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Avalanche process of the fiber-bundle model with stick-slip dynamics and a variable Young modulus
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In order to more accurately describe the fracture process of extensive biological fibers, a fiber-bundle model
with stick-slip dynamics and a variable Young modulus is constructed. In this model, the Young modulus of
a fiber is assumed to increase or decrease by multiplying with a changing ratio after local sliding events. So,
the maximum number of stick-slip events of a single fiber and the changing ratio of the Young modulus are
the two key parameters of the model. By means of analytical theory and numerical simulation, the constitutive
law, the critical stress, the average size of the largest avalanche, and the avalanche size distribution are shown
against the two parameters of the model. From a macroscopic viewpoint, the constitutive curves show different
morphologies varying from a local plastic state to a unimodal parabola, while from a microscopic viewpoint, the
avalanche size distributions can be well fitted into a power law relationship, which is in accord with the classical
fiber-bundle model.
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I. INTRODUCTION

Fracture and material stability have attracted many tech-
nological and industrial interests for a long time. Due to
the inherent nonuniformity and disorder in actual materials,
the theoretical approach of statistical physics is widely
used to investigate the properties of the ruptures and their
microscopic mechanisms. The presence of disorder introduces
strong fluctuations based on statistical properties [1]. Most
of the statistical investigations on the rupture of disordered
materials rely on the fiber-bundle model (FBM), which, in most
cases, can capture correctly the collective static and dynamic
properties of fracture failure in loaded materials. The algorithm
of the FBM is so simple that it is possible to obtain exact results
analytically or trustable statistical properties numerically [2,3].

The FBM consists of a set of parallel fibers whose breaking
strengths are assumed to be randomly dispersed. The bundle is
loaded parallel to the fiber direction. The fibers fail if the load
on them exceeds their threshold value. Under stress-controlled
loading conditions, after each fiber failure, the load carried by
the broken fiber is redistributed among the intact fibers. The
subsequent load redistribution can lead to an entire avalanche
of breakages, which can either stop after a certain number
of consecutive failures, retaining the integrity of the bundle,
or can be catastrophic, resulting in a macroscopic failure of
the entire system. According to the strength of transverse
association in the rupture process, the mechanism by which
the extra stress caused by a fiber failure is redistributed among
the intact fibers can be classified into several types. The most
common one is global load sharing (GLS); that is, after each
fiber failure, the released load is equally redistributed among
all the intact fibers. The FBM in the GLS case assumes an
interaction among the fibers with a mean field approximation
and can often be solved analytically. On the other hand, the
extreme case of a short-range interaction is local load sharing
(LLS), which maintains stress concentration around the broken
fibers. In this case, the extra load borne by the failing fibers
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is transferred to their nearest intact neighbors. Due to the
nontrivial local spatial correlation, the exact solution of LLS
bundles is nearly impossible [4]. In most cases, LLS models
can only be treated through computer simulation. In some rare
cases, their analytical solution is limited to the determination
of asymptotic behaviors. In fact, some research shows that
stress redistribution in actual heterogeneous materials should
fall in many intermediate load sharing forms, such as power
law redistribution rules [5].

In the failure process, the most important characteristic of
the microscopic fracture mechanism is the size distribution of
the burst avalanches, which can be monitored experimentally
by acoustic emission techniques [6–8]. In the GLS limit, the
avalanche size distributions of the classical FBM with various
fracture threshold distributions follow a power law with a
universal exponent − 5/2 [9–11]. In the LLS case, however, the
avalanche size distribution is more complicated, depending on
the specific form of the threshold distribution [12,13]. The var-
ious macroscopic stretching and fracture natures of the actual
materials can be described by the stress-strain relationship, by
which different fracture properties of the materials can be in-
tuitively divided into brittle, semibrittle, plastic, and so on. As
the applied load increases quasistatically, there exists a critical
stress σc, beyond which the catastrophic failure of the whole
system takes place. Current studies on the FBM mainly involve
describing the constitutive relationship, the determination of
the critical stress σc, and the investigation of the phase transi-
tion from a state of partial failure to a state of complete failure.

