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Fluctuation corrections to thermodynamic functions: Finite-size effects
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The explicit thermodynamic functions, in particular, the specific heat of a spin system interacting with a
spin bath which exerts finite dissipation on the system are determined. We show that the specific heat is a
sum of the products of a thermal equilibration factor that carries the temperature dependence and a dynamical
correction factor, characteristic of the dissipative energy flow under steady state from the system. The variation
of specific heat with temperature is accompanied by an abrupt transition that depends on these dynamical factors
characteristic of the finite system size.
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I. INTRODUCTION

The development of the quantum theory of Brownian
motion laid the foundation of nonequilibrium statistical me-
chanics of a system coupled to its environment [1,2]. This
has significantly affected the course of research in quantum
optics, condensed-matter physics, and chemical dynamics
over the past several decades [3,4]. Although its major thrust
lies on the calculation of nonequilibrium properties in terms
of relevant correlation functions, a few interesting attempts
have been made in evaluating thermodynamic quantities of
a small quantum system coupled to its environment which
exerts a finite dissipation on the system. For example, the free
energy of a quantum oscillator interacting via dipole coupling
to black-body radiation field modes has been calculated [5]
to obtain a temperature-dependent shift in the free energy
resulting in a modification of Planck’s formula. The effects of
dissipation on thermodynamic functions have been explored
for quantum oscillators in contact with ohmic and nonohmic
reservoirs [6] and for the magnetic moment of an electron gas
[7]. It has also been shown that while a classical free particle
does not obey third law of thermodynamics [8], its coupling
to a thermal reservoir renders a quantum nature and allows
recovery of the third law [5–8]. That quantum dissipation helps
to ensure the validity of the third law has been a major finding
for a dissipative quantum oscillator [6], for which the specific
heat at low temperature exhibits power-law behavior.

The focus of the present paper is the calculation of thermo-
dynamic functions, particularly the specific heat of a spin- 1

2
particle coupled to a spin bath. To bring forth the discussion
in an appropriate perspective, we first note the following
points. When a small system is made open by coupling it
to an environment, the system experiences a dissipative flow
of energy into the environment. It is easy to anticipate that
such a flux would give rise to a dynamical correction over
the usual thermodynamic contribution responsible for the
temperature dependence of the system, a situation reminiscent
of Kramer’s theory of activated rate processes [1,2]. In the
latter case, the rate constant is essentially a product of the
equilibrium contribution due to transition state theory and a
dynamical factor due to the frictional coefficient characteristic
of the thermal bath [4]. It is possible to realize the nature of
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dynamical corrections over the thermodynamic functions by
spatially restricting the system size when the fluctuations of
the internal energy of the system can be quite significant. In
this paper we focus on the dynamics of an open spin system
experiencing spin-bath-induced dissipative effects [9] as an
underlying microscopic description of this behavior. To be
specific, the behavior of specific heat for small systems can
be analyzed by examining the finite-size effects of the system
[10–13]. The strategy for calculation is based on the free energy
of the spin system coupled to the spin bath [14,15] minus the
free energy of the spin bath in the absence of the system.
The desired free energy of the interacting spin system turns
out to be an integral over the free energy of a single system
multiplied by a density of states related to the susceptibility
[16] derived explicitly from the associated c-number quantum
Langevin equation. For implementing the scheme we have
employed the spin-coherent-state representation [17] of our
proposed Hamiltonian of the spin-spin-bath model to cast
the c-number Hamiltonian into an oscillator-oscillator bath
model. The key point is the use of the Holstein-Primakoff
transformation [18], which sets up a mapping between spin
and boson operators. Interestingly, this allows us to recover
the traditional form of quantum Langevin equation (its noise
correlation, however, is guided by the spin characteristics of
the bath) and, consequently, the associated susceptibility. We
derive the explicit analytic expression of the specific heat and
its high- and low-temperature limits, which carry the signature
of dissipative effect of the environment. It has been shown
that specific heat can be expressed as a sum of the products
of an equilibration factor that contains the usual temperature
dependence and a dynamical correction factor characteristic
of the dissipative flow of energy from the system. Finally, our
analysis is correlated with finite-size effects on the variation
of specific heat with temperature characterized by abrupt tran-
sition as one passes from low- to high-temperature regimes.

