
PHYSICAL REVIEW E 87, 042127 (2013)

Spin-glass splitting in the quantum Ghatak-Sherrington model
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We propose an expanded spin-glass model, called the quantum Ghatak-Sherrington model, which considers
spin-1 quantum spin operators in a crystal field and in a transverse field. The analytic solutions and phase
diagrams of this model are obtained by using the one-step replica symmetry-breaking ansatz under the static
approximation. Our results represent the splitting within one spin-glass (SG) phase depending on the values
of crystal and transverse fields. The two separated SG phases, characterized by a density of filled states, show
certain differences in their shapes and phase boundaries. Such SG splitting becomes more distinctive when the
degeneracy of the empty states of spins is larger than one of their filled states.
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I. INTRODUCTION

A spin glass (SG) is a complex system characterized by
both quenched randomness and frustration, which lead to the
irreversible freezing of spins to states without the long-range
spatial order below the glass transition temperature Tg [1].
Theoretical approaches for understanding SG transitions are
generally concerned with the study of mean-field level cal-
culations performed using infinite-range interaction models,
of which the Sherrington-Kirkpatrick (SK) model [2] is a
prototype. Some infinite-range interaction SG models have
recently sparked interest in relation to the so-called inverse
transitions.

Since Tammann’s hypothesis [3] a century ago, there has
been substantial interest in a different class of phase transitions
known as inverse transitions (melting or freezing). In these
phase transitions, an ordered phase is more entropic than a
disordered one, whereby the ordered phase may appear at
a higher temperature than the disordered one. Such inverse
transitions have already been observed experimentally in
physical systems such as of liquid crystals [4], polymers
[5,6], high-Tc superconductors [7], magnetic thin films [8],
and organic monolayers [9]. Meanwhile, from a theoretical
point of view, there have been various attempts to identify
a suitable model for inverse transitions. Spin-glass models
have been suggested to be candidates for inverse freezing,
wherein the SG phase becomes one with higher entropy. The
Ghatak-Sherrington (GS) model [10,11] is a spin-1 spin-glass
model with a crystal field and it is especially well known as a
prototypical SG model for inverse freezing [12–16].

In ordinary SG systems, in general, the second-order
phase transition from paramagnetic (PM) to SG occurs as
temperature is decreased. However, according to Crisanti and
Leuzzi [13,14], there seems to be a second reentrance as well as
inverse freezing in the GS model. (See Fig. 2 in Refs. [13,14].)
This implies that phase transitions are likely when the phase
is varied successively in the order PM → SG → PM → SG
as the temperature is reduced. In other words, there seems to
exist two different SGs, i.e., a SG in the higher-temperature
region [higher-temperature spin glass (HTSG)] and a SG in
the lower-temperature region [lower-temperature spin glass
(LTSG)]. The aim of this paper is to investigate the theoretical
validity for the existence of such separated SGs using a simple
GS-like model.

For this purpose, we study a quantum version of the GS
model by adding a transverse tunneling field, similar to the
manner in which the quantum version of the SK model
has been studied by considering quantum tunneling with a
transverse field [17,18]. We expect the quantum GS model
to clarify the changes in the existence and features of the
two SGs with respect to the transverse field. Herein we use
one-step replica symmetry breaking (1RSB) for theoretical
investigations instead of the replica symmetry (RS) [12–14]
and the full replica symmetry breaking (FRSB) [13,14].
We select the 1RSB because it provides more physically
meaningful results than RS does and numerical values of order
parameters more easily than FRSB does. Although 1RSB
is approximated with respect to the exact FRSB ansatz, it
is a good approximation around transition lines because at
criticality the thermodynamics is not very sensitive to the
ansatz chosen, as shown in Refs. [13,14].

II. MODEL

The Hamiltonian of the quantum GS model is

H = −
∑
(i,j )

JijSizSjz + D
∑

i

S2
iz − �

∑
i

Six, (1)

where (i,j ) means all the distinct pairs of spins with the total
number N , Jij are quenched random exchange interaction
variables, D is the crystal field, and � is the transverse
tunneling field. The spin-1 quantum spin operators Sz and
Sx are defined by

Sz =

⎛
⎜⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎠ , Sx = 1√

2

⎛
⎜⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎠ , (2)

respectively. The distribution of Jij is taken to be Gaussian
with a mean zero and a variance of 1/N . When k and l are
the degeneracy of the filled or interacting states of Sz and of
the empty or noninteracting states of Sz, respectively, we can
define the relative degeneracy of the filled states as r ≡ k/l

