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Distance-weighted city growth
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Urban agglomerations exhibit complex emergent features of which Zipf’s law, i.e., a power-law size
distribution, and fractality may be regarded as the most prominent ones. We propose a simplistic model for
the generation of citylike structures which is solely based on the assumption that growth is more likely to take
place close to inhabited space. The model involves one parameter which is an exponent determining how strongly
the attraction decays with the distance. In addition, the model is run iteratively so that existing clusters can grow
(together) and new ones can emerge. The model is capable of reproducing the size distribution and the fractality of
the boundary of the largest cluster. Although the power-law distribution depends on both, the imposed exponent
and the iteration, the fractality seems to be independent of the former and only depends on the latter. Analyzing
land-cover data, we estimate the parameter-value γ ≈ 2.5 for Paris and its surroundings.
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I. INTRODUCTION

Cities or urban agglomerations exhibit signatures of com-
plex phenomena, such as broad size distributions [1–5]
and fractal structure [6,7] (and references therein). The last
decades have witnessed a strong interest within the scientific
community in characterizing the worldwide urbanization
phenomenon. This line of research has strongly benefited from
accessibility of demographic databases and from application of
tools originated in statistical physics enabling the identification
and analysis of universal aspects of urban forms and scaling
features [8]. Beyond the descriptive level, various attempts
to obtain insight into mechanisms that underly the complex
features of cities have been proposed.

(i) Multiplicative models [9–12] have explored the con-
nection between random city growth and city size distribu-
tions. In particular, building on discrete random walk theory,
multiplicative models have proved successful at reproducing
Zipf’s law (i.e., power-law city size distribution with exponent
close to 2). Furthermore, some of these models have proposed
plausible explanations for the origin of these mechanisms,
based on spatial economics theory [10]. Notwithstanding
this fact, multiplicative models are space independent and,
thus, are unable to address other important features of city
structures, such as self-similarity. (ii) Approaches based on
cellular automata have been used to model spatial structure of
urban land use over time [13] reproducing fractal properties.
(iii) The correlated percolation model (CPM) [14,15] assumes
that an urban built environment is shaped by spatial correla-
tions where the occupation probabilities of two sites are more
similar the closer they are. The model involves the empirical
findings on the radial decay of density around a city center. For
certain ranges in the space of parameters, the CPM reproduces
basic features of real urban aggregates, such as broad size
distributions in urban clusters and the fractal scaling of the
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perimeter. (iv) Reaction diffusion models [16–18] have been
introduced in order to explore the role of intermittency in
creating spatial inhomogeneities in agreement with Zipf’s
law. (v) Spatial explicit preferential attachment has been
shown to be capable of reproducing Zipf’s law [19]. Here,
the probability that a city grows is essentially assumed to be
proportional to the size of the city. (vi) Agent based modeling
has been employed to simulate urban growth [20], reproducing
the formation of new clusters as well as the merging of
neighboring ones. (vii) A random group formation is presented
in Ref. [21] from which a Bayesian estimate is obtained based
on minimal information. It represents a general approach for
power-law distributed group sizes.

Although the term demographic gravitation was coined by
Stewart [22], in geographical economics, gravitational models
have been investigated for many decades. Carrothers [23]
provides a review of gravity and potential concepts of human
interaction. The so-called Reilly’s law of retail gravitation
describes the breaking point of the boundary of equal attraction
[24]. Similarly, Huff’s law of shopper attraction [25] provides
the probability of an agent at a given site to travel to a
particular facility. Last but not least, the volume of trade
between countries has been described from the point of view
of gravity analogy [26]. In contrast, limitation of gravitational
models has been pointed out in the context of mobility and
migration [27].

Following the first law of geography “Everything is related
to everything else, but near things are more related than distant
things” [28], we elaborate on the role of gravity effects in
shaping the most salient universal features of cities, namely,
size distribution and fractality. To this end, we introduce a
model where individual lattice sites of a grid are more likely
to be occupied the closer they are to already occupied sites.
We find that the cluster sizes follow Zipf’s law except for
the largest cluster which outgrows Zipf’s law, i.e., the largest
cluster is too big and can be considered as the central business
district [14]. Applying box counting [29], we find self-
similarity of the largest cluster boundary, whereas, the fractal
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FIG. 1. Illustrative examples of model realizations for different iterations i and different exponents γ . (a)–(c) Different iterations of the model
i = 6,10,14 (γ = 2.5, N = 630). Growth takes place close to occupied sites. (d)–(f) Realizations with different exponents γ = 2.0,2.5,3.0
(the occupation probability is p ≈ 0.04, N = 630). The smaller γ , the more scattered the emerging structures are, the larger γ , the more
compact they are.

exponent seems to be independent of the chosen exponent.
Despite being very simple, our model intrinsically features
radial symmetry, as in (iii), and preferential attachment,
as in (v).

