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Efficiency at maximum power of a heat engine working with a two-level atomic system
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We consider the finite-time operation of a quantum heat engine whose working substance is composed of
a two-level atomic system. The engine cycle, consisting of two quantum adiabatic and two quantum isochoric
(constant-frequency) processes and working between two heat reservoirs at temperatures Th and Tc(<Th), is a
quantum version of the classical Otto cycle. By optimizing the power output with respect to two frequencies, we
obtain the efficiency at maximum power output (EMP) and analyze numerically the effects of the times taken for
two adiabatic and two isochoric processes on the EMP. In the absence of internally dissipative friction, we find
that the EMP is bounded from the upper side by a function of the Carnot efficiency ηC , η+ = η2

C/[ηC − (1 −
ηC) ln(1 − ηC)], with ηC = 1 − Tc/Th. This analytic expression is confirmed by our exact numerical result and
is identical to the one derived in an engine model based on a mesoscopic or macroscopic system. If the internal
friction is included, we find that the EMP decreases as the friction coefficient increases.
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I. INTRODUCTION

Although the quasistatic Carnot cycle has the highest
efficiency for engines working between two heat reservoirs
at temperatures Th and Tc (<Th), its power output vanishes
because the time required for completing the cycle should be
infinitely large. From a theoretical and a practical viewpoint,
the engine cycle should be speeded up to obtain a finite power
and the study of the efficiency at maximum power output
(EMP) is thus deserved. Within the framework of finite-time
thermodynamics, Curzon and Ahlborn introduced [1] the

EMP for macroscopic heat engines, ηCA = 1 −
√

Tc

Th
, which

is known as Curzon-Ahlborn (CA) efficiency and, in fact, was
obtained by Yvon [2] and Novikov [3] much earlier than by
the authors of Ref. [1]. Up to now the entire issue of EMP
has been ill-defined in at least two ways. First, the EMP is
closely dependent on the variable with respect to which the
maximization is implemented [4]. Second, a novel notion of
efficiency first introduced in Ref. [5] has cast doubt on the
entire issue: it seems to be unclear what sort of efficiency
is sought if one departs from the ideal framework of Carnot.
Despite some sort of universality of the CA efficiency revealed
by several theoretical studies [6–10], it is still controversial in
the following respects: (1) To the best of our knowledge, no
experiments have been done to verify its validity. (2) The
temperature differences between the working substance and
the reservoirs are variables when maximizing the power, but
they are not easily controllable [11]. (3) The time in the
adiabatic phase is assumed to be proportional to the time
in the isothermal phase. This assumption is not based on a
strong physical argument and does not seem compelling. In
practice, the EMP for any thermodynamic cycle working with
two heat reservoirs depends sensitively on the temperatures
of the reservoirs, the heat transfer law between the working
substance and the heat reservoir, and irreversible losses as
well as friction during the cycle. Different values for the EMP
and various bounds of these values have been obtained for
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the macroscopic [6–8,11–20] and microscopic heat engines
[9,10,21–24].

As in classical heat engines, there are various kinds of
quantum heat engines [9,25–27], such as the Carnot engine
[24,27–29], the Otto engine [19,20,22,30,31], the Brayton
engine [29,32], the Stirling engine [33], etc. Except for
the Carnot cycle, the performance of the engine cycles
is dependent on the property of the working substance.
Because of quantum features of the working substance, the
thermodynamic observables in quantum heat engines are
associated with the expectation of values of operators, and
quantum equations of motion are used to describe the time
evolution of the observables in quantum heat engines under
finite-time operation [9,10,22,29,30]. Among all the studies
about quantum heat engines, a central concern is to study
the performance in finite time and the EMP in particular.
To understand the relation between quantum mechanics and
thermodynamics, a single-particle system has always been
used as a heat engine [25–27] in which the cycle period is,
however, infinitely long and the output power is vanishing.
Rarely has the performance in finite time of a quantum heat
engine working with a single-particle system been discussed.
In view of the recent experimental realization of a microscopic
heat engine [33], in which the working substance is a single
particle in an optical trap, the analysis of the performance
in finite time for a single-particle system as a heat engine
would be expected to present significant implications in
the experimental explorations of quantum features in small
systems. Therefore, it is of great interest to consider the
performance in finite time of a single-particle system as a
heat engine.