[12–14].
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By the imaginary-time formalism [19], the partition func-
tion of the system can be written as

Z = Tr exp

(
β�

N∑
i

Six

)
T exp

[∫ β

0
dτ

( N∑
ij

Jij Siz(τ )Sjz(τ )

−D

N∑
i

[Siz(τ )]2

)]
, (3)

where τ is the imaginary time, T is the time-ordering
operator, Siz(τ ) are the operators under the interaction
representation introduced in the quantum physics [i.e.,
Siz(τ ) ≡ exp(H0τ )Siz exp(−H0τ ), where H0 = −�

∑N
i Six],

and β = 1/T (where kB ≡ 1 for simplicity). For this
model, the free energy is calculated as −βF ≡ [ln Z]J =∫ ∏N

i,j dJijP (Jij ) ln Z({Jij }), where []J indicates an average
over the quenched disorder of Jij . For the quenched random
system the free energy can be evaluated using the replica
method ln Z = limn→0(1/n)[Zn − 1].

By averaging Zn over P (Jij ), rearranging terms, and taking
the method of steepest descent in the thermodynamic limit
(N → ∞), the intensive free energy f ≡ limN→∞ F/N can
be written as

βf = lim
n→0

1

n

⎡
⎣1

4

∫ β

0
dτ

∫ β

0
dτ ′

⎛
⎝ n∑

(αβ)

[Qαβ(τ,τ ′)]2

+
n∑
α

[Rαα(τ,τ ′)]2

)
− ln Tr exp(H̃)

]
, (4)

with the effective Hamiltonian

exp(H̃) ≡ exp

(
β�

n∑
α

Sα
x

)
T exp

[ ∫ β

0
dτ

∫ β

0
dτ ′

×
(

1

2

n∑
(αβ)

Qαβ(τ,τ ′)Sα
z (τ )Sβ

z (τ ′)

+ 1

2

n∑
α

Rαα(τ,τ ′)Sα
z (τ )Sα

z (τ ′)
)

−D

∫ β

0
dτ

n∑
α

[
Sα

z (τ )
]2

]
, (5)

where (αβ) denotes a summation over replica indices α and
β ( �= α) running from 1 to n and the trace Tr is over n replicas at
a single spin site. Here two order parameters are introduced: the
spin-glass order parameter Qαβ(τ,τ ′) ≡ 〈T Sα

z (τ )Sβ
z (τ ′)〉 and

the spin self-interaction Rαα(τ,τ ′) ≡ 〈T Sα
z (τ )Sα

z (τ ′)〉, where
〈A〉 ≡ Tr[AeH̃]/TreH̃.

We take the static approximation [19] by Qαβ(τ,τ ′) = Qαβ

and Rαα(τ,τ ′) = Rαα . Then the free energy f is given by

βf = lim
n→0

1

n

⎡
⎣1

4
β2

⎛
⎝ n∑

(αβ)

(Qαβ)2 +
n∑
α

(Rαα)2

⎞
⎠

− ln Tr exp(H̃′)

]
, (6)

with the effective Hamiltonian

H̃′ ≡ 1

2
β2

n∑
(αβ)

QαβSα
z Sβ

z +
n∑
α

(
1

2
β2Rαα − βD

)(
Sα

z

)2 + β�

n∑
α

Sα
x . (7)

Next, we use Parisi’s 1RSB scheme as in the case of the SK model [20]: for the n × n matrix {Qαβ} in the replica spin space, the
n replicas of {Qαβ} are divided into n/m groups of m replicas, assuming that n must be a multiple of m, so that {Qαβ} consists
of n/m diagonal matrices of m × m elements each (in which all the diagonal elements are zero and off-diagonal elements are
Q1) and n/m × (n/m − 1) matrices of m × m elements (in which all the elements are Q0). Then the free energy obtained by the
1RSB ansatz is given as follows:

βf1RSB = 1

4
β2

{
R2 − Q2

1 + m
(
Q2

1 − Q2
0

)} − 1

m

∫
Dz ln

( ∫
Dy{1 + 2reγ cosh[β

√
H (z,y)2 + �2]}m

)
, (8)

where
∫
Dz(y) · · · ≡ 1√

2π

∫ ∞
−∞ dz(y)e−[z(y)]2/2 · · · , γ ≡ 1

2β2(R − Q1) − βD, and H (z,y) ≡ √
Q0z + √

Q1 − Q0y. The self-
consistent equations for m, Q0, Q1, and R are obtained by the extremal condition of f1RSB :