The outline of the paper is as follows: We introduce the
spin-spin-bath model and the associated Hamiltonian followed
by its spin-coherent-state representation in Sec. II. The basis
of this analysis is the Holestein-Primakopff transformation,
which further allows us to map the problem to an oscillator-
oscillator-bath Hamiltonian. The c-number quantum Langevin
equation is a direct consequence of this mapping. In Sec. III
we calculate the thermodynamic functions, free energy, and
specific heat for the interacting spin system and the high-
and low-temperature limits of the derived expressions and
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correlated them with dynamical factors characterized by
system size. The paper is concluded in Sec. IV.

II. QUANTUM DYNAMICS IN A SPIN BATH

A. The model

To set up the problem of quantum dissipation of a two-level
system in a sea of two-level atoms, we consider the following
Hamiltonian:

Ĥ = h̄ω0Ŝz + h̄
∑

k

ωkŜzk

+ h̄
∑

k

gk

{
g′

k

ωk

Î − (Ŝ†
k + Ŝk)(Ŝ† + Ŝ)

}
. (2.1)

Here the first term is the Hamiltonian for the system, which
is specified by the Pauli population difference operator Ŝz, the
other operators being Ŝ†, Ŝ, and Î , where Ŝ† and Ŝ are the usual
raising and lowering operators and Î is the identity operator.
The second term corresponds to the reservoir Hamiltonian;
the bath operators are denoted by Ŝ

†
k , Ŝk , and Ŝzk (the subscript

refers to the k-th atom of the bath). The last term represents
the interaction between the system and the bath atoms. ω0 and
ωk are the characteristic frequencies of the two-level system
and the k-th two-level bath atom. gk and g′

k are the coupling
constant and a frequency scale factor (this is a necessity for
correct normalization of the spin-coherent states used in the
next section). The Pauli operators for the system follow the
usual commutation relations as given by

[Ŝ†,Ŝ] = 2Ŝz; [Ŝ†,Ŝz] = −Ŝ†; [Ŝ,Ŝz] = Ŝ. (2.2)

We have Ŝ† = Ŝx + iŜy and Ŝ = Ŝx − iŜy . The commuta-
tion and anticommutation rules between the spin- 1

2 operators
are given by

Ŝ†Ŝ − ŜŜ† = 2Ŝz, Ŝ†Ŝ + ŜŜ† = 1. (2.3)

Therefore, Ŝz = N̂ − 1
2 , where N̂ is the number operator

Ŝ†Ŝ. The anticommutation relation in Eq. (2.3) has the
immediate consequence that spin- 1

2 particles or two-level
atoms obey Fermi-Dirac statistics. In view of Eqs. (2.1)
and (2.3) the system Hamiltonian Ĥs may also be expressed
as Ĥs = h̄ω0Ŝz = h̄ω0(N̂ − 1

2 ), while the eigenvalue equation
for the number operator may be written as N̂ |n〉 = n|n〉 with
n = 0,1. The general state with no quanta is denoted by
|0〉, which satisfies N̂ |0〉 = 0 and Ĥs |0〉 = h̄ω0(N̂ − 1

2 )|0〉 =
− h̄ω0

2 |0〉, and the state with one quantum is denoted by |1〉,
which obeys N̂ |1〉 = 1 and Ĥs |1〉 = h̄ω0(N̂ − 1

2 )|1〉 = h̄ω0
2 |1〉.

Similar relations hold well for bath operators. Note that,
unlike harmonic oscillators, the Hamiltonian is asymmetric,
both for the system and the bath and the Hilbert space is
two-dimensional.

