 2ωm in
(13) vs 2ω0 + b/m in (14). With all other parameters except
load resistance held equal, a linear system can therefore be
made to perform better than, worse than, or equal to the bound,
depending on its stiffness. It will meet the performance of the
bound if its stiffness is such that ω0 = ωm − b/2m. The only
fundamental restriction on the linear system is that it is stable,
i.e., it has k2 < 1 [24] which is equivalent to ω2

0 � �2/mC.
Hence, a linear device meeting the bound is realizable if

ωm > b/2m + |�|/
√

mC. (15)

Therefore, nonlinear harvesters are not fundamentally better
than linear ones.

Harvesters that have their spectrum shaped by nonlinear
design of their proof-mass suspension will, like linear resonant
devices, typically be designed to have b/2m much less than
the characteristic frequencies of proof-mass motion in order to
maximize performance. We therefore expect b/2m � ωm to
be a typical case for such nonlinear devices. A corresponding
linear system performing equally to the bound will then have
ω0 ≈ ωm. That is, its resonance lies within the frequency range
of the nonlinear harvester’s spectrum.

We note that failure to fulfill the criterion (15) because of
the second term on the rhs corresponds to coupling strong
enough that a linear device is not an alternative due to lack
of stability or due to being only marginally stable. We would
expect this situation for truly nonresonant devices with low
damping. For � approaching this limit from below, one has
the high-efficiency situation discussed in Sec. III A, even with
considerable damping (moderate Qm for the linear device).

While (11) is always an upper bound on the output power,
it is quite possible that this bound is a poor approximation and
considerably overestimates the actual output power. We might
expect this situation when the spectrum Sδx δx has multiple
peaks widely separated in frequency, such as for quartic
bistable potentials [31,32]. If so, the actual performance can
be met by a linear device with ω0 larger than ωm − b/2m by an
amount in correspondence to the degree of overestimate. This
has to be checked for each particular case. The criterion (15)
is a sufficient, but not necessary, condition for the realizability
of a linear harvester that performs equally well or better than
a harvester characterized by ωm.

IV. NUMERICAL RESULTS

We now consider how to directly calculate the output
power for concrete examples. From (1) and (3) it follows
that V = (�/C)

∫ t

−∞ exp[−(t − t1)/τ ]v(t1)dt1. Inserting this
expression into P = �〈v(t)V (t)〉, we obtain

P = �2

C

∫ ∞

0
e−t/τ 〈v(t)v(0)〉dt = �2

C
K̃vv(1/τ ), (16)

i.e., the output power is proportional to the Laplace transform
K̃vv of the velocity autocorrelation function.

In the weak coupling limit � → 0, we can approximate
K̃vv by its value K̃0

vv for � = 0 to obtain the leading order.
K̃0

vv can be found from the transition probability by solving
the Fokker-Planck equation corresponding to (1) and (2) with
� = 0, i.e., the Kramers equation [33].

Without pursuing it further, we remark that an alternative
method to calculate the output power, and therefore also K̃0

vv ,
would be to find a stationary solution of the Fokker-Planck
equation for the energy harvester [13] in the weak coupling
limit and use P ∼ �〈qv〉0/C or P ∼ �〈vV 〉0.

A. Numerical method

We determine K̃0
vv numerically from the Kramers equation

by orthogonal function expansions and matrix continued
fraction methods following [31,33]. The spatial basis func-
tions are ψn(x) = √

W (x)πn(x), n = 0,1, . . . , where W (x) =
exp[−2bU (x)/m2Sa]/Z0, Z0 is a normalization constant, and
πn(x) are orthonormal polynomials with W (x) as weight
function. We express all spatial-basis matrix elements in terms
of the recurrence coefficients for πn, which are determined by
adapting the Lanczos method described in [34] to continuous
variables. Dimensionless variables distinguished by asterisk
subscripts and based on a characteristic length scale ls and
frequency scale ωs are used, e.g., P∗ = P/ml2

s ω
3
s , �∗ =

�/
√

mω2
s C, Sa∗ = Sa/l2

s ω
3
s , and τ∗ = ωsτ .

