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Entanglement boost for extractable work from ensembles of quantum batteries
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Motivated by the recent interest in thermodynamics of micro- and mesoscopic quantum systems we study the
maximal amount of work that can be reversibly extracted from a quantum system used to temporarily store energy.
Guided by the notion of passivity of a quantum state we show that entangling unitary controls extract in general
more work than independent ones. In the limit of a large number of copies one can reach the thermodynamical
bound given by the variational principle for the free energy.
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I. MOTIVATION

The recent interest in models of quantum engines and re-
frigerators stimulates theoretical efforts to precisely formulate
fundamental thermodynamical principles and bounds valid on
the micro- and nanoscale. In principle these can differ from
the standard ones and converge to them only in the limit
of macroscopic systems. A sample of references, including
both general considerations and particular models, is given in
Ref. [1].

This paper is about the amount of work that can be extracted
from a small quantum mechanical system that is used to
temporarily store energy to transfer it from a production
to a consumption center. To do so we are not coupling
such a quantum battery to external thermal baths in order
to drive thermodynamical engines (see, for example, [2])
but we address it by controlling its dynamics by external
time-dependent fields. The battery comes with its initial state
ρ and own internal Hamiltonian H . The idealized process of
reversible energy extraction is then governed by the system
dynamics plus some fields that are only turned on during a
certain interval [0,τ ] of time. This leads to a time-dependent
unitary dynamics of the battery. We now wonder about the
maximal amount of work that can be extracted by such a
process.

It has been known for a long time that some states cannot
deliver work in this way. Such states are called passive [3,4].
The maximal amount of work extractable from a battery is
then the surplus energy of the initial state with respect to the
passive state σρ with the same eigenvalues as ρ.

Because we are dealing with small quantum systems
we may wonder whether using processes that entangle two
identical copies of a given battery can yield a higher energy
extraction. More generally, what happens to a large number of
copies?

We numerically demonstrate that the efficiency of energy
extraction grows with the number of copies. Next we show
rigorously that the maximal amount of extractable energy per
battery asymptotically equals the energy difference between
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the initial state ρ of the battery and the energy of the Gibbs state
ωβ with the same entropy as ρ. We indicate how to construct
in principle a unitary that achieves this optimal bound.

II. GENERAL CONTEXT

The Hilbert space H of wave functions of the battery is for
simplicity chosen to be d dimensional and we pick as standard
basis for H the eigenvectors of the system Hamiltonian

H =
d∑

j=1

εj |j 〉〈j | with εj+1 > εj . (1)

We assume here that the energy levels are nondegenerate,
which holds for a generic Hamiltonian.

The time-dependent fields that will be used to extract energy
from the battery are described by V (t) = V †(t) where V (t) is
possibly only different from zero for 0 � t � τ . The initial
state of the battery is described by a density matrix ρ and
the time evolution of ρ is obtained from the Liouville-von
Neumann equation

d

dt
ρ(t) = −i[H + V (t),ρ(t)], ρ(0) = ρ. (2)

The work extracted by this procedure is then

W = Tr(ρH ) − Tr[ρ(τ )H ], (3)

where the state at time τ is related to the initial state ρ by a
unitary transformation

ρ(τ ) = U (τ ) ρ U †(τ ), (4)

with U (t) the time-ordered exponential of the total Hamilto-
nian H + V (t):

U (τ ) = Texp

(
− i

∫ τ

0
ds [H + V (s)]

)
. (5)

Note that by a proper choice of controlling term V any unitary
U can be obtained for U (τ ). Therefore the maximal amount
of extractable work (called ergotropy in [5]) can be defined as

Wmax := Tr(ρH ) − min Tr(U ρ U †H ), (6)

where the minimum is taken over all unitary transformations
of H.
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Following Pusz and Woronowicz [3] and Lenard [4], we
call a state σ passive if no work can be extracted from σ , i.e.,
if for all unitaries U

Tr(σH ) � Tr(U σ U †H ).

The following theorem then holds:
Theorem 1 [3,4]. σ is passive if and only if

σ =
d∑

j=1

sj |j 〉〈j | with sj+1 � sj . (7)

In other words, σ is passive if and only if it commutes with
the system Hamiltonian and its eigenvalues are nonincreasing
with the energy. Given ρ there is a unique passive state σρ

minimizing Tr(U ρ U †H ). This state is obtained by a unitary
rotation of ρ denoted by Uρ and has the form

σρ = Uρ ρ U †
ρ =

d∑
j=1

rj |j 〉〈j |, (8)

where {rj } are the eigenvalues of ρ arranged in nonincreas-
ing order: rj+1 � rj . The corresponding minimal energy is∑d

j=1 rj εj and the maximal amount of extractable work is
given by

Wmax := Tr(ρH ) − Tr(σρ H ). (9)