In the present paper, a quantum Otto engine model is
constructed by a two-level atomic system as its working
substance. Based on an equation of motion, we derive the
cycle period and the power output. We follow the traditional
definition of the efficiency: the amount of energy input that is
actually converted to useful output, and study the maximum
power as well as its corresponding efficiency by optimizing
with respect to two frequencies. The effects of the times taken
for the adiabatic as well as the isochoric processes on the
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EMP of the quantum Otto engine are analyzed numerically.
We obtain the upper bound of the EMP for the frictionless
engine: η+ = η2

C/[ηC − (1 − ηC) ln(1 − ηC)]. This analytical
expression is the same as the obtained one in the heat engine
of the perfect Feymann’s rachet [21] and of the classical
particle transport [34]. If the internal friction in two adiabatic
processes is considered, our result shows that the friction yields
a decrease in the EMP.

II. A HEAT ENGINE MODEL OF A TWO-LEVEL
ATOMIC SYSTEM

For a two-level atomic system [31,35], the energy spectrum
can be expressed as εν = νh̄ω, where ω is the frequency and ν

is the quantum number with ν = 1 and 2. The system energy
reads E = ∑

ν pνεν , with pν being the occupation probability
of the νth eigenstate. Accordingly, the energy of a two-level
system is given by

E = pgh̄ω + 2peh̄ω, (1)

where we have used pg ≡ p1 and pe ≡ p2. If the single-
particle system is in thermal equilibrium with a heat reservoir
at constant temperature T , the occupation probabilities pg and
pe must satisfy the Boltzmann distribution pe = pge

−h̄ω/kBT ,
with kB being the Boltzmann constant. It follows, using the
constraint pe + pg = 1, that the occupation probabilities for
the two states are obtained:

pg = 1 − pe = 1

e−βω + 1
, (2)

where β = 1/T denotes the inverse temperature of T . Here
and in the following we set h̄ = kB = 1 for simplicity.
Substitution of Eq. (2) into Eq. (1) leads to

E = nω = 2e−βω + 1

e−βω + 1
ω, (3)

where n = pg + 2pe has been used for the ratio n = E/ω. The
dynamics of the occupations at the ground and excited states,
pg and pe, can be described via a master equation [10,23]:

dpe

dt
= −k↓pe + k↑pg,

dpg

dt
= −k↑pg + k↓pe, (4)

where k↓ and k↑ denote the transition rates from the excited to
the ground level and vice versa. Detailed balance introduces
temperatures in the above explicit form of these coefficients.
From Eq. (4), we can obtain the equation of motion for n,

dn

dt
= −γ (n − neq), (5)

where γ = k↓ + k↑ is the heat conductivity and neq = k↓+2k↑
k↓+k↑

is the asymptotic value of n. This asymptotic ratio must
correspond to the value at thermal equilibrium: neq = 2e−βω+1

e−βω+1 .
Comparison of these two expressions for neq gives rise to the
relation of detailed balance, k↑/k↓ = e−βω, which ensures that
the system evolves in a specific way to the correct equilibrium
state asymptotically [10].

III. QUANTUM OTTO CYCLE

The first law of thermodynamics in quantum-mechanical
systems can be expressed as a function of eigenenergies εν

and occupation probabilities pν [26,28],

dE = d-Q + d-W =
∑

ν

ενdpν +
∑

ν

pνdεν, (6)

where d-Q = ∑
ν ενdpν and d-W = ∑

ν pνdεν depict the
heat exchange and work done, respectively. In an adiabatic
process, there is no heat exchange (d-Q = 0) as the occupation
probabilities pν do not change, but work may still be nonzero
(since eigenenergies εν may change) according to Eq. (6).

The time for relaxation can be assumed to be zero for an
adiabatic process of some microscopic or mesoscopic models
[17,36] at the sudden limit. However, the time required for
completing a classical and quantum adiabatic process should
be large either in a macroscopic system or in most microscopic
systems when the system volume or trap size changes very
slowly. In general, the time scale of the change of the system
state in a quantum adiabatic process must be much larger
than that of the dynamical one, ∼h̄/E [24,28,31,37], so that
the quantum adiabatic theorem [37] can apply. Otherwise,
nonadiabatic dissipation (e.g., inner friction [10,22,24,30])
occurs and the quantum adiabatic condition is not fulfilled
because of the rapid change in the energy level structure of the
quantum system.