B. Symmetric quartic potentials

We first consider the much studied symmetric quartic
potential U = Ax2/2 + Bx4/4, and choose ls such that B∗ =
Bl2

s /mω2
s = 1 and ωs such that γ∗ = b/mωs = 1/100. Traces

for a bistable potential with A∗ = A/mω2
s = −0.5 and a

monostable potential with A∗ = 0.5 are shown in Fig. 2. For
small values of τ∗, the output power collapses as predicted
by (6) onto the same asymptotic form for both potentials.
For Sa∗ = 1.0 × 10−4, the mass vibrates around a potential
minimum, giving a performance for larger τ∗ that differs
between the two cases due to their different linear stiffnesses
at the minima, i.e., 2|A∗| for the bistable potential and A∗
for the monostable potential. At Sa∗ = 0.1, the quartic term
in the potential determines the behavior. In the intermediate
case, Sa∗ = 1.0 × 10−3, the two potentials give comparable
maximum power even though there is a considerable difference
between them for large τ∗.

For weak coupling, the upper bounds (10),(11) simplify to

Pu1 = Pu2 = (mSa�
2τ/2Cb)/

(
1 + ω2

mτ 2
)
, (17)

with ω2
m = 〈v2〉0/〈(x − 〈x〉)2〉0. In this limit, we can calculate

ωm directly from the known expression for 〈v2〉0 and the value

042129-3



EINAR HALVORSEN PHYSICAL REVIEW E 87, 042129 (2013)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

τ∗

P
∗/

Γ
2 ∗

FIG. 2. Output power P∗ vs electrical time scale τ∗ for mono- and
bistable potentials at weak coupling, γ∗ = 0.01, Sa∗ = 10−4,10−3,0.1
(bottom to top), and B∗ = 1. Open squares: Numerical solution
for A∗ = −0.5. Solid circles: Numerical solution for A∗ = 0.5.
Solid lines: Corresponding upper bounds. Dotted line: Solution from
linearization around potential minimum with stiffness 2|A∗|.

of 〈(x − 〈x〉0)2〉0 obtained from numerical quadrature using (4)
as the probability density. Then, ωm is independent of τ , but
does depend on Sa . We have 〈U ′(x)(x − 〈x〉0)〉0 = m〈v2〉0,
so mω2

m corresponds to the stiffness in standard stochastic
equivalent linearization [35]. The bound has a maximum value
of mSa�

2/4Cbωm at τ = 1/ωm. The maximum value will
therefore increase and shift to a larger τ when ωm is lowered.
As ωm can be strongly dependent on the acceleration spectral
density Sa , the bound can have a nontrivial dependence on Sa .
For example, for Sa∗ = 10−4 and Sa∗ = 10−3 in Fig. 2, we find,
respectively, ωm∗ = ωm/ωs = 0.101 and ωm∗ = 0.347 for the
bistable potential. This frequency difference is big enough for
the bounds to cross.

The value Sa∗ = 10−4 is small enough that the proof mass
exhibits approximately linear dynamics around the potential
minima, as indicated by the agreement between the dotted
line in the figure and the numerical calculation. The root-
mean-square displacement is then on the order of half of
the separation between the potential minima for the bistable
system, ω2

m ≈ mSaB/2b|A|, mω2
m is very different from the

linear stiffness 2|A|, and the bound grossly overestimates the
actual performance. At small Sa∗, the longest time scale is
that of interwell transitions as given by Kramers’ rate problem
[5,14], and the large-τ asymptotics is only reached for τ values
far above the optimum. This demonstrates the necessity of the
more complicated numerical treatment in predicting maximum
power as opposed to bounding it.