In order to obtain a more realistic description for a wide
range of composites, a series of deformation models based on
the classical FBM have been introduced. Pradhan et al. [14–16]
investigated the breakdown of a random fiber-bundle model
with a lower cutoff in fiber threshold distribution both in
the GLS and LLS cases. They found that the existence of a
crossover behavior near fracture criticality makes it possible to
predict the imminent global failure point of the system [17,18].
Raischel et al. [13] studied the failure properties of the fiber
bundle with a finite lower cutoff of the strength disorder,
varying the range of interaction between the limiting cases
of GLS and LLS. Their computer simulations revealed that
at interaction local load sharing, the avalanche distribution
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of the FBM is much more complicated than that in GLS.
Divakaran and Dutta [19,20] investigated the breakdown of a
random fiber-bundle model with one or more discontinuities
in the threshold distribution using the GLS scheme. These
discontinuities significantly modify the avalanche size distri-
bution. Some researchers have also considered the FBM with
a continuous damage law; that is, the stiffness of the fibers
gradually decreases in consecutive failure events before the
final macroscopic rupture happens [21–25].

Recently, Halász and Kun [26,27] introduced the FBM
with a stick-slip dynamics based on the classical FBM. In
this model, the fiber is assumed to undergo several sliding
events, which happen when the local load exceeds some
threshold values and gradually increase the relaxed length
of the fiber. Eventually a fiber might fail after a series of
sliding events if the external load is large enough. In this
model the Young modulus of a fiber is kept fixed throughout
the whole process. On the macroscopic scale, by building the
constitutive equation of the system, they showed analytically
that the sliding mechanism leads to the macroscopic plasticity
of the bundle and a permanent deformation which remains
even after the load has been released. The model exhibits
a broad spectrum of constitutive behaviors which can be
controlled by varying certain parameters. These behaviors
agree qualitatively with the measured response of stick-slip
systems. On the microscopic scale, by varying the disorder
property of the slip threshold and the maximum number of
stick-slip events of a fiber, the system undergoes a transition
from a phase where only small avalanches are formed to
another one where a macroscopic slip appears.

However, some biological protein fibers, such as silk and
spider silk fibers [28,29], show a hardening phenomenon along
with the stick-slip dynamics. Some collagen materials [30,31]
also show an increase of the Young modulus in the stretching
process. In order to describe the change in the Young modulus
along with the stick-slip dynamics in the stretching process,
in this paper we consider an increase or decrease of the Young
modulus of a fiber with stick-slip dynamics after local sliding
events. So the maximum number of stick-slip events of a single
fiber and the change ratio of the Young modulus are the two
critical exponents of the model. By analysis and numerical
simulation, we explore the constitutive law, the critical stress,
the average size of the largest avalanche, the avalanche size
distribution, and the step of external load increase influenced
by the two main parameters of the model. Compared to the
model with a constant Young modulus, the variable Young
modulus in this model can describe prolific fracture properties
of biological fibers [32,33].

II. THE AVALANCHE PROCESS OF THE FBM
WITH STICK-SLIP DYNAMICS AND A VARIABLE

YOUNG MODULUS

The FBM with stick-slip dynamics and a variable Young
modulus is composed of fibers which can gradually increase
their relaxed length when the local load exceeds some thresh-
old values. Following a sliding event, the strength of a fiber ac-
cordingly changes, i.e., the Young modulus of a fiber increases
or decreases by multiplying by a factor α. After a number of
sliding events, the fiber will fail completely under a large

FIG. 1. The constitutive behavior of a fiber with stick-slip
dynamics and a variable Young modulus. The dotted line indicates
the case of the increasing Young modulus, and the solid line indicates
the case of the decreasing Young modulus.