Our object in the next section is to construct a c-number
Hamiltonian from Eq. (2.1) using spin-coherent-state repre-
sentation as introduced by Radcliffe [17] a couple of decades
ago. Application of spin-coherent states are well known in
the context of ferromagnetic spin waves, phase transitions
in the Dicke model of super-radiance, equilibrium statistical
mechanics of radiation-matter interactions, and so on. For
details we refer to Klauder and Skagerstam [19].

B. Spin-spin-bath Hamiltonian in coherent-state representation

Now we return to Eq. (2.1) and carry out quantum-
mechanical averaging with product separable coherent states
of the system and the bath at t = 0, |ξ 〉|μ1〉|μ2〉 . . . |μN 〉, where
|ξ 〉 denotes the coherent state of the two-level system and |μk〉
corresponds to the coherent state of the k-th bath atom. The
normalized spin-coherent state |μ〉 is defined as

|μ〉 = (1 + |μ|2)−Sexp(μŜ)|0〉, (2.4)

where the ground state |0〉 corresponds to the state with
minimal projection ms = −S and μ is the c number. In
using the coherent-state representation of the Hamiltonian,
we express the identity operator in Eq. (2.1) in terms of the
system operators,

Î = Ŝ2 + Ŝ†2 + ŜŜ† + Ŝ†Ŝ. (2.5)

Here we have used the anticommutation relation of the spin- 1
2

or two-level system operators. The consequence of expressing
the identity operator as (2.5) will be clear immediately. The set
of c numbers for the bath degrees of freedom {μk(0),μ∗

k(0)},
k = 1,2, . . . ∞, obtained from the different matrix elements,
as discussed in Ref. [20], can then be expressed in terms of
momenta {βk} and coordinates {αk} of bath oscillators, using

the transformation as βk = i

√
C̃(|μk |)h̄ωk

2 (μ∗
k − μk) and αk =√

C̃(|μk |)h̄
2ωk

(μ∗
k + μk). Here C̃(|μ|) is defined as 2S

1+|μ|2 . Similarly,
for the system oscillator coordinate r and momentum ρ can be

expressed as r =
√

C̃(|ξ |)h̄
2ω0

(ξ ∗ + ξ ) and ρ = i

√
C̃(|ξ |)h̄ω0

2 (ξ ∗ −
ξ ). The Hamiltonian in the coherent-state variables then can
be expressed in terms of these redefined quantities as

H = ρ2

2
+ 1

2
ω2

0r
2 +

∑
k

β2
k

2
+ 1

2

∑
k

ω2
k

(
αk − ck

ω2
k

r

)2

,

(2.6)

where ck is given by 2
√

gkg
′
kωkω0c̃(|ξ |) or 2

√
c̃(|ξ |)
c̃(|μk |)g

′
k

√
ωkω0

after discarding the irrelevant constant terms. The above
Hamiltonian differs from our starting Hamiltonian operator
equation (2.1) because of the c-number nature of the coherent-
state variables. It is, thus, possible to reduce the quantum
dynamics of a spin- 1

2 particle in a spin bath to the dynamics of
a particle in an oscillator bath. This reduction is realizable in
view of the well-known kinship between the spin- 1

2 algebra and
the algebra of bosons according to Schwinger’s prescription
[21]. Here we use the Radcliffe coherent states, where
the Holstein-Primakoff transformation plays a connection
between the spin- 1

2 algebra and boson operators, as does the
Schwinger mapping [21]. Furthermore, the high spin limit of a
spin-coherent state merges to the harmonic-oscillator-coherent
state [17]. The spin bath as a set of oscillators had been
realized explicitly earlier [22] in a different context. The
Hamiltonian (2.6) is, therefore, the c-number equivalent of
the Hamiltonian operator (2.1). Thermalization of the spin in
a spin bath thus can be conveniently understood in terms of
this c-number Hamiltonian. Although we have formulated the
problem for arbitrary length of bath spin S, it is not possible
to see the interpolation of the free energy behavior between
spin- 1

2 (S = 1
2 ) and harmonic-oscillator (S = ∞) limits. This
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is because the calculation requires imposition of statistics
which is applicable only for the two limits, i.e., Fermi-Dirac for
spin- 1

2 particles and Bose-Einstein for the harmonic oscillator
systems. In the interpolation regime it is not clear, a priori,
which statistics the system is going to follow.