III. A GENERAL BOUND ON AVAILABLE WORK

We obtain here a bound on Wmax by comparing the energies
of the passive state σρ and of the canonical Gibbs state ωβ with
the same entropy as ρ. Recall that the canonical Gibbs state at
inverse temperature β is given by

ωβ = exp(−βH )

Z , (10)

and that its von Neumann entropy is strictly monotonically
decreasing in β with range [0, ln d]. The von Neumann entropy
S(ρ) of a density matrix ρ is

S(ρ) = −Trρ log ρ. (11)

For any given density matrix ρ on H there exists therefore
a unique inverse temperature β such that S(ρ) = S(ωβ). The
relation between ρ and β is, of course, highly nonlinear.

We now use the variational principle of statistical mechanics
that asserts that the Gibbs canonical density matrix is that
which minimizes the free energy:

Tr(ρH ) − β
−1

S(ρ) � Tr(ωβ H ) − β
−1

S(ωβ). (12)

With our choice of β we obtain that

Tr(ρH ) � Tr(σρH ) � Tr(ωβ H ), (13)

and hence the thermodynamical bound on the available work
is

Wmax � Tr(ρ H ) − Tr(ωβ H ). (14)

Generally, ωβ is different from σρ because ωβ and σρ or
ρ have different eigenvalues. Note, however, that the two-
dimensional case is exceptional because there is a one-to-one
correspondence between the entropy of a qubit state and its

10 20 30 40
n

e(n)

e(∞)

e(1)

FIG. 1. (Color online) Energy per copy of passive state σ⊗nρ

associated with ⊗nρ.

ordered eigenvalues. Generally it is not true that a product of
two independent copies of a passive state still is passive. It is
therefore possible, for several copies of a system, to extract
more work per copy than the amount given in Eq. (9). In other
words, by using entangling unitaries, one can in principle beat
Eq. (9).

In Fig. 1 the energies e(n) per copy of the passive state
σ⊗nρ obtained from a product state ⊗nρ are plotted as dots for
n = 1,2, . . . ,40. The lower line shows the asymptotic value
of e(n). The system is a three-level battery with energy levels
{0,0.579,1}, and the passive state corresponding to the initial
density matrix has eigenvalues {0.538,0.237,0.224}. The
values e(n) have been obtained by rearranging the eigenvalues
of ⊗nρ and the n-copy Hamiltonian H (n), see Eq. (15). The
maximal additional work that can be extracted on top of
the single copy extractable work using entangling unitaries
is the difference between e(1) and e(∞). We will compute this
value in the next section.

IV. ENTANGLING BATTERIES

A state σ is called completely passive if ⊗nσ is passive for
all n = 1,2, . . . with respect to the sum Hamiltonian

H (n) =
n∑

j=1

Hj, (15)

where Hj is the j th independent copy of H . Thermodynamic
equilibrium is equivalent to complete passivity:

Theorem 2 [3,4]. σ is completely passive if and only if it is
a Gibbs state.

We now consider n independent copies of our battery and
apply the general bound (14) to estimate the maximal amount
of available work per battery:

wn
max := 1

n
{Tr[(⊗nρ) H (n)] − Tr(σ⊗nρ H (n))}

� Tr(ρH ) − Tr(ωβ H ). (16)

It is our aim to show that this bound is actually asymptotically
achievable:
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Theorem 3.

lim
n→∞ wn

max = Tr(ρH ) − Tr(ωβ H ). (17)

Proof. The proof is based on the idea of typical config-
urations: for shift-invariant many-particle states with good
clustering properties one can show that the reduced n-particle
density matrices are almost entirely supported by a subspace
of dimension exp(nσ ) where σ is the average entropy of the
state [6]. Here, we need an elementary version of this result
as we consider only perfectly clustering states for which the
n-particle reduced density matrices are just products of n

independent copies of a given single-particle density matrix ρ.
For such states σ = S(ρ).

We first diagonalize ρ and obtain its eigenvalues {ri} in
nonincreasing order with corresponding eigenvectors |i〉. To
each configuration i = (i1,i2, . . . ,in) of length n we then
associate the eigenvector |i〉 := |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 of ⊗nρ

with corresponding eigenvalue ri := ri1ri2 · · · rin . The eigen-
values of the reduced density matrix are highly degenerated
with multinomial multiplicities. This leads, for large n, to a
sharply peaked eigenvalue distribution which can be controlled
by using Stirling’s formula.