enough external load, which is shown in Fig. 1. In detail, this
model can be constructed as follows: The bundle consists of
N parallel fibers, all with an identical Young modulus Ef = 1
at first, which are assembled on a one-dimensional lattice of
length N . The bundle is supposed to be loaded parallel to fibers
quasistatically. The fiber exhibits a linearly elastic behavior
throughout the whole process except for a series of stick-slip
events. When the deformation of a fiber reaches a series
threshold values σ

j

i , a range of sliding events occur, where
the index i = 1,2, . . . ,N , j = 1,2, . . . ,Kmax. The parameter
Kmax denotes the maximum number of slips allowed for a
single fiber before its final failure, which is a key parameter
of the model. After j times sliding events, the Young modulus
changes to αjEf . In the rear section of the failure process,
this model can be seen as a fiber-bundle model with a random
Young modulus [34]. In this model, we consider the annealed
disorder, i.e., after each sliding event the fiber gets a new
threshold value. The sliding threshold value σ

j

i of an individual
fiber is an independent random variable with a probability
density p and a cumulative probability distribution,

P (σ ) =
∫ σ

0
p(x)dx. (1)

In this paper, the threshold σ is assumed to have a Weibull
distribution with a cumulative distribution function

P (σ ) = 1 − exp[−(σ/λ)m]. (2)

We assume m = 2, λ = 1 according to extensive research on
the FBM. After Kmax times sliding events, a final breaking
occurs, and as a result, the strength of the fiber becomes zero.
At a certain macroscopic deformation ε, the load undertaken
by a fiber after j times sliding events can be described as

fj = αjEf (ε − ε1 − ε2 − · · · − εj ), (3)

where εj represents the corresponding strain threshold of
the j th sliding event of the fiber. After a sliding or fracture
event, the released load is equally redistributed among all
the unbroken fibers. In the simulation, the load is increased
quasistatically, i.e., the load is increased to bring only the
weakest unbroken fiber to slide or break. In order to get reliable
results, we identify the number of fibers N = 100 000; the
following results are an average of at least 2000 simulations.
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In general, the classical FBM in the limiting case of GLS
can be solved analytically. For the classical FBM in the GLS
case, the stress-strain relationship can be expressed as

f = F/N = ε[1 − P (ε)], (4)

which can describe the FBM without the stick-slip dynamics.
If fibers are allowed to slide only once before their final failure,
the fibers can be classified as two parts: The parts of the fibers
with sliding thresholds σ � Eε are still intact and can bear the
local load Eε, while those fibers with σ < Eε have already
undergone a sliding event, keeping local load αE(ε − ε1). So
the macroscopic stress-strain relationship can be spread as

F/N = ε[1 − P (ε)] +
∫ ε

0
p(ε1)dε1α(ε − ε1)

× [1 − P (α(ε − ε1))]. (5)

In more general cases, if the fiber can slide Kmax times before
its final failure, the constitutive relationship can be expressed as

F

N
= f (ε) = f0(ε) + f1(ε) + f2(ε) + · · · + fKmax (ε), (6)

where fK (ε) represents the load borne by fibers that have just
slide K times. In detail, f0(ε) = ε[1 − P (ε)],

fK (ε) =
∫ ε

0

∫ ε−ε1

0
· · ·

∫ ε−ε1···−εK−1

0

K∏
i=1

dεip(αi−1εi)

×αK

⎛
⎝ε −

K∑
j=1

εj

⎞
⎠
⎡
⎣1 − P

⎛
⎝αK

⎛
⎝ε −

K∑
j=1

εj

⎞
⎠
⎞
⎠
⎤
⎦ .

(7)

The macroscopic constitutive relationship in the tensile frac-
ture process can be obtained by a numerical solution of Eq. (6).

On the microscopic level, the approximate analysis results
of avalanche size distribution can be deduced according to
Ref. [21]. For the classical FBM in the GLS case, Hemmer
and Hansen [9,12] have proved that the probability density
D(�) for the avalanche size � during a quasistatic loading
process can be calculated by using the integral form

D(�) = ��−1

�!

∫ εm

0
p

(
ε∑K+1

i=1
1

αi−1

)
(1 − aε)a�−1

ε e−�aεdε,

(8)

where ε denotes the macroscopic deformation of the bundle.
εm denotes the maximum value of the deformation which
corresponds to the final failure of the whole bundle. aε is the
average fraction of broken fibers following an infinitesimal
increase in the deformation ε of the bundle.