Figure 3 shows the output power versus the parameter
A∗ when the load is optimized for every A∗. The value of
the optimal τ∗ in the inset varies correspondingly. Together
with the numerical solution and the value of the bound, we
show the output for linear devices with stiffness 2|A∗| or
A∗ as an indication of when the proof mass mostly vibrates
around the potential minima. The values of ωm used to
calculate the bound are shown in the inset. The maximum
power is obtained for a negative value of A∗, i.e., with a
bistable potential, such as is demonstrated for a fixed load and
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FIG. 3. Maximum output power P∗ as a function of A∗ at
weak coupling, γ∗ = 0.01, B∗ = 1, and Sa∗ = 10−3. Solid circles:
Numerical solution. Dashed lines: Solution from linearization around
potential minima with stiffness |2A∗| or |A∗|. Thin solid line: Upper
bound. Inset shows corresponding optimal load given by τ∗ (solid
circles) and the root-mean-square frequency ωm∗ (solid line).

colored noise in [4]. But, as the bound corresponds to a linear
device with ω0 = ωm − b/2m, more power can be obtained
with a linear device. Increasingly negative A∗ again leads to
vibrations around the minima with rare interwell transitions,
as discussed above for small Sa , and the bound’s overestimate
becomes large (leaving the plot). For sufficiently negative A∗,
a linear system with stiffness 2|A∗| gives less power. From the
monotonic frequency behavior of (14), we can then conclude
that a linear device with ω0 somewhat less than

√
2|A|/m,

but still larger than ωm − b/2m, can match or outperform the
bistable harvester.

For small negative and all positive values of A∗ in Fig. 3,
linear devices with the same stiffness A∗ or 2|A∗| as the
nonlinear devices at their potential minima give more power.
This can by understood from the quartic term of the potential
limiting proof-mass motion. We also note that the bound is a
good approximation for positive A∗, as was also the case in
Fig. 2.

These considerations show that the motivation for utilizing
nonlinear stiffness is rather one of necessity than one of
advantage. Implementation constraints such as, e.g., package
size and/or beam dimensioning may prohibit linear operation.
In this respect, we can think of the quartic term of the potential
as a model of proof-mass confinement or beam stretching at
large amplitudes.

C. Asymmetric quartic potentials

We now consider a suspension made of a stable elastic
material without built-in stress, choose U (0) = 0, and require
U ′(0) = 0, U ′′(0) > 0, and U (x) > 0 ∀x �= 0. The lowest
order nontrivial polynomial form can then be parametrized as

U (x) = 1

2
Kx2 + Kξ√

2l
x3 + K

4l2
x4, (18)

where |ξ | < 1, K > 0, and l is a length scale; see Fig. 4
which illustrates how the potential varies with ξ . We choose
ωs = √

K/m and ls = l as characteristic scales. A linear
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FIG. 4. Quartic potentials. Dotted line: ξ = 0, hardening Duffing
spring. Dash-dotted line: ξ = √

2/3, negative tangential stiffness
arises. Dashed line: ξ = 2

√
2/3, bistability arises. Solid line: ξ = 1,

symmetric bistable potential.

system with stiffness constrained to the same value K as in
(18), and therefore with ω0 = ωs, is used in some comparisons.

Figure 5 compares output power as a function of acceler-
ation spectral density Sa∗ for harvesters with different values
of the parameter ξ . To ease comparison, the power is divided
by Sa∗. A linear harvester then appears as a horizontal line as
shown for the particular case with ω0 = ωs. For each nonlinear
potential, results are shown both with fixed load τ∗ = 1 (lines)
and with τ∗ optimized at each value of Sa∗ (markers). τ∗ = 1 is
optimal for the linear system with ω0 = ωs, and therefore for
all of the shown potentials at small Sa∗. The difference in output
power between the two loading cases is moderate for these
examples. It is largest for the largest values of ξ which have
the lowest ωm. For example, for Sa∗ = 10−3, we have ωm∗ =
1.061, 0.793, 0.496, and 0.347 from lowest to highest ξ . From
these values, we also note that increased power correlates with
lower ωm, as we would expect from the form of the bound (17).
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FIG. 5. Output power P∗ relative to acceleration spectral density
Sa∗ vs Sa∗ both for τ∗ = 1 (thick lines) and for optimal τ∗ at each point
(markers). Thin solid line: Linear device with ω0 = ωs. All devices
have the same linear stiffness. γ∗ = 0.01. Medium thick, gray solid
line: Upper bound for ξ = 2

√
2/3.