II. MODEL

We consider a two dimensional square lattice of size N × N

whose sites wj with coordinates j ∈ {(1 · · · N,1 · · · N )} can be
either empty or occupied. We start with an empty grid (wj = 0
for all j ) and, without loss of generality, set the single central
site as occupied (wj = 1, j = (N/2,N/2) for even N, j =
[(N + 1)/2,(N + 1)/2] for odd N ). Then, the probability that
the sites will be occupied is

qj = C

∑
k �=j wkd

−γ

j,k∑
k �=j d

−γ

j,k

, (1)

where dj,k is the Euclidean distance between sites j and k. The
proportionality constant C is determined by normalization,
i.e., C = 1/max(qj ) so that the maximum probability is 1.
The exponent γ > 0 is a free parameter that determines how
strong the influence of occupied sites decays with the distance.
This model is inspired by Ref. [25] where the probability that
a site will be occupied is solely determined by the distance to
already occupied sites.

It is apparent that only sites within close proximity of the
initially occupied site are likely to be occupied, whereas,
distant sites mostly remain empty. The procedure is then
iterated by repeating the process, involving recalculation of
Eq. (1) for each step. Note that a different choice of C would
only influence how many iterations are needed to completely
fill the lattice.

III. ANALYSIS

The model output depends on a set of factors. Beyond the
exponent γ , the system size N × N needs to be chosen. As
the model works iteratively, the emerging structures can be
investigated at different iterations i. Moreover, we run the
model for M realizations in order to obtain better statistics.

Figure 1 shows examples of model realizations. Visually,
the emerging structures could be associated with urban space.
Figures 1(a)–1(c) show three iterations of a single realization.
For high values of γ , the spatiotemporal evolution is strongly
influenced by the sites which are occupied early, see Figs. 1(d)–
1(f). Such a path dependency is also reflected in the reduction
of rotational symmetry observed for increasing values of γ .
In particular, the larger γ is chosen, the more compact and
less scattered the obtained structures are. Large γ also leads
to slower filling of the lattice.

A. Cluster size distribution

We begin our analysis by studying the cluster size dis-
tribution. We employ the city clustering algorithm [4,30]
and find that the largest cluster is markedly larger than the
remaining ones [Fig. 2(a)], i.e., larger than expected from
Zipf’s law. The presence of such anomalous extremes in size
distributions is denoted as Dragon Kings and can be a signature
of strongly cooperative dynamics [31]. A similar effect has
been found in another model [19], where—in order to avoid
their appearance—the domination of the largest cluster is
inhibited by excluding it from proportionate growth. Exclusion
is not feasible in our model, and we omit it when studying the
cluster size distribution [14,15].

Figure 2(a) shows examples of the probability density P (S)
of the cluster size S disregarding the largest cluster of each
realization. We find approximate power laws according to

P (S) ∼ S−ζ , (2)
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FIG. 2. (Color online) Cluster size distribution and dependence
of the Zipf exponent on the occupation probability. (a) Examples
of probability density distributions P (S) of the cluster size S

disregarding the largest cluster of each realization: i = 5,10,15 (from
top to bottom, p ≈ 0.004,0.078,0.573), γ = 2.5, N = 630, and
M = 100 (solid lines connect symbols). The two green dotted squares
represent the contribution of the largest cluster (i = 10). (b) The
obtained Zipf exponents ζ as a function of the occupation probability
p: γ = 2,2.5,3,3.5 (from top to bottom), N = 630, M = 100. Solid
lines are fits according to Eq. (3). Dashed lines indicate ζ = 2.

where ζ is the Zipf exponent. In Fig. 2(a), one can see
deviations from Eq. (2) in the form of too few large clusters.
Naturally, for late iterations, Eq. (2) extends over more decades
of cluster size than for early iterations. As can be seen, the Zipf
exponent is close to 2. To be more precise, ζ is smaller for
large iteration i than for small i. Accepting minor deviations
from ζ = 2, the model produces cluster size distributions
compatible with Zipf’s law.