1

4
β2m2

(
Q2

1 − Q2
0

) = −
∫

Dz ln

( ∫
Dy{1 + 2reγ cosh[β

√
H (z,y)2 + �2]}m

)

+m

∫
Dz

∫
Dy{1 + 2reγ cosh[β

√
H (z,y)2 + �2]}m ln{1 + 2reγ cosh[β

√
H (z,y)2 + �2]}∫

Dy{1 + 2reγ cosh[β
√

H (z,y)2 + �2]}m
, (9)

R =
∫

Dz

∫
Dy{1 + 2reγ cosh[β

√
H (z,y)2 + �2]}m H (z,y)√

H (z,y)2+�2

[
2reγ cosh[β

√
H (z,y)2+�2]

1+2reγ cosh[β
√

H (z,y)2+�2]

]
∫
Dy{1 + 2reγ cosh[β

√
H (z,y)2 + �2]}m

, (10)
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Q0 =
∫

Dz

⎡
⎢⎢⎣

∫
Dy{1 + 2reγ cosh[β

√
H (z,y)2 + �2]}m H (z,y)√

H (z,y)2+�2

[
2reγ sinh[β

√
H (z,y)2+�2]

1+2reγ cosh[β
√

H (z,y)2+�2]

]
∫
Dy{1 + 2reγ cosh[β

√
H (z,y)2 + �2]}m

⎤
⎥⎥⎦

2

, (11)

Q1 =
∫

Dz

∫
Dy{1 + 2reγ cosh[β

√
H (z,y)2 + �2]}m H (z,y)2

H (z,y)2+�2

[
2reγ sinh[β

√
H (z,y)2+�2]

1+2reγ cosh[β
√

H (z,y)2+�2]

]2

∫
Dy{1 + 2reγ cosh[β

√
H (z,y)2 + �2]}m

. (12)

We can complete phase diagrams of the present model from
these equations.

III. RESULTS

First, let us consider the r = 1 case in order to check
whether the result of Crisanti and Leuzzi [13,14] is correct.
The graphs in Fig. 1 show the T -D phase diagrams obtained
for specific � values. As shown in Fig. 1(a), the T -D phase
diagram of the � = 0.0 case (GS model) at r = 1 is nearly

FIG. 1. (Color online) The (a) T -D phase diagram for the � = 0.0
case (GS model) and (b) T -D phase diagrams for several values of �.
The solid-line (dotted-line) part of each phase boundary indicates the
second-order (first-order) phase transition and each circle between
the two kinds of lines denotes a TCP.

the same as that of the model used by Crisanti and Leuzzi
[13,14]. The locations of the first-order phase boundary and
tricritical point (TCP), i.e., the cross point between first- and
second-order phase boundaries, were determined by the same
criteria proposed in Ref. [11]. The TCP of Fig. 1(a) is located
at (0.962, 0.333), as analytically obtained in Ref. [11]. In the
region 0.0 � D < 0.879, the second-order phase transition
from PM to SG occurs as the temperature is decreased, which
is generally observed in ordinary SG systems. However, in the
region 0.879 � D < 0.9, successive phase transitions occur

for which the phase is varied in the order PM
2nd−→ HTSG

1st−→ PM
1st−→ LTSG as the temperature is reduced. This result

shows clearly the second reentrance that Crisanti and Leuzzi
referred to previously [13,14]. In the region 0.9 � D � 0.962,
inverse freezing is shown through the phase transitions in the

order PM
2nd−→ SG

1st−→ PM as the temperature is decreased.
Therefore, we have verified that inverse freezing, which many
investigators of the GS model have focused upon, occurs only
in a narrow region.

Figure 1(b) shows the T -D phase diagrams for several
values of �, including the result of the � = 0.0 case (GS
model). As � is gradually increased, the glass transition
temperatures decrease. In the range 0.0 � D � 0.7, only the
second-order phase transition from PM to SG occurs as the
temperature is reduced and the glass transition temperatures
decrease as � is increased. However, when D is larger than
0.7, the first-order phase transitions occur and the position of
each TCP depends on each � value. The shapes of the phase
boundaries in this range are rather complex, as can be checked
in Fig. 2(b).