Equation (6), together with Eq. (3), gives rise to the relation

dE = d-W + d-Q = ndω + ωdn, (7)

where d-Q = ωdn and d-W = ndω. The energy of the system
can change either by particle transition from one level to the
other (changing n) or by varying the energy gap between the
two levels (changing ω). It is clear that a thermodynamic
process during which the ratio n(ω,T ) remains constant is
a quantum adiabatic process.

The quantum Otto cycle, consisting of two quantum
adiabatic (fixed n) and two quantum isochoric processes
(fixed ω), is illustrated in Fig. 1(a). The four thermodynamic
processes that our engine model operates are described as
follows.

(1) Isochoric process 1 → 2. The frequency ωb is fixed and
thus no work is done. The working subsystem is coupled
to a heat reservoir at inverse temperature βh for a period
τh, with βh = 1/Th. Assuming that the irreversible entropy
production is induced exclusively by the irreversibilities across
finite differences of temperatures between the working system
and the heat reservoir [38,39], we can directly use Eq. (7) to
calculate the heat current as

d-Qh

dt
= ωb

dn(t)

dt
= γh

[
n

eq
h − n(t)

]
ωb, (8)

where γh represents the heat conductivity between the working
substance and the hot reservoir and n

eq
h is the ratio of the system

at thermal equilibrium with the hot reservoir. Here n(t) is
required to satisfy the boundary conditions n(0) = n1(ωb,β1)
and n(∞) = n

eq
h (ωb,βh).

It is not very difficult to find the general solution of Eq. (5),
n(t) = n

eq
h + (n1 − n

eq
h )e−γht , which leads to the relation

n2 = n
eq
h + (

n1 − n
eq
h

)
x, (9)

where x = e−γhτh . The heat transport from the hot reservoir in
the isochoric process becomes

Qh = E2 − E1 = (n2 − n1)ωb. (10)
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FIG. 1. (Color online) Schematic diagram of a quantum Otto cycle in the (ω,n) plane: (a) without internal friction and (b) with internal
friction. 1 → 2 and 3 → 4 are two isochoric processes, while 2 → 3 and 4 → 1 are two adiabatic processes. n

eq
h and neq

c are two ratios of the
atomic system at thermal equilibrium with two heat reservoirs at inverse temperatures βh and βc.

(2) Adiabatic expansion 2 → 3. The system decouples from
the hot reservoir for a period τa when the frequency changes
from ωb to ωa at a very slow speed in order for the quantum
adiabatic condition [37] to be satisfied. To calculate the time
taken for the adiabatic expansion and compression, we borrow
directly from Refs. [22,31],

τa = τb = α−1 ln(ωb/ωa), (11)

where α is a universal nonadiabatic parameter for a given
system. Here τb is the time taken to complete the adiabatic
compression, which is discussed in the following. No heat
exchange between the system and its surroundings occurs
but work is done by the system. According to Eq. (7),
the work done on the system after this process can be
calculated as

W23 =
∫ ωa

ωb

ndω = n2(ωa − ωb), (12)

where we have used n2 = n3. In order to realize the adiabatic
process, the work will be produced by coupling the system
with a work source (sink). This work source (sink) should be
an external field like a radiation field [31]. Just through this
external field the work either positive or negative will be done
by the two-level system when we change the energy of the
system.

(3) Isochoric process 3 → 4. The system is coupled to a
cold reservoir at inverse temperature βc (>βh) in a time of
τc but no work is produced. As in the process 1 → 2, there
are no irreversibilities except for the irreversibility due to the
finite temperature difference between the system and the cold
reservoir. Thus, the heat current during this process can be
determined according to

d-Qc

dt
= ωa

dn(t)

dt
= γc

[
neq

c − n(t)
]
ωa. (13)

The relation between the distributions n3 and n4 at the initial
and final states becomes

n4 = neq
c + (

n3 − neq
c

)
y, (14)

where y = e−γcτc . Here γc is the heat conductivity between the
working substance and the cold reservoir and n

eq
c is the the ratio

Eeq/ω of the single-particle system in thermal equilibrium
with the cold reservoir. Here n(t) must satisfy the boundary
conditions: n(0) = n2(ωa,β3) and n(∞) = n

eq
c (ωa,βc). The

heat absorbed by the system from the cold reservoir is given
by

Qc = E4 − E3 = (n1 − n2)ωa, (15)

where the use of n1 = n4 and n2 = n3 has been made [see
Fig. 1(a)].