In order to better understand how ζ relates to the model
parameters, we express the iteration i in terms of the overall
occupation probability p, which for a given i, is defined by
the number of occupied sites divided by the total number of
sites, i.e., N × N . The probability p increases monotonically
with the iteration i. In Fig. 2(b), ζ is plotted as a function of
p. As can be seen, it decreases monotonically with increasing
probability and strongly depends on the model exponent γ .
Whereas, for γ < 3, convex ζ (p)’s are found with overall
ζ > 2, for γ = 3, an almost logarithmic form can be identified
with ζ > 2 and ζ → 2 for p → 1. In contrast, for γ > 3, we
see a slightly concave relation and ζ < 2 (except for small p).
Accordingly, the Zipf exponent depends strongly on both, the
model exponent γ and the iteration of model i.
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FIG. 3. (Color online) Parameter values a, b, and c as a function
of the exponent γ from fitting the Zipf exponent versus the occupation
probability [Fig. 2(b)]. The dots represent the parameters obtained
from fitting Eq. (3) to the numerical values, the solid lines are
given by a = −k1γ + k2, bγ�3 = −e−k3γ+k4 , bγ>3 = −ek3γ−k5 , and
c = e−k6γ+k7 − e−k8+k7 (k1–k8 are fitting parameters). In order to have
enough values, we do not separate the different system sizes.

Moreover, we find that the dependence of ζ on p can be
well approximated by

ζ (p) = a + b ln(p) + c ln(1 − p), (3)

which also is related to the logarithm of a β distribution. The
solid lines in Fig. 2(b) are nonlinear fits to the numerical model
results, providing the fit parameters a, b, and c. In Fig. 3, the
obtained values of these parameters are plotted against γ .

B. Fractality

Next, we analyze fractal properties of the urban envelope
of the largest cluster. Therefore, we first extract the boundary
of the cluster. This is performed by identifying those largest
cluster sites which have, at least, one empty neighboring cell
which connects to the system border via a nearest neighbor
path of empty sites (the latter condition is necessary to exclude
inclusions). Thus, here, the boundary is defined as the occupied
neighbors of the external perimeter [32]. Then, we apply box
counting, i.e., perform coarse graining and count how many
sites are occupied. Thus, we regularly group m × m sites
and accordingly reduce the system size to (N × N )/(m × m).
Finally, we count the number of occupied sites NB for a chosen
box size m.

Examples of NB(m) are displayed in Fig. 4(a). Apart from
minor deviations for small and large m, straight lines are found
in the log-log representation, corresponding to

NB(m) ∼ m−dB , (4)

where dB is a measure of the fractal dimension of the cluster
boundary. In the displayed examples, we approximately find
dB ≈ 1.25.

Figure 4(b) shows dB as a function of the occupation
probability p. Qualitatively, we find a logarithmic dependence,
implying dB → const. for p → 1, which seems to be indepen-
dent of γ .

Overall, the values are below those expected from uncor-
related percolation slightly above or below the percolation
transition [33]. The fractal dimension for the perimeter in
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FIG. 4. (Color online) Self-similar scaling of the boundary of the
largest cluster. (a) Number of boxes necessary to cover the boundary
as a function of the size of the boxes: γ = 2.5, N = 630, i =
5,10,15 (p ≈ 0.004,0.078,0.573), and M = 100. The results follow
Eq. (4) indicating the fractal property of the boundary with a fractal
dimension 1 < dB < 2. The error bars represent standard deviations
among the realizations. (b) Fractal dimension as a function of
the occupation probability for γ = 2.0,2.5,3.0,3.5 (N = 630 and
M = 100). dB increases approximately logarithmically, independent
of γ .

uncorrelated percolation is 4/3. This difference could be due
to inherent correlations in our model. Nevertheless, the model
generates self-similar (fractal) largest clusters. The evolving
fractal dimension is, at least, qualitatively consistent with
urban areas, see, e.g., Ref. [34].

Last, we would like to note that the definition of the
boundary has a substantial influence on the fractal dimension
[32]. Moreover, box-counting results can differ from those
obtained with other techniques, such as the equipaced polygon
method [35]. Further analysis is required to shed light on these
aspects.

C. Percolation transition

One may argue that, at a certain iteration, the system might
undergo a percolation transition. Thus, finally, we characterize
the percolation threshold of the model. Therefore, we calculate
the average cluster size disregarding the largest component 〈S〉
as a function of the occupation probability p. At the percolation
transition pc, the average cluster size exhibits a maximum [36].
Figure 5 depicts 〈S〉(p) for some values of γ . A distinct peak
can be found which moves to larger p with decreasing γ .
For γ < 3, the maximum becomes less clear, and we cannot
determine pc.
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FIG. 5. (Color online) Percolation transition of the model. (a)
Average size of the finite clusters: γ = 3.8,3.6,3.4,3.2,3.0 (from top
to bottom), N = 210, and M = 1000. The vertical line represents the
percolation transition of uncorrelated percolation p∗

c 
 0.593 (site
percolation in the square lattice, [36]). The maximum is located
at the percolation transition. (b) Percolation transition pc as a
function of γ : N = 210,420,630 (M = 1000,400,100). For small γ ,
the percolation transition is close to p∗

c as indicated by the horizontal
line.