The probability density that a fiber will slide again after
sliding k times under an infinitesimal strain increase can be
expressed as

pk+1
k (ε) = d

dε

∫ ε

0

∫ ε−ε1

0
· · ·

∫ ε−ε1···−εK−1

0

K∏
i=1

dεip(αi−1εi).

(9)

Following this failure event, the fiber can release stress
δf = αK (ε − ∑K

j=1 εj ), which will be distributed among the

residual fibers. As a result of the distribution of released
stress, the deformation increase of the unfaulted fibers can
be expressed as

δε = δf

Y (ε)
= αK

Y (ε)

⎛
⎝ε −

K∑
j=1

εj

⎞
⎠ , (10)

where Y (ε) represents the effective Young modulus of the
bundle at the deformation ε, which can be obtained by the
relationship f = Y (ε)ε. So at the strain ε, the total probability
that a fiber breaks as a consequence of another fiber breaking
reads as

ptot(ε) = pk+1
k (ε)δε

= d

dε

∫ ε

0

∫ ε−ε1

0
· · ·

∫ ε−ε1···−εK−1

0

×
K∏

i=1

dεip(αi−1εi)

⎛
⎝ε −

K∑
j=1

εj

⎞
⎠ αK

Y (ε)
, (11)

which is another expression of aε in Eq. (8). So the avalanche
size distribution can be obtained by computing the probability
D(�) for various sizes of avalanche �.

A. The impacts of Kmax

The macroscopic constitutive behaviors of the FBM with
stick-slip dynamics and a variable Young modulus at different
Kmax values are obtained both analytically and numerically.
The constitutive behaviors are provided and compared in
Figs. 2 and 3 for α = 0.8 and α = 1.2, respectively. From the
four figures, one can observe that the change in Young modulus
and the maximum sliding number Kmax can have a significant
influence on the constitutive relationship. In the small region
of Kmax, the constitutive curves have a similar shape both at
α = 0.8 and α = 1.2. While Kmax increases, the influence of
the Young modulus transformation becomes more apparent.
As shown in Fig. 2, when the Young modulus decreases in the
sliding process, both the analysis and the simulation results
show that the maximum deformation corresponding to the
whole failure can observably increase following the increase of
Kmax. In Fig. 2(b), when Kmax is small, the constitutive curve
has a relatively sharp maximum. As Kmax increases, there
appears a progressively more obvious plastic plateau whose
length increases with increasing Kmax, while for the analysis
results in Fig. 2(a), there is no obvious plastic plateau in the
constitutive curves. The difference between the analysis results
and the simulation results mainly arise from the combined
effect of the approximation in the analytical method and the
deviation in numerical integration. In the case of a Young
modulus increasing in the sliding process, which is shown in
Fig. 3, constitutive curves are unimodal. At the initial strain
stage before the whole failure, the maximum stress increases
with increasing Kmax, while in the large region of strain, the
constitutive laws all have the same asymptotic behaviors for
various Kmax in both analysis and simulation results.

In the failure process, the critical stress σc is defined as
the maximum load that the system can support before its
final breakdown. The critical stress as a function of Kmax is
presented in Fig. 4. When α = 0.8, for small Kmax, the critical
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FIG. 2. The constitutive behavior of the model with α = 0.8 for
several different values of Kmax. (a) Analysis results; (b) simulation
results.

stress increases monotonously with increasing Kmax. However,
as Kmax increases, the critical stress reaches a saturation value.
When α = 1.2, which means the Young modulus increases in
the sliding process, the critical stress increases monotonously
with increasing Kmax in the limit of the simulation. We can
imagine that the critical stress at α = 1.2 will also reach a sat-
uration value if the Kmax continues to increase. Comparatively
speaking, in the case of α = 1.2, the diversity between analysis
results and simulation results is much smaller than the one in
the case of α = 0.8, which is in accordance with the constitutive
curves on Figs. 2 and 3. In short, the change of the Young mod-
ulus has a large impact on the macroscopic tensile properties
of the model. In the case of decreasing Young modulus, the
maximum sliding number Kmax mainly affects the maximum
strain in the sliding process, however, in the case of increasing
Young modulus, Kmax mainly affects the critical stress.