The equations of motion for the particle and for the bath
variables according to the Hamiltonian Eq. (2.6) take the form

r̈ + ω2
0r =

∑
k

ck

(
αk − ck

ω2
k

r

)
, (2.7)

α̈k + ω2
kαk = ckr. (2.8)

Solving Eq. (2.8) and substituting in Eq. (2.7) with the
condition r(0) = 0, we eliminate the bath degrees of freedom
to obtain our desired c-number Langevin equation for the
particle,

r̈ +
∫ t

0
dt ′γ (t − t ′)ṙ(t ′) + ω2

0r = η(t), (2.9)

where

γ (t) =
∑

k

c2
k

ω2
k

cos ωkt, (2.10)

η(t) =
∑

k

ckαk(0) cos ωkt + ck

ωk

βk(0) sin ωkt, (2.11)

are the memory kernel and noise, respectively.
In order to quantify the properties of the thermal bath, it

is convenient to introduce a spectral density function J (ω)
associated with the system-bath interaction,

J (ω) = π

2

∑
k

c2
k

ωk

δ(ω − ωk). (2.12)

In terms of spectral density function J (ω), one may rewrite
the expressions for memory kernel in Eq. (2.10) as

γ (t) = 2

π

∫ ∞

−∞
dω

J (ω)

ω
cos ωt, (2.13)

while the noise η(t) must satisfy the characteristics of the spin
bath at equilibrium,

〈η(t)〉s = 0, (2.14)

〈η(t)η(t ′)〉s = 2

π

∫ ∞

−∞
dω

J (ω)

ω

[
h̄ω

2
tanh

(
h̄ω

2KT

)]
× cos ω(t − t ′). (2.15)

To ensure that the c-number noise η(t) is zero cen-
tered [Eq. (2.14)] and satisfies fluctuation-dissipation relation
[Eq. (2.15)], it is necessary to assume a canonical distribution
of Gaussian form for statistical averaging 〈. . .〉s over c-number
bath variables as follows:

Pk(αk(0),βk(0)) = Nexp

[
−

1
2β2

k (0) + 1
2ω2

kα
2
k (0)

2 tanh
(

h̄ωk

2KT

) ]
.

(2.16)

This is the spin-bath counterpart [14,15] of the Wigner
canonical thermal distribution function [23] for the harmonic
or bosonic bath. Here N is the normalization constant. The
width of distribution is given by tanh( h̄ωk

2KT
), which is related to

the average thermal excitation number n̄F (ωk) of the bath as
tanh( h̄ωk

2KT
) = 1 − 2n̄F (ωk), with n̄F (ωk) being a Fermi-Dirac

distribution function. The width of the Wigner distribution,
on the other hand, is determined by coth( h̄ωk

2KT
). Note that

at T = 0, both distributions merge at a single value. The
differences begin to appear at finite temperatures. At high
temperatures, the coth factor reduces to a factor that results
in the recovery of the classical limit. On the other hand, the
distribution [Eq. (2.16)] for the spin bath does not. Therefore,
the thermalization of the particle in a spin bath can be described
by this canonical thermal distribution (2.16) and the c-number
Hamiltonian [Eq. (2.6)].

III. THERMAL EQUILIBRIUM OF A SPIN COUPLED
TO A SPIN BATH

A. General expression for specific heat

Here we derive the expression for specific heat (Cv) of
a spin-spin-bath system using normal mode frequencies and
examine the high- and low-temperature limits. We expect from
the discussions in the previous section that at low temperatures
the spin bath closely follows a bosonic bath while it differs at
high temperatures.