Let us denote by nj the multiplicity of the index j in a
configuration i and by I (n,ε) the set of configurations i for
which n(rj − ε) � nj � n(rj + ε). Here ε is a fixed error bar
that can be taken arbitrarily small. By Stirling’s formula we
obtain

en[S(ρ)−δ] � [I (n,ε)] � en(S(ρ)+δ), and (18)
∑

i∈I (n,ε)

ri � 1 − δ. (19)

Here δ can be chosen arbitrarily small provided n is sufficiently
large. The subspace spanned by the eigenvectors |i〉 with i ∈
I (n,ε) is a typical subspace of ⊗nρ.

Now we repeat the same construction for the product of
n copies of the Gibbs state ωβ . As S(ωβ) = S(ρ), the typical
subspaces of ⊗nρ and ⊗nωβ have approximately the same
dimension. Moreover, for both product states the probability
of finding a system outside the typical subspaces is o(ε).
We can now find a unitary U (ε) on ⊗nH that maps one
subspace into the other. This unitary is highly non-unique, and
generally differs from the optimal reordering given by U⊗nρ but
nevertheless produces a state with energy close to the optimal
one, i.e.,

|Tr[U (ε)(⊗nρ) U (ε)† H (n)] − Tr[(⊗nωβ) H (n)]| � n o(ε).

(20)

Using Eq. (13) we obtain

Tr(⊗nωβ H (n)) � Tr(σ⊗nρ H (n))

� Tr[U (ε)(⊗nρ) U (ε)† H (n)], (21)

which combined with Eq. (20) yields the final estimation

Tr(ρH ) − Tr(ωβ H ) � wn
max

� Tr(ρH ) − Tr(ωβ H ) − o(ε). (22)

�

Note that the proof of Theorem 3 does not provide an
efficient construction of the unitary dynamics transforming
⊗nρ into a state close to the optimal state ⊗nωβ but only
ensures its existence. To design a practical scheme one can use
the following observations:

(1) The unitary dynamics must be “entangling,” i.e., cannot
be executed by a time-dependent Hamiltonian which is a
sum of single-system Hamiltonians. This is the meaning of
“entanglement” in the title.

(2) The unitary dynamics cannot be driven by a Hamiltonian
invariant with respect to permutations of the systems.

(3) The optimal procedure of work extraction should
be globally invariant with respect to permutations of the
systems.

Obviously, item (1) follows from the fact that by local
unitaries we can at best reach the product of passive states
⊗nσρ while item (3) is a consequence of permutation in-
variance of the initial state ⊗nρ and the optimal product
state ⊗nωβ . Item (2) is a consequence of the theorem proved
in [7] which states that the support of the product state ⊗nρ

is concentrated on the subspaces of ⊗nH characterized by
Young tableaux with rows of the lengths {lj � nrj }. The
Hamiltonian invariant with respect to permutations leaves such
symmetric subspaces invariant and hence cannot move the
support of the state to a new one concentrated on subspaces
characterized by Young tableaux with rows of the lengths
{lj � ne−β̄εj /Z}.

The following algorithm complies with the observations
(1)–(3) and provides a possible design of optimal work
extraction procedure:

(a) Choose randomly a pair of subsystems {k,l}.
(b) Choose randomly the interaction Hamiltonian Hk,l from

a preselected, large enough set of two-system interactions.
(c) Apply the unitary e−iHk,l to the state 	(n)(N ) of n systems

and compute the change of mean energy δE.
(d) If δE < 0 accept this unitary, if δE � 0 go to (b).
(e) The accepted unitary applied to 	(n)(N ) defines a new

state 	(n)(N + 1) [initial state 	(n)(0) = ⊗nρ].
(f) Continue the iteration until the mean energy stabilizes

within a given accuracy.
The product of the accepted unitaries defines the reversible

work extraction procedure.

V. CONCLUSION

The notion of maximal reversibly extractable work for
a quantum battery motivated by the concept of passivity is
discussed. It is applicable to full quantum models of micro- or
mesoscopic machines where work is supplied by or extracted
from a quantum system (a quantum battery, or work reservoir)
by means of a time-dependent perturbation of the Hamiltonian.
A proper definition of work is important to develop a consistent
thermodynamics of small quantum systems which is relevant
in nanotechnology and biophysics. Generally, the extractable
work is smaller than the thermodynamical bound computed
using the variational principle for the free energy. Using
entangling unitaries one can in general extract more work
per battery from several independent copies of a battery and
asymptotically reach the thermodynamical bound. However,
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the optimal procedures of work extraction are generally
difficult to implement by realistic control Hamiltonians. An
interesting problem for future investigation is to find efficiency
bounds when practical restrictions are imposed on the available
control mechanisms.
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