(4) Adiabatic compression 4 → 1. The frequency ω is
changed very slowly (as in the adiabatic expansion) to its initial
value, while the ratio n is kept unchanged. The time required
for completing this adiabat, τb, is given by Eq. (11). No heat
is exchanged but the work is produced during the adiabatic
process when the system is coupled to a work sink which
also may be a radiation field as an external field. Similarly
to the process 4 → 1, the work extracted from the work
source is

W41 =
∫ ωb

ωa

ndω = n1(ωb − ωa). (16)

By repeatedly performing the above sequence of steps, heat
as a form of energy is systematically extracted from the hot
reservoir, some of which is released to the cold reservoir
and the rest of which is delivered as work. After a single
cycle, the total energy of the system as a state function re-
mains unchanged, namely, 
E = Qh + Qc + W23 + W41 =
0. Thus, the total work done by the system per cycle, with
W = −(W23 + W41), and the efficiency are, respectively, given
by

W = Qh + Qc = (n2 − n1)(ωb − ωa) (17)

and

η = W

Qh

= 1 − ωa

ωb

. (18)
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IV. THE EFFICIENCY AT MAXIMUM POWER OUTPUT

The combination of Eq. (14) with Eq. (9) gives rise to the
following relations:

n1 = neq
c + (1 − y)x

1 − xy

neq, n2 = n

eq
h − (1 − x)y

1 − xy

neq,

(19)

and

n2 − n1 = f (x,y)
neq, (20)

where f (x,y) = (1−x)(1−y)
1−xy

and 
neq = n
eq
h − n

eq
c , with


neq = 1

e−βcωa + 1
− 1

e−βhωb + 1
. (21)

The total work in Eq. (17) then becomes

W = f (x,y)(ωb − ωa)
neq. (22)

It should be noted that the treatment adopted above to derive
the expression of work, Eq. (22), in which the variables (times
of two isochoric processes and frequencies) are separated, was
first proposed in Ref. [10]. Defining τ ≡ τh + τc + τa + τb,
the power output can be given by

P = W

τ
= f (x,y)
neq(ωb − ωa)

2α−1ln(ωb/ωa) + τh + τc

, (23)

where the use of Eq. (11) has been made. From Eq. (22), the
positive work condition is obtained as

ωb

ωa

<
βc

βh

= Th

Tc

. (24)

Only when this condition is fulfilled can the positive work be
extracted from the heat engine model. It is expected that the
efficiency of the present engine is bounded from above the
Carnot value, ηC = 1 − βh/βc.

While power output can be optimized with respect to two
degrees of freedom (the two frequencies ωa and ωb), as
happens in the models of the perfect ratchet [21] and the
classical particle transport [34], the optimization on power

output can proceed requiring only one degree of freedom
(either ωa or ωb), as occurs in the approach adopted in
Ref. [40]. In order to obtain the maximum power P in the
global region, here we should consider two frequencies ωa

and ωb as two degrees of freedom.
Based on Eqs. (23) and (18), the EMP for the cycle can only

be solved numerically if τh, τc, γh, γc, and α are given. The
EMP is closely dependent on the nonadiabatic coefficient α and
the times required for completing the two isochoric processes
(τh and τc). Figure 2(a) shows that the EMP increases with an
increase in the nonadiabatic parameter α and approaches an
upper bound η+ (which is discussed in the following) when α

becomes very large [41] with fixed τh and τc, while Fig. 2(b)
demonstrates that for given α it increases with an increase in
the time spent on the two isochoric processes (τh and τc) and
tends to be the upper bound η+. In addition, other calculations
[42], which are not plotted in the figures, show that at fixed
α (or τh as well as τc) the EMP tends to be zero when τh

and τc are (or α is) small enough. Fig. 2, together with our
calculations, indicates that the value of EMP, ηmp, is situated
between

0 ≡ η− < ηmp � η+. (25)

It should be noted that, according to Eqs. (11) and (18),
the efficiency of the engine can be expressed as a function of
the time for any adiabatic process, η = 1 − e−ατa , where τa =
τb = α−1 ln(ωb/ωa). It is therefore expected that the increase
either in the times for the two adiabatic processes (τa and τb)
or in the times for the isochoric processes (τh and τc) yields an
increase in the EMP.