We begin by considering the normal mode solutions of
Eqs. (2.7) and (2.8). To this end we write

r(t) = r0(ω)e−iωt αk(t) = αk(ω)e−iωt k = 1,2, . . . . (3.1)

Using the solutions (3.1) in Eqs (2.7) and (2.8) we obtain(
ω2

0 − ω2
)
r0(ω) =

∑
k

ck

[
αk(ω) − ck

ω2
k

r0(ω)

]
, (3.2)

(
ω2

k − ω2
)
αk(ω) = ck r0(ω). (3.3)

Elimination of r0(ω) from Eqs. (3.2) and (3.3) yields

(
ω2 − ω2

0

) =
∑

k

c2
k

ω2
k

(
ω2

ω2 − ω2
k

)
. (3.4)

From the above equation the generalized susceptibility can be
defined [24] as

κ(ω) =
[
−(

ω2 − ω2
0

) +
∑

k

c2
k

ω2
k

(
ω2

ω2 − ω2
k

)]−1

. (3.5)

For discrete modes, κ(ω) has poles on the real axis at the
normal mode frequencies of the system-plus-bath and has
zeros at normal mode frequencies of the bath only. This allows
one to write κ(ω) in terms of the products of the ratios of
the functions of the appropriate normal mode frequencies
�i(ω2 − ω2

i )/�j (ω2 − ω2
j ), i and j indices correspond to

bath and system-plus-bath normal modes, respectively. Using
Eqs. (2.10) and (2.12), the above equation can be rewritten,

κ(ω) = [ − ω2 + ω2
0 − iωγ̃ (ω)

]−1
, (3.6)

where γ̃ (ω) is Laplace transform of γ (t). In what follows
we show that κ(ω) is responsible for dynamical corrections.
We now consider that the spin coupled to the spin bath is in
thermal equilibrium at temperature T . This system has well-
defined free energy F (T ), which can be expressed [16] as the
difference between the free energy of the spin-spin bath system
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and the free energy of the bath in absence of the spin. This can
be related to the dynamical susceptibility κ(ω) as follows:

F = 1

π

∫ ∞

0
dωf (ω,T )Im

[
d

dω
ln|κ(ω)|

]
, (3.7)

where

f (ω,T ) = −KT ln

[
1 + exp

(
− h̄ω

KT

)]
(3.8)

is the free energy of a spin- 1
2 particle or two-level atom

at frequency ω. The thermodynamic functions, entropy, and
specific heat can be derived from the following relations:

S = −∂F

∂T
, (3.9)

Cv = T
∂S

∂T
= −T

∂2F

∂T 2
. (3.10)

Now considering the heat bath to be ohmic, i.e., γ̃ (ω) = γ0,
one can simplify Eq. (3.6) as follows:

κ(ω) = [ − ω2 + ω2
0 − iωγ0

]−1
, (3.11)

which results in

Im

[
d

dω
(ln|κ(ω)|)

]
= γ0

(
ω2 + ω2

0

)
(
ω2 − ω2

0

)2 + γ 2
0 ω2

. (3.12)

Then Eq. (3.7) becomes

F (T ) = 1

π

∫ ∞

0
dωf (ω,T )

[
γ0

(
ω2 + ω2

0

)
(
ω2 − ω2

0

)2 + γ 2
0 ω2

]

= 1

π

∫ ∞

0
dωf (ω,T )

(
z

ω2 + z2
+ z∗

ω2 + z∗2

)
, (3.13)

where z = γ0

2 + iω1 and z∗ = γ0

2 − iω1 and ω1 =
√

ω2
0 − γ 2

0
4 .

Equation (3.13) can be rewritten as

F (T ) = 1

π

∫ ∞

0
dωf (ω,T )

(
z

ω2 + z2
+ z∗

ω2 + z∗2

)
= ḡ(z) + ḡ(z∗). (3.14)

Here ḡ(z) can be expressed using substitution h̄ω
KT

= x:

ḡ(z) = −KT

π

∫ ∞

0
dx ln(1 + e−x)

h̄z
KT(

h̄z
KT

)2 + x2
. (3.15)

Furthermore, defining h̄z
KT

= y we obtain

g(y) = −KT

π

∫ ∞

0
dx ln(1 + e−x)

y

y2 + x2

(3.16)

g(y∗) = −KT

π

∫ ∞

0
dx ln(1 + e−x)

y∗

y∗2 + x2
.