The graphs of Fig. 2 show the T -� phase diagrams
obtained for specific D values. Figure 2(a) represents the
temperature-dependent variations in the phase boundaries,
which are obtained for D between 0.0 and 0.697. In the Ising
spin-glass model with a transverse field, the glass transition
temperature at � = 0.0 is 1.0 [18], whereas in our model
the transition temperature at � = 0.0 is 0.86. The difference
between the two values can be attributed to the fact that our
model includes the eigenvalues of Sz = 0 as well as Sz = 1
and −1. When r is increased, the glass transition temperature
gradually increases to 1.0. As expected, the phase boundary
is shifted to a lower temperature with the increase in D.
According to our detailed numerical calculation, the first-order
phase transition first arises at D = 0.697, where the TCP is
located at (�,T ) = (0.448,0.196).

When D is larger than 0.697, the shift becomes more
complex, as shown in Fig. 2(b). As D is larger than 0.697,
one TCP is separated into two new TCPs and a first-order
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FIG. 2. (Color online) The T -� phase diagrams for several values
of D between (a) 0.0 and 0.697 and (b) 0.697 and 0.879. As D

increases gradually, the phase boundary is kinked in the direction of
the dashed arrow of the figure. (c) The case of D = 0.88. When D is
larger than 0.879, the phase boundary becomes split. (d) Three cases
with D larger than 0.88.

phase transition lies between these two TCPs [21]. As D

is gradually increased, the phase boundary is kinked in the
direction of the dashed arrow of Fig. 2(b) and the region of
the first-order phase transition simultaneously broadens. As D

increases further, one of the TCPs collapses with the � axis.
When D becomes 0.879, the phase boundary starts to split.
The second reentrance of the GS model [Fig. 1(a)] is a zero-�
case reflecting this splitting of the phase boundary. The two SG
phases generated by the splitting are the HTSG and the LTSG.
The HTSG is inside the extremely narrow region of � and
surrounded by the T axis, the second-order phase boundary,
one TCP, and the first-order phase boundary. However, the
LTSG is spread along the � axis and is surrounded by only the
axis and the first-order phase boundary.

In the case of D = 0.88 of Fig. 2(c), two types of SGs
(HTSG and LTSG) exist between 0.0 � � � 0.045. However,
for values of � greater than 0.045, only one type of SG (LTSG)
exists under the PM phase.

The case of D = 0.9 in Fig. 2(d) is characterized by the clear
occurrence of inverse freezing in the extremely narrow region
of 0.0 � � � 0.024. However, for 0.024 < � < 0.14, there is
no other phase except the PM phase at any temperature. For the
0.14 � � � 0.63 region, the LTSG exists under the PM phase.
When D reaches the value of 0.962, the HTSG converges to
one point (�,T ) = (0.0,0.333), which is the TCP of the GS
model. Therefore, as D increases, one TCP corresponding to
the D value greater than 0.697 gradually shifts to the TCP of
the GS model and the area of the HTSG reduced throughout
this process, until the HTSG converges to the TCP of the GS
model. During the same process, the area of the LTSG also
decreases gradually. When D reaches the value of 1.024, the
LTSG converges to a point (�,T ) = (0.61,0.0). When D is
larger than 1.024, no SG phase exists for any temperature or
� field. The appearance and disappearance of the HTSG and
LTSG thus depend on the value of D.

Note that the two SG phases (HTSG and LTSG) originate
from the D field, irrespective of the � field. As shown in
Fig. 1(a), in the region 0.879 � D < 0.9, the two SG phases
occur even when � = 0. The role of the � field is to lower
the glass transition temperature through quantum tunneling in
proportion to the � value, as already checked in Refs. [17,18].
In particular, in our model, the � field plays a role in the sudden
lowering of the second-order transition temperature of the SG
(at D < 0.879) or HTSG (at 0.879 � D < 0.962). Thus even
a small value of the � field (about 0.05) makes the HTSG
disappear in the region 0.879 � D < 0.962.

Our previous results can be directly checked by numerical
analysis of the free energy f1RSB, Q0, and Q1. All values
of Q0 and Q1 shown in Fig. 3 are obtained for D = 0.88,
which is given for comparison with Fig. 2(c). For � = 0.0, as
shown in Fig. 3(a), phase transitions occur in the order PM
2nd−→ HTSG

1st−→ PM
1st−→ LTSG as the temperature is reduced.

Here the first-order phase transitions can be easily confirmed
as sudden changes in the free energy f1RSB or discontinuities
of the entropy S, which is the temperature derivative of the
free energy f1RSB. The PM phase gap between HTSG and
LTSG, i.e., the difference between the first-order transition
temperature of the HTSG-to-PM transition and that of the
PM-to-LTSG transition, is an extremely small value of 0.04.
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FIG. 3. (Color online) Values of Q0 and Q1 for (a) � = 0.0, (b)
� = 0.04, (c) � = 0.1, and (d) � = 0.55. Here D is fixed at 0.88.