Now we turn to the calculation of the upper bound of the
EMP, η+. If α in Eq. (23) is (or τh and τc are) large enough,
the maximum power can be approximated by a simple form:

P = f (x,y)
neq(ωb − ωa)

τh + τc

, (26)

where two frequencies and the time allocations are separated
from each other.
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FIG. 2. (Color online) EMP, ηmp, as a function of the Carnot efficiency ηC for (a) different values of α when τh = τc = 0.69 and (b) different
values of τc and τh when α = 5.00. The other parameters are taken as γh = γc = 1.00. η(A)

mp given by Eq. (36) is denoted by a red solid line.
The calculations of the EMP for (a) α = 5.00,1.00, and 0.50, and for (b) τh = τc = 1.00, 0.25, and 0.05, are represented by a blue dotted line,
an olive dashed line, and a cyan dot-dashed line, respectively.
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Setting the derivatives of P in Eq. (26) with respect to ωa

and ωb equal to zero, we find the solution at

βcχc(ωb − ωa)

χc + 1
= χh − χc

χh + 1
, (27)

βhχh(ωb − ωa)

χh + 1
= χh − χc

χc + 1
, (28)

where χc = e−ωaβc and χh = e−ωbβh . As a result, the value of
ωa/ωb is

ωa

ωb

= βh

βc

ln χc

ln χh

. (29)

This equation presents the fundamental optimal relationship
between ωa and ωb at maximum power output and can be done
numerically. Using Eqs. (18) and (29), in Fig. 3 we plot the
curve of the exact numerical value of EMP, η(N )

mp , versus the
Carnot efficiency, ηC .

V. ANALYTIC EXPRESSION OF EFFICIENCY
AT MAXIMUM POWER ηmp

Dividing Eq. (28) by Eq. (27), we have
√

βcχc

βhχh
= χc+1

χh+1 , from

which χh can be expressed as a function χc,

χh =
[
1 + 2(1 − r2)χc + χ2

c

] − (1 + χc)
√

χ2
c − (4r2 − 2)χc + 1

2r2χc

, (30)

where r =
√

βc

βh
. We find, by multiplying Eqs. (27) and (28),

ωb − ωa = χh−χc√
βcβhχcχh

and

ln χc

βc

− ln χh

βh

= χh − χc√
χhχcβcβh

. (31)

In order to derive an analytic result, we start our analysis
by expanding χh in Eq. (30) up to the fourth order:

χh = r2χc + (−2r2 + 2r4)χ2
c + (3r2 − 8r4 + 5r6)χ3

c

+ (−4r2 + 20r4 − 30r6 + 14r8)χ4
c + O

(
χ5

c

)
. (32)

From a mathematical point of view (see the details in the
Appendix), Eq. (32) can be simplified as

χh = r2χc. (33)

As pointed out in the Appendix, the simple form [Eq. (33)]
of Eq. (32) is valid, even in the case of the large relative
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FIG. 3. (Color online) EMP, ηmp, as a function of the Carnot
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η(N )

mp and η(A)
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with circles, respectively. The CA efficiency ηCA is represented by a
blue solid line.

difference of two heat reservoir temperatures (i.e., r 	 1 and
ηC = 1 − 1/r2 approaches 1) and even in the low-temperature
case when χc approaches 1. Combining Eqs. (31) and (33), we
have

ln χc = −1 − 2βc ln r

βc − βh

,

(34)
ln χh = ln χc + 2 ln r.

The ratio of ωa/ωb in Eq. (29) is therefore

ωa

ωb

= ln χcβh

ln χhβc

= 1

r2

1 − r2 − 2r2 ln r

1 − r2 − 2 ln r
. (35)

In view of the fact that r = 1/
√

1 − ηC , with the Carnot
efficiency ηC = 1 − βh/βc, the upper bound of EMP, η+, can
be expressed analytically as a function of ηC ,

η+ ≡ η(A)
mp = η2

C

ηC − (1 − ηC) ln(1 − ηC)
, (36)

which is one main result of the present paper. If the time spent
on two adiabatic processes is assumed to be proportional to
the total cycle time or the total cycle time is given, the result
[Eq. (36)] is rederived for the model, which can be envisioned
as a model based on the particle transport in a quantum system.
As emphasized, Eq. (36) derived from Eq. (33) for the quantum
Otto engine is not only restricted to the classical limit when
the temperatures are much greater than the frequencies, since
Eq. (33) is valid even in the low-temperature case when the
temperatures are much smaller than the frequencies and χc is
approximately equal to 1.