Figure 5 shows that the nonlinear devices with ξ �= 0
give an Sa∗ range of better performance than their linear
counterpart with ω0 = ωs. This is the case even with τ∗ = 1,
which is optimal only for that linear device. The consistently
lower power for ξ = 0 is due to the stiffening nature of the
potential, which limits motion and shifts the spectrum to higher
frequencies. The other potentials have a range of softening
behavior causing a shift to lower frequencies and higher power.

Also shown on dimensionless form in Fig. 5 (gray line) is
(17) for ξ = 2

√
2/3 evaluated with τ = 1/ωm. Each point of

this curve represents an optimally loaded linear device with
open-circuit frequency ω0 = ωm − b/2m. For Sa∗ = 10−3,
this corresponds to ω0 = 0.496ωs − 0.005ωs ≈ 0.5ωs. If we
compare to a linear system with ω0 = 0.5ωs instead of one with
ω0 = ωs, it has P∗/Sa∗�2

∗ ≈ 50, outperforming all nonlinear
cases in Fig. 5 over all values of base acceleration spectral
density Sa∗.

The comparison between nonlinear and linear suspensions
to judge their relative merits is only fair if the harvester
responses are within approximately the same frequency range.
In the preceding analysis, we secured that by choosing the
open-circuit frequency of the linear device approximately
equal to the ωm of the nonlinear device. We also discussed
how this condition could be relaxed for weakly excited bistable
systems. To be more specific on the spectral characteristics,
the velocity spectral density Svv(ω) = 2Re{K̃vv(iω)} for the
bistable potential with ξ = 1 and for the monostable potential
with ξ = 2

√
2/3 is plotted in Fig. 6 for a selection of Sa∗ val-

ues. For both potentials, the spectra demonstrate an increased
broadening and a tendency of downwards-in-frequency shift of
the spectral weight. Despite their differences, these two poten-
tials give a very similar performance in Fig. 5 and also display
similar spectral shapes here. If we consider the curve for
Sa∗ = 1 × 10−3 in Fig. 6, we see that the choice ω0 = 0.5ωs for
the linear system discussed above lies within the spectrum of
the nonlinear device and, therefore, is a fair case to compare to.

Even though we only considered simple phenomenological
potentials (18), the broadening and flattening of the spectrum
and the better-than-linear power characteristic within an Sa
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10
0
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S
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FIG. 6. Velocity spectral density vs frequency at weak coupling
for Sa∗ = 1 × 10−4,5 × 10−4,1 × 10−3,5 × 10−3 (from bottom to
top, traces at the highest frequencies). Solid lines: ξ = 1. Dashed
lines: ξ = 2

√
2/3.
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range replicate experiments on a device with an asymmetric
monostable potential [11].

V. CONCLUSION

We have shown that when driven by white noise, har-
vesters with nonlinear stiffness do not have the fundamental
performance advantage over linear ones that one could have
expected from their wider spectrum. This followed for efficient
devices from considerations on input power and for general
coupling from power bounds. Numerical examples were given
for weak coupling. The findings do not preclude advantages

of nonlinear-stiffness harvesters subject to vibrations signifi-
cantly different from wideband noise, e.g., off-resonance, suf-
ficiently band-limited vibrations. Implementation constraints
may render a nonlinear stiffness unavoidable or a desired value
of linear stiffness unattainable. We demonstrated advantages
when linear stiffness was constrained.
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