In Fig. 5, the normalized average size of the largest
avalanche 〈�m〉/N is plotted as a function of Kmax. When
Kmax is small, the value of 〈�m〉 increases rapidly with
increasing Kmax. As Kmax approaches 8, 〈�m〉 increases more
slowly and will reach a saturation value as α = 0.8. When
α = 1.2, there is only a trend of saturation in the large limit
of Kmax within our simulation. The obvious reason for the
trend of saturation is that the avalanche size cannot increase
continuously as increasing Kmax for the limitation of the bundle
size N . So the avalanche size has a saturation value when its
value is close to the size of the bundle. The relationship of

FIG. 3. The constitutive behavior of the model with α = 1.2 for
several different values of Kmax. (a) Analysis results; (b) simulation
results.

〈�m〉 and Kmax shows that as Kmax increases, the avalanche
process becomes progressively more concentrative.

The avalanche size distributions of the model at α = 0.8
and α = 1.2 are analytically and numerically studied, and
the results are exhibited in Figs. 6 and 7, respectively. It is
important to emphasize that the curves in all cases can be well
fitted with a power law asymptotic behavior, similarly to the
other classical FBM in the GLS case:

D(�) ∼ �−ξ . (12)

FIG. 4. The critical stress of the model as a function of Kmax.
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FIG. 5. The normalized average size of the largest avalanche of
the model as a function of Kmax.

The presence of the stick-slip dynamics does not hinder the
power law of the avalanche size distribution in the FBM with
GLS. In Fig. 6(a), the analysis results show that the upper
curve corresponding to Kmax = 2 can be fitted by the power
law with an exponent ξ = 2.5, while when Kmax = 10, the
exponent ξ = 1.9. In Fig. 6(b), for the simulation results, the

FIG. 6. Avalanche size distribution of the model with α = 0.8.
(a) Analysis results; the straight lines denoting the power law with
slope −1.9 and −2.5 are also shown. (b) Simulation results; the
straight lines denoting the power law with slope −1.7 and −2.4 are
also shown. In the inset of (b), the exponents of the power law as a
function of Kmax are presented.

FIG. 7. Avalanche size distribution of the model with α = 1.2.
(a) Analysis results; the straight lines denoting the power law with
slope −2.2 and −2.5 are also shown. (b) Simulation results; the
straight lines denoting the power law with slope −2.0 and −2.4 are
also shown. In the inset of (b), the exponents of the power law as a
function of Kmax are presented.

exponents corresponding to Kmax = 2 and 16 are ξ = 2.4
and ξ = 1.7. Correspondingly, in Fig. 7, the exponents from
analysis results are ξ = 2.5 and ξ = 2.2 corresponding to
Kmax = 2 and Kmax = 10, while for simulation results,
the exponents corresponding to Kmax = 2 and Kmax = 16
are ξ = 2.4 and ξ = 2.0. Figures 6 and 7 show that for the
microscopic statistical properties of the breaking process, the
analysis results are consistent with the simulation results in a
quantitative manner. When Kmax increases from 2, there is a
crossover in the distribution of avalanche size. This crossover
behavior indicates that the avalanche process is obviously
affected by the value of Kmax. As Kmax = 2, in spite of
the Young modulus increasing or decreasing, the avalanche
size distribution is close to the one in the classical FBM. The
only minor difference in exponents of the power law is due
to the two times sliding events. The insets of Figs. 6(b) and
7(b) show exponents of the power law as a function of Kmax

by the simulation method. In the small region of Kmax, the
exponents decrease rapidly with increasing Kmax, however,
in the large limit of Kmax, the exponents approach a limited
value depending on the change in the Young modulus. In
comparison, in the case of the decreasing Young modulus,
the value of Kmax can have more significant impacts on the
avalanche size distribution than that in the case of increasing

042126-5



HAO, TANG, XIA, XUN, AND HAN PHYSICAL REVIEW E 87, 042126 (2013)

FIG. 8. The total steps of load increase until final failure as a
function of Kmax.