Quite interestingly, this expression for the efficiency is
identical to the one obtained for the engine model based on
the perfect Feynman’s ratchet (which is, in fact, the particle
transport via Kramers’ escape) [21] or the classical particle
transport [34]. The EMP derived here is identical to the
one derived for a model based on a mesoscopic [21] or
macroscopic system [34], but it is valid in the region of all finite
temperatures and thus not restricted to the high-temperature
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limit. Expanding η(A)
mp up to the fourth term of ηC yields

η(A)
mp = ηC

2
+ η2

C

8
+ 7η3

C

96
+ 19η4

C

384
+ O

(
η5

C

)
, (37)

which is slightly larger than the expansion of the CA efficiency

ηCA, with ηCA = ηC

2 + η2
C

8 + η3
C

16 + 5η4
C

128 + O(η5
C).

The analytic expression for the EMP η(A)
mp is also plotted

in Fig. 3, comparing the numerical result η(N )
mp and the CA

efficiency ηCA. We see from Fig. 3 that the analytic result (red
solid line with circles) is in nice agreement with the numerical
value (olive dashed line) even for ηC up to 1.0, providing a
strong argument in favor of our approach. The analytic and
numerical results are slightly larger than the value of the CA
efficiency ηCA (blue solid line). We also note that the present
analytic and numerical results almost agree well with the CA
efficiency even for ηC up to 0.6, at which the evident deviation
of the present result from the CA efficiency starts to appear.

VI. AN ENGINE CYCLE WITH INTERNALLY
DISSIPATIVE FRICTION

Up to now, we have only considered the ideal case that
the irreversibility (e.g., internally dissipative friction) in any
adiabatic process is ignored as the quantum adiabatic condition
is satisfied. In practice, the two “adiabatic” processes of
the heat engine cycle may be nonisentropic because of
irreversible entropy production [18,24] when the quantum
adiabatic condition is not fulfilled [see Fig. 1(b)]. When there
exists nonadiabatic dissipation in an “adiabatic” process, the
word adiabatic merely indicates that the working substance
is isolated from a heat reservoir and no heat is exchanged
between the system and its surroundings. Similarly to the the
low-dissipation case [6,10,16,18,30], the increase of ratio n is
assumed to be inversely proportional to the time required for
completing the adiabatic process. That is, for the two adiabatic
processes 2 → 3 and 4 → 1, we have

n3 = n2 + �a/τa, n1 = n4 + �b/τb, (38)

where �a and �b are friction coefficients for the two adiabatic
processes. While the heat absorbed from the hot reservoir
remains unchanged and is still given by Eq. (10), the (negative)
heat extracted from the cold reservoir during the isochoric
process, Qc = E4 − E3, becomes

Qc = ωa(n1 − n2) − ωa(�a/τa + �b/τb). (39)

It follows that, using the same approach adopted in the
frictionless engine cycle, the work is directly determined by

W = (n2 − n1)(ωb − ωa) − ωa(�a/τa + �b/τb). (40)

On the right-hand side of Eq. (40), the first term represents the
total positive work done by the system, while the second term
is the total negative work done by the system [indicated by
the two blue shaded areas in Fig. 1(b)] to overcome internal
friction in two adiabats. From Eqs. (9), (14), and (38), we have

n2 − n1 = f (x,y)
neq − (1 − x)(1/τb − y/τa)�

1 − xy
, (41)

where f (x,y) and 
neq were defined in Eq. (20). Here
and hereafter we take � = �a = �b for simplicity. The

substitution of Eq. (41) into Eq. (40) leads to

W = f (x,y)
neq(ωb − ωa) − Wn, (42)

with Wn = �
1−xy

[(1 − x)ωb

τb
+ (xy − y)ωb

τa
+ (x − xy)ωa

τb
+

(1 + y − 2xy)ωa

τa
] being the negative work done by the system

to overcome the inner friction. From Eq. (42), we find the
positive work (W > 0) condition,


neq >
Wn

f (x,y)(ωb − ωa)
, (43)

which must be fulfilled in order for positive work to be
extracted from the engine. Substituting Eqs. (42) and (11)
into the expressions of power and efficiency, P = W/τ and
η = W/Qh, we find