Therefore, we can write Eq. (3.14) as

F (y) = g(y) + g(y∗)

= −KT

π

∫ ∞

0
dx ln(1 + e−x)

[
y

y2 + x2
+ y∗

y∗2 + x2

]
.

(3.17)

This is the central result of this paper which is valid for
arbitrary temperature. We now consider two different limits
(low and high temperature) depending on the parameter value
|y|.

B. Temperature dependence of specific heat

1. Low-temperature limit: (| y| � 1,K T � h̄|z|)
Partial integration of Eq. (3.16) results in

g(y) = −KT

π

∫ ∞

0
dx

tan−1( x
y

)

ex + 1
. (3.18)

When the parameter |y| � 1, corresponding to KT 	 h̄|z|
(which, in turn, implies KT 	 h̄ω0), the argument of tan−1( x

y
)

can be expanded as

tan−1

(
x

y

)
=

∞∑
n=0

(−1)n

2n + 1

(
x

y

)2n+1 ∣∣∣∣xy
∣∣∣∣ 	 1. (3.19)

We then obtain

g(y) = KT

π

∞∑
n=0

(−1)n+1

(2n + 1)y2n+1

∫ ∞

0
dx

x2n+1

ex + 1

= KT

π

∞∑
n=0

(−1)n+1

(2n + 1)y2n+1
ζ (2n + 2)�(2n + 2)

×
(

1 − 1

22n+1

)
, (3.20)

where ζ (n) is a Reimann ζ function and �(n) is the � function.
Now using the above results and substituting the values of g(y)
and g(y∗) in Eq. (3.17), we have

F (T ) = 1

π

∞∑
n=0

(−1)n+1(KT )2n+2

(2n + 1)h̄2n+1 ζ (2n + 2)�(2n + 2)

(
1 − 1

22n+1

)[
z2n+1 + z∗(2n+1)

|z|4n+2

]

= 1

π

∞∑
n=0

(−1)n+1(KT )2n+2

(2n + 1)h̄2n+1 ζ (2n + 2)�(2n + 2)

(
1 − 1

22n+1

)
1

|z|4n+2

×
[

(z + z∗)2n+1 −
n∑

k=1

(
2n + 1

k

)
|z|2k{z2(n−k)+1 + z∗[2(n−k)+1]}

]
. (3.21)
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The expression for Cv follows immediately,

Cv = −T
∂2F

∂T 2
= K

π

∞∑
n=0

(−1)n(2n + 2)

|z|4n+2

(
KT

h̄

)2n+1

ζ (2n + 2)�(2n + 2)

(
1 − 1

22n+1

)

×
[

(z + z∗)2n+1 −
n∑

k=1

(
2n + 1

k

)
|z|2k{z2(n−k)+1 + z∗[2(n−k)+1]}

]
. (3.22)

From Eq. (3.22) the specific heat up to three leading order terms is

Cv = K

[{
π

6

(
KT

h̄ω0

)}{
γ0

ω0

}
+

{
7π3

30

(
KT

h̄ω0

)3}{
3

(
γ0

ω0

)
−

(
γ0

ω0

)3}
+

{
31π5

42

(
KT

h̄ω0

)5}{(
γ0

ω0

)5

− 5

(
γ0

ω0

)3

+ 5

(
γ0

ω0

)}]
.