Young modulus. From the above analysis, we find that there
is no universal behavior of the avalanche size distribution
in the FBM with stick-slip dynamics and a variable Young
modulus.

In the failure process, the step number of the external load
increases before the final catastrophic failure can reflect the
relaxation process of the material fracture. At each step of
such a load increment only one fiber fails. It can be assumed
that the external loads have to increase x times before the final
complete failure. The relationship between the step of load
increase and the value of Kmax by the simulation method is
illustrated in Fig. 8. When Kmax > 6, the step number reaches
a saturation value of α = 0.8, while for α = 1.2 there is
only a trend of saturation in the large limit of the Kmax value.
When α = 0.8, the number of stick-slip events can only
exert a very limited influence on the step of load increase.
Although the microcosmic avalanche size distribution has a
significant crossover behavior, the macroscopic tensile fracture
properties such as the critical stress and the step of load
increase will quickly reach a saturation value as Kmax keeps
increasing.

B. The impacts of α

As we can see in the above discussion, the maximum
number of stick-slip events of a single fiber can have dramatic
impacts on the failure process of the model. At the same time,
the variation of the Young modulus can also have a remarkable
influence on the properties of the model. In the following
investigation, the impacts of the ratio α on the macroscopic
and microscopic properties of the model are studied through a
simulation method with a defined Kmax. In order to ensure
sufficient effects of the stick-slip dynamics, the maximum
sliding number Kmax is assumed to be 10.

The macroscopic constitutive behaviors of the model with
Kmax = 10 for different values of α are provided in Fig. 9. When
α < 1, the constitutive relations show an apparent local plateau
regime which indicates a plastic response of the bundle. At the
same time, the maximum deformation corresponding to the
final macroscopic fracture increases rapidly with decreasing α.
When α > 1, the local plastic state disappears gradually. With

FIG. 9. The constitutive behavior of the model with Kmax = 10
for several different values of α. In the inset the critical stress as a
function of α is presented.

increasing α, the maximum peaks in the constitutive curves
become progressively more pointed. The above descriptions
demonstrate that a decline of the Young modulus leads to a
local plastic state, however, an increase of the Young modulus
corresponds to the brittle condition in the failure process with
stick-slip dynamics. From Fig. 9 we can see that α can exert a
complicated impact on the maximum load. The critical stress
as a function of the changing ratio of the Young modulus
α is shown in the illustration. When α < 1.2, the critical
stress increases approximately linearly with α until it reaches
a maximum peak at α = 1.2. When α becomes larger than
1.2, the critical stress declines again. The results indicate that
an overlarge or too small changing amplitude of the Young
modulus will block the strength enhancement of the FBM
with stick-slip dynamics.

The influence of α on the microscopic properties of the
failure process is displayed by the avalanche size distribution
in Fig. 10. We can find intuitively that the distributions can
be well fitted with a power law asymptotic behavior similar to
the classical FBM in GLS. The major impact of the ratio α is
mainly reflected in the exponents of the power law distribution.

FIG. 10. Avalanche size distribution of the model with Kmax = 10.
The straight lines denoting the power law with slope −1.5 and −2.1
are also shown. In the inset, the exponents of the power law as a
function of α are presented.
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FIG. 11. The normalized average size of the largest avalanche
(�) and the total steps of load increase until final failure (�) as a
function of α in the model with Kmax = 10.

The lower curve corresponding to α = 0.6 can be fitted by the
power law with an exponent ξ = 1.5, while in the large α

limit, the exponent ξ = 2.1. The inset of Fig. 10 shows the
exponents of the power law as a function of α. In the small
region of α, the exponents increase rapidly with increasing α,
however, for the larger α, the exponents approach a saturation
value. When α is close to 1, the value of α has a significant
impact on the avalanche size distribution, which reflects the
influence of α on the microcosmic fracture mechanism of
loaded fibers. The impacts of Kmax and α on the avalanche
size distribution indicate that when the Young modulus is
constant, the results in this paper are well consistent with the
size distribution of slip avalanches in the FBM with stick-slip
dynamics [27].