The obtained percolation thresholds are plotted versus γ

in Fig. 5(b). The transition decreases monotonically with
increasing γ . For γ ≈ 3, the value is close to the transition of
uncorrelated site percolation in the square lattice (p∗

c ≈ 0.593,
[36]). For γ ≈ 4, we find pc ≈ 0.2.

We would like to note that the results of Zipf and fractality
analysis seem to be independent from percolation transition,
i.e., there is no change in the behavior below or above pc.
Accordingly, scaling in the form of Zipf’s law and fractality is
reproduced even away from criticality.

IV. ANALYZING REAL DATA

Finally, it is of interest which γ -value real city growth
exhibits. In order to address this question, we consider Paris
and its surroundings. We analyze CORINE [37] land-cover data
in 250 m resolution and only distinguish between urban and
nonurban land grid cells. For the years 2000 and 2006, we
extract a window of 1000 × 1000 grid points [Fig. 6(a)] and
study the land-cover change. Since our model only includes
growth, we disregard those cells which change from urban to
nonurban.

First, we calculate the probabilities qj according to Eq. (1)
for the year 2000 with wk = 1 for urban and wk = 0 for
nonurban cells. Then, we determine the logarithmic likelihood
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FIG. 6. (Color online) Urban growth and the estimation of γ for
Paris and its surroundings in the years 2000 and 2006. (a) Considered
land-cover data in a window of 1000 × 1000 grid points (250 m
resolution). The panel distinguishes the following sites: dark red:
populated in 2000; gray: unpopulated in 2000; blue: water; light red:
nonurban → urban; and yellow: urban → nonurban. (b) Logarithmic
likelihood of urbanization. First, we calculate the probabilities qj

according to Eq. (1) for the year 2000, whereas (wk = 1 for urban
and wk = 0 for nonurban cells). Then, we determine Q according to
Eq. (5) over all nonurban cells in 2000 (the change urban to nonurban
is disregarded). We find a maximum at γParis ≈ 2.5.

by summing over all nonurban cells in 2000,

Q =
∑

j∈A

ln qj +
∑

j∈B

ln(1 − qj ) , (5)

where A is the set of cells changing from nonurban to urban
and B is the set of cells remaining nonurban. The quantity
Q can be understood as the logarithm of the joint probability
of obtaining the observed urbanization, i.e., the product of
probabilities that the cells become either urbanized or not,
respectively.

Varying γ , we can identify the value for which Q is
maximized, i.e., for which the probabilities calculated with
Eq. (1) best represent the nonurban to urban land-cover change
in the real data. As can be seen in Fig. 6(b), the maximum
is located at γParis ≈ 2.5. The qualitative similarity between

Figs. 6(a) and 1(e) supports this quantitative result, but the
comparison also shows that the real example is richer in
structure.

One may ask if the period 2000–2006 could be two or more
steps and if this would lead to another exponent γ . However,
assuming time independence of γ , the rate of urbanization
is determined by the proportionality constant C in Eq. (1).
Accordingly, the exponent should not depend on the period
between the snapshots. Although the analysis does not provide
sufficient evidence to support our model, it leads to the value
of γ for which the model best fits the growth of Paris.

V. DISCUSSION

We also find that the growth rate of clusters between two
iterations is independent of the cluster size (not shown). This
implies proportionate growth, a characteristic which is also
featured by preferential attachment [38,39]. We would like to
note that, in the proposed model, such a mechanism emerges
and is not included explicitly. We further find that the standard
deviation in the growth rate decays as a power law with
exponent 1/2 (not shown), which indicates uncorrelated growth
[30,40]. Again, analyzing the growth, we have disregarded the
largest cluster.

Although the work in hand briefly introduces our model,
more research is necessary to characterize it. This includes:
(i) an analytical description of the model, (ii) further numerical
analysis, in particular, refining the fractal characterization (as
mentioned in Sec. III B) or other features, such as the area-
perimeter scaling [41], and (iii) relating our model to other
physical approaches, such as Refs. [41–43].

The analogy of gravitation has a long history in geography
and spatial economy. However, the early papers were limited
by scientific background from statistical physics as well as
computational power. Here, we reexamine the concept of
gravity cities by proposing a simple statistical model which
generates citylike structures. The emergent complex structures
are similar to urban space. On one hand, we find that the
largest cluster, which can be considered as the central business
district [14], exhibits fractality, consistent with measured urban
area. On the other hand, clusters around the largest one can
be considered as towns surrounding a large city [14]. Their
cluster size distribution is compatible with Zipf’s law.
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