P = f (x,y)
neq(ωb − ωa)

2α−1ln(ωb/ωa) + τh + τc

− Wn

2α−1ln(ωb/ωa) + τh + τc

(44)

and

η = 1 − ωa

ωb

− 2α�

f (x,y) [
neqln(ωb/ωa) − α�]

ωa

ωb

. (45)

Based on Eqs. (44) and (45), one can present a numerical
analysis of the EMP for the cycle if τh, τc, α, and � are given.
The EMP depends sensitively on the friction coefficient �.
Figure 4 shows that the EMP decreases with an increase in the
friction coefficient �, as expected. When the inner friction
is considered, the relative difference of two heat-reservoir
temperatures, i.e., (Th − Tc)/Th = ηC , must be lager than the
value η� that is determined numerically and depends on �,
such that the positive work condition (43) can be satisfied. For
instance, we plot in the inset of Fig. 4 the lower bound of the
relative temperature difference between two heat reservoirs,
η� , versus the friction coefficient, �. It is clear that η�
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FIG. 4. (Color online) EMP, ηmp, as a function of the Carnot
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parameters are taken as γh = γc = 1.00 and τh = τc = 0.69. η(A)
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given by Eq. (36) is denoted by a red solid line. The calculations
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represented by a blue dotted line, an olive dashed line, and a cyan
dot-dashed line, respectively. Inset: The lower bound of the relative
temperature difference between two heat reservoirs, η� , versus the
friction coefficient, �, when α = 10.00 is adopted.
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decreases as the friction coefficient � decreases and tends
to be zero when � approaches zero.

VII. CONCLUSION

In conclusion, we have focused on the study of the EMP
of a two-level atomic system as a heat engine model. We
obtained the EMP of the engine model by optimizing the power
output with both the frequencies. We have found that the EMP
increases with increasing the times either for the two adiabatic
processes or for the two isochoric processes and is bounded
between 0 < ηmp � η+, where the upper bound of the EMP,
η+, is analytically derived in the form of Eq. (36). This value
of the EMP, confirmed by our exact numerical result, is the
same as that in a simple model working with a mesoscopic or
macroscopic system. In the presence of the internal friction,
we proved that the EMP for the engine cycle with internal
friction (without a fixed cycle time) decreases with an increase
in the value of the friction coefficient �.

Throughout the paper, the notation of the EMP as an
idealized objective is not well-defined and not necessarily
physically. Perhaps more fundamental notations of the EMP
(such as the sustainable efficiency [5]) can be adopted to study
the performance in finite time of the quantum Otte cycle in
future.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China under Grants No. 11265010,
No. 11147200, No. 11065008, No. 10974033, and No.
11191240252; the State Key Programs of China under
Grant No. 2012CB921604; and the Foundation of Jiangxi
Educational Committee under Grant No. GJJ12136. J.W. is
very grateful to Professor Zhanchun Tu at Beijing Normal
University and Dr. Huiyi Tang at Fudan University for useful
discussions.

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

χ c

FIG. 5. (Color online) The upper bound of χc as a function of the
ratio r .

APPENDIX: THE REASON WHY χh CAN BE
APPROXIMATED BY χh = r2χc

The value of χc in Eq. (30) must fulfill the condition
χ2

c − (4r2 − 2)χc + 1 > 0 in order for χh to be a real number.
Combining this condition with the fact that 0 < χc < 1, we
find χc should be bounded between 0 < χc � χ∗

c , where
χ∗

c = −1 + 2r2 −
√

−1 + (−1 + 2r2)2 is the upper bound of
χc. As the temperature ratio r increases, χ∗

c decreases quickly
and becomes much smaller than 1 (see Fig. 5). On the one hand,
when r is obviously larger than 1, the value of χc becomes very
small in comparison with 1, i.e., χc � 1. On the other hand,
if r is approximated equal to 1, the expansion coefficients on
the right side of Eq. (32) tend to be zero. Based on the two
above facts, Eq. (32) can thus simplify to Eq. (33), which
is not restricted to the regime of small relative difference
of two heat reservoir temperatures [16] with r ≈ 1 and the
high-temperature limit when the temperatures are much greater
than the frequencies with χc � 1.
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