(3.23)

A close inspection of the above expression clearly reveals that
each term in the square bracket is a product of two terms. The
first one is temperature dependent and of the form (KT

h̄ω0
)n, with

n = 1,3,5 and originates from traditional thermodynamics.
The second one contains powers of ( γ0

ω0
), which has a

dynamical origin in κ(ω) and is the major content of this
work. The appearance of the dynamical factor is reminiscent
of the Kramers theory of activated rate process where the
rate constant from transition state theory (thermodynamic
contribution) gets multiplied by this factor in the form ( ωb

γ0
),

where ωb is the frequency of the inverted oscillator well at
the barrier top. Drawing a hint from this observation, we
may therefore emphasize that the above expression for Cv

at low temperature pertains to a small system allowing a
steady flow of energy from it to the environment in the form
of dissipation under a quasistationary condition. Second, we
note that the expression for specific heat matches with that
for the well-known form for degenerate fermi system, i.e.,
Cv = AT + BT 3 (A and B being constants), so far as the
thermal behavior of the system is concerned. Our results
qualitatively agree with the results obtained by Ford and
O’Connell [7] and by Hänggi and Ingold [8] for a harmonic
oscillator in a harmonic bath. The origin of this agreement
lies on merging of the thermal behavior of the spin bath and

the harmonic bath as T → 0 as discussed earlier. The specific
characteristics of the spin system are, however, reflected in the
details of numerical factors.

2. High-temperature limit: (| y| → 0,K T � h̄ω0)

In order to calculate the temperature dependence in the
high-temperature limit, we expand the logarithmic term in
Eq. (3.16) as

ln(1 + e−x) =
∞∑

n=1

(−1)n
e−nx

n
[e−x 	 1]. (3.24)

Substituting Eq. (3.24) in Eq. (3.16) we obtain

g(y) = KT

π

∞∑
n=1

(−1)n−1
∫ ∞

0
dx

y

y2 + x2

e−nx

n

= KT

π

∞∑
n=1

(−1)n−1

{
Ci(ny)sin(ny)

+ 1

2
cos(ny)[π − 2Si(ny)]

}
. (3.25)

Making use of Eqs. (3.25) in Eq. (3.16) and after formally
expanding up to fourth order of y we obtain

g(y) = KT

π

{
(γe − 2)y + y2

∞∑
n=1

(−1)n−1n −
(

γe − 4

3

) ∞∑
n=1

(−1)n−1n2 y3

6
+

∞∑
n=1

(−1)n−1n3 y4

6

+ π

2

[
1 −

∞∑
n=1

(−1)n−1n
y2

2!
+

∞∑
n=1

(−1)n−1n3 y4

4!

]}
, (3.26)

where γe = 0.577216. After substitution of the values of y,z,z∗, the free energy in the high-temperature regime is given by

F (T ) = KT

π

(
(γe − 2)h̄γ0 +

∞∑
n=1

(−1)n−1

n

(
nh̄ω0

KT

)2{4 − π

4

[(
γ0

ω0

)2

− 2

]}
−

∞∑
n=1

(−1)n−1

n

(
nh̄ω0

KT

)3

×
{

γe − 4/3

6

[(
γ0

ω0

)3

− 3

(
γ0

ω0

)]}
+ π

2
KT +

∞∑
n=1

(−1)n−1

n

(
nh̄ω0

KT

)4{8 + π

48

[(
γ0

ω0

)4

+ 2 − 4

(
γ0

ω0

)2]})
.

(3.27)
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From Eq. (3.27) the expression for specific heat Cv can be calculated as follows:

Cv = −T
∂2F

∂T 2
= K

π

( ∞∑
n=1

(−1)n

n

(
nh̄ω0

KT

)2{ (4 − π )

2

[(
γ0

ω0

)2

− 2

]}
−

∞∑
n=1

(−1)n

n

(
nh̄ω0

KT

)3{
(γe − 4/3)

[(
γ0

ω0

)3

− 3

(
γ0

ω0

)]}

+
∞∑

n=1

(−1)n

n

(
nh̄ω0

KT

)4{ (8 + π )

4

[(
γ0

ω0

)4

+ 2 − 4

(
γ0

ω0

)2]})
. (3.28)