The normalized average size of the largest avalanche as
a function of α is displayed in Fig. 11, and, in the same
figure, the total steps of load increase until final failure is also
showed. When α<1, which means the Young modulus declines
in the sliding process, the average size of the largest avalanche
〈�m〉 is almost independent of α, while in the larger region
of α, 〈�m〉 declines almost linearly with increasing α. The
relationship of 〈�m〉 and α shows that the spatial association
strength of the system will decrease with increasing Young
modulus. The total steps of the load increase can reflect the
relaxation process of the fracture. As we can see from the
Fig. 11, there is a maximum peak in the step curve at α = 1.2,
which means that the FBM with stick-slip dynamics has the
highest stability in this condition.

III. DISCUSSION AND CONCLUSIONS

In this paper, we construct an improved FBM with stick-slip
dynamics to describe a wider range of biological fibers.
Unlike in the original FBM with stick-slip dynamics, the
Young modulus of a fiber is not fixed, but rather variable,
either increasing or decreasing after a local sliding event.
The maximum number of stick-slip events of a single fiber
Kmax and the change ratio of Young modulus α are the
two key parameters of the model. For stress controlled
experiments, both the macroscopic constitutive behavior and

the microscopic damage process are studied for various α and
Kmax, both analytically and numerically.

Both the analytical and the numerical results show that
the value of Kmax has a significant effect on the model both
macroscopically and microscopically. We studied this effect
for two different cases. In one case the Young modulus of a
fiber decreases after each sliding event, while in the other it
decreases. In the case of decreasing Young modulus, varying
the value of Kmax mainly alters the critical fracture strain in
constitutive curves. The critical stress, the average size of
the largest avalanche, and the step number of load increase
all saturate when Kmax increases to 10, while in the case of
increasing Young modulus, Kmax mainly affects the critical
stress in a macroscopic manner. Furthermore, unlike in the
previous case, the critical stress, the average size of the largest
avalanche, and the step number of load increases never really
saturate in the large limit of Kmax within our simulation,
although they do show a trend of saturation. In the aspect
of microfracture mechanism, the appearance of stick-slip
dynamics does not hinder the power law distribution of the
avalanche size in the FBM model with GLS. Both at α = 0.8
and α = 1.2, the exponents of the power law are all monotonic
decreasing functions of Kmax, while both the critical stress and
the step number of load increases are monotonic increasing
functions of Kmax, which implies that the intensity and the
stability of the system are enhanced if Kmax increases. The
analytical and the simulation results agree with each other
quantitatively, although there exist tiny discrepancies between
the two, which we suspect come from the combined effect of
the approximation in the analytical method and the deviation
in the numerical integration.

The impacts of α on the model are illustrated in Figs. 9–11.
The constitutive curve shows that for α < 1.0 the material
exhibits excellent plasticity locally, and for α > 1.0 its brittle
characteristic becomes apparent. Therefore, if the Young
modulus declines in the sliding process, the maximum defor-
mation of the material at the final failure is very remarkable.
Microscopically, the avalanche size distributions can be always
well fitted into a power law no matter the value of the
Young modulus, although the change ratio α does affect the
power law exponents. As α increases, the average size of
the largest avalanche decreases, signaling a decrease of the
spatial association strength of the system. The maximum peak
in the relationship between the total steps of load increase
and α shows that the model has the highest stability at
α = 1.2.

In summary, we successfully constructed a FBM model
with stick-slip dynamics and a viable Young modulus. Using
this improved model we are able to describe more accurately
the intricate behavior of various biological fibers. This theo-
retical study should be helpful for understanding the fracture
process of a large range of biological materials.
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Mater. Sci. Eng., C 31, 1184 (2011).
[30] B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L.