In Fig. 3(b), when � is increased to 0.04, the PM phase gap
between the HTSG and the LTSG widens to 0.1 and the phase

transitions occur in the order PM
2nd−→ HTSG

1st−→ PM
1st−→

FIG. 4. (Color online) Values of R for � = 0.04 and D = 0.88.

LTSG as the temperature is reduced. When � is increased
to 0.1, as shown in Fig. 3(c), the HTSG disappears and a
first-order phase transition occurs from PM to LTSG as the
temperature is decreased. This feature is maintained even when
� is increased to 0.55, which is shown in Fig. 3(d).

In the inverse freezing among PM-SG-PM phases in the GS
model, there has been a discovery that the higher-temperature
PM phase is characterized by a low density of empty states,
whereas the lower-temperature PM phase has a higher density
of empty states [16]. Here the density of empty states n0 plays a
crucial role in distinguishing the two PM phases. Similarly, in
order to clarify a difference between two SG phases, we draw a
graph of the spin self-interaction R [Eq. (10)], which signifies
the density of filled states. As shown in Fig. 4, R shows the
difference between two SG phases clearly: The HTSG has
lower R values than the LTSG does. Thus we can infer that the
LTSG is characterized by a higher density of filled states.

We finally examine whether the second reentrance or the
splitting between the HTSG and the LTSG occur at r �= 1. As
shown in Fig. 5, at r = 0.9, the PM phase gap between the
HTSG and the LTSG is wider than that of the r = 1 case. At
r = 1.015, there is an extremely narrow gap near T = 0.082.
When r is larger than 1.015, there exists only one SG phase,

FIG. 5. (Color online) Values of Q1 for � = 0.0, D = 0.88, and
several r values.
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instead of the two separated SG phases. Since Schupper and
Shnerb [12] focused on the inverse freezing of the GS model,
they selected large values of r (e.g., 6.0). In order to observe
SG splitting, however, it is better to select r values smaller
than 1.0 because when the degeneracy of the empty states of
Sz (l) is larger than one of the filled states of Sz (k), the PM
phase gap generating the SG splitting becomes wider.

IV. CONCLUSION

In the present work, we proposed an expanded spin-glass
model, the quantum GS model, in order to obtain more
meaningful evidence for the second reentrance observed in the
GS model. By obtaining the 1RSB solutions of the quantum GS
model, we could check the detailed PM-SG phase boundaries
depending on the crystal field D and the transverse field �. We
first confirmed that a second reentrance occurs in the GS model
(� = 0.0 case), as reported by Crisanti and Leuzzi [13,14]. We
can thus describe the GS model as a prototypical model that
can be used to verify the second entrance as well as inverse
freezing. Furthermore, there exist first-order phase transitions
and TCPs for � � 0.0 and large values of D. This is clearly
observable from the T -� phase diagrams for D � 0.7, which
are shown in Fig. 2(b). In particular, when D is larger than
0.879, one SG phase is split into two SG phases (HTSG
and LTSG). We can distinguish the two SG phases by the
spin self-interaction R. The HTSG and LTSG show certain
differences in shape and phase boundaries. Such SG splitting

becomes more distinctive when r is less than 1. We verified
that the empty states of Sz are thus crucial for the occurrence
of SG splitting.

It is well known that the SK model with a transverse field
[17,18] has been successfully applied to the quantum spin glass
LiHoxY1−xF4 [22], a site-diluted and isostructural deriva-
tive of the dipolar-coupled Ising ferromagnet LiHoF4 (Tc =
1.53 K). In the absence of a magnetic field, LiHoxY1−xF4 is
a conventional spin glass with the glass transition temperature
Tg(x). When an externally tunable magnetic field is induced
transverse to the magnetic easy axis, quantum tunneling oc-
curs. Provided we can identify a suitable candidate spin-glass
material with S = 1 and crystal field and provided quantum
tunneling by an externally tunable transverse magnetic field
occurs in the material, we may be able to observe and verify
SG splitting through experimental results.

In contrast, it would be of interest to extend our theory
beyond the static approximation used in this work in order to
obtain analytic solutions for free energy and order parameters.
It would also be interesting theoretically to search for other
SG models for SG splitting. We believe that these topics will
extend our viewpoint on SG systems.
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