Voytik-Harbin, J. Biomech. Eng. 124, 214 (2002).
[31] M. E. Susilo, B. A. Roeder, S. L. Voytik-Harbin, K. Kokini, and

E. A. Nauman, Acta Biomater. 6, 1471 (2010).
[32] F. Bosia, M. J. Buehler, and N. M. Pugno, Phys. Rev. E 82,

056103 (2010).
[33] F. Chen, D. Porter, and F. Vollrath, Phys. Rev. E 82, 041911

(2010).
[34] E. Karpas and F. Kun, Europhys. Lett. 95, 16004 (2011).

042126-8

http://dx.doi.org/10.1007/3-540-35375-5_2
http://dx.doi.org/10.1007/3-540-35375-5_2
http://dx.doi.org/10.1080/00018730300741518
http://dx.doi.org/10.1080/00018730300741518
http://dx.doi.org/10.1103/RevModPhys.82.499
http://dx.doi.org/10.1103/RevModPhys.82.499
http://dx.doi.org/10.1103/PhysRevE.65.036126
http://dx.doi.org/10.1103/PhysRevE.65.036126
http://dx.doi.org/10.1103/PhysRevLett.79.3202
http://dx.doi.org/10.1103/PhysRevLett.79.3202
http://dx.doi.org/10.1007/s100510050521
http://dx.doi.org/10.1007/s100510050521
http://dx.doi.org/10.1103/PhysRevB.57.4987
http://dx.doi.org/10.1103/PhysRevB.57.4987
http://dx.doi.org/10.1115/1.2894060
http://dx.doi.org/10.1103/PhysRevLett.78.1408
http://dx.doi.org/10.1103/PhysRevLett.78.1408
http://dx.doi.org/10.1103/PhysRevE.59.5049
http://dx.doi.org/10.1103/PhysRevE.59.5049
http://dx.doi.org/10.1103/PhysRevE.56.2615
http://dx.doi.org/10.1103/PhysRevE.56.2615
http://dx.doi.org/10.1103/PhysRevE.74.035104
http://dx.doi.org/10.1103/PhysRevE.74.035104
http://dx.doi.org/10.1103/PhysRevE.66.016116
http://dx.doi.org/10.1103/PhysRevE.66.016116
http://dx.doi.org/10.1103/PhysRevE.79.041148
http://dx.doi.org/10.1103/PhysRevE.79.041148
http://dx.doi.org/10.1103/PhysRevE.72.026111
http://dx.doi.org/10.1103/PhysRevLett.95.125501
http://dx.doi.org/10.1103/PhysRevLett.95.125501
http://dx.doi.org/10.1007/3-540-35375-5_16
http://dx.doi.org/10.1007/3-540-35375-5_16
http://dx.doi.org/10.1103/PhysRevE.75.011117
http://dx.doi.org/10.1103/PhysRevE.78.021118
http://dx.doi.org/10.1103/PhysRevE.80.051108
http://dx.doi.org/10.1103/PhysRevE.80.051108
http://dx.doi.org/10.1103/PhysRevE.64.066122
http://dx.doi.org/10.1103/PhysRevE.64.066122
http://dx.doi.org/10.1007/PL00011084
http://dx.doi.org/10.1007/PL00011084
http://dx.doi.org/10.1103/PhysRevE.77.046102
http://dx.doi.org/10.1103/PhysRevE.77.046102
http://dx.doi.org/10.1007/s10955-012-0435-8
http://dx.doi.org/10.1007/s10955-012-0435-8
http://dx.doi.org/10.1103/PhysRevE.80.027102
http://dx.doi.org/10.1209/0295-5075/89/26008
http://dx.doi.org/10.1103/PhysRevE.83.016104
http://dx.doi.org/10.1016/j.msec.2010.11.010
http://dx.doi.org/10.1115/1.1449904
http://dx.doi.org/10.1016/j.actbio.2009.11.014
http://dx.doi.org/10.1103/PhysRevE.82.056103
http://dx.doi.org/10.1103/PhysRevE.82.056103
http://dx.doi.org/10.1103/PhysRevE.82.041911
http://dx.doi.org/10.1103/PhysRevE.82.041911
http://dx.doi.org/10.1209/0295-5075/95/16004