Equation (3.28) shows that the quantities in the square brackets
are again a product of an equilibrium factor and a dynamical
factor that depends on the ratio γ0

ω0
. In order to extract out

the physically relevant form of the above expression we need
to consider the thermal saturation effect at high temperature
since the retention of higher-order terms in Eq. (3.28) does
not make it meaningful above the saturation temperature. This
is because the system gets decoupled from the bath above
this temperature [15,25,26]. This can be ascertained from the
effective spectral density and by expressing 1

2 tanh( h̄ω
2KT

) =
1
2 − 1

eh̄ω/KT +1 = −〈Ŝz〉, where 〈Ŝz〉 is a measure of the pop-
ulation difference between the two levels of a bath atom. We
note that as (eh̄ω/KT + 1) → 2 the hyperbolic tangent factor
tends to vanish as a result of thermal saturation of the bath.
Keeping therefore only the leading-order term of Eq. (3.28),
Cv at high temperature can be expressed as

Cv = K

({
1

4

(
h̄ω0

KT

)2}{
(8 − 2π )

π

[(
γ0

ω0

)2

− 2

]})
.

(3.29)

In order to check this result, we must compare it with the
leading-order term of specific heat of a single spin system in
thermal equilibrium. The average energy of a single spin is

E = h̄ω0〈Ŝz〉. (3.30)

Substituting 〈Ŝz〉 = − 1
2 tanh( h̄ω0

2KT
) into Eq. (3.30) and expand-

ing in inverse powers of T [27], we obtain the leading-order
term

E = − (h̄ω0)2

4KT
(3.31)

and the specific heat as

Cv = K
1

4

(
h̄ω0

KT

)2

. (3.32)

This corresponds to the equilibrium factor in the expression
for specific heat at high temperature in Eq. (3.29) and serves
as an important check for our calculation.

C. Dynamical factors and specific heat: Finite-size effect

We now examine the variation of specific heat with
temperature for several values of dissipation parameters. The
expression for free energy in an integral form [Eq. (3.17)] is
evaluated numerically to obtain the specific heat over a wide
range of temperatures. The results are shown in Figs. 1–3.
Figure 1 depicts the variation in the low-temperature regime
which follows AT + BT 3, where A and B are constants.
The behavior in the high-temperature regime is illustrated in

30 35 40 45 60 70 80

2x10-6

3x10-6

4x10-6

6x10-6

8x10-6

γ0/ω0 :

10
100
103

C
v

Temperature (T)

FIG. 1. (Color online) Variation of specific heat with temperature
for three values of the ratio γ0/ω0 calculated using Eq. (3.13) in the
low-temperature regime (scale arbitrary).

Fig. 2. The specific heat follows characteristically Cv ∼ T −2

behavior. It is further evident that the variation of specific heat
is accompanied by a sharp transition as one passes from a
low- to high-temperature regime. This transition is illustrated
in Fig. 3. For smaller values of dissipation constant, i.e., when
the system size is small, the transition is marked by a larger
jump between the two temperature regimes and a shift towards
the lower temperature. For larger values of dissipation constant
one observes a comparatively smooth crossover of specific heat
between the two temperature regions, as shown in the inset of

100 200 300 400 500 600 700
0.0

2.2x10-3

4.4x10-3

6.6x10-3

1.0x102

1.5x102

2.0x102

2.5x102

60 90 120 150 180
0

5x10

1x10

2x10

γ
0

/ ω
0

:

10
15
103

C
v

Temperature (T)

C
v

Temperature (T)

FIG. 2. (Color online) The same as in Fig. 1 but for the high-
temperature regime. (Inset) Plot of the specific heat shows a smooth
crossover from the low- to high-temperature regime for γ0 : ω0 = 103

(scale arbitrary).
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FIG. 3. (Color online) Transition of specific heat for several
values of γ0/ω0. (Inset) Variation of the transition temperature TR

vs γ0/ω0 in a semilog plot (scale arbitrary).

Fig. 2. The variation of transition temperature as a function
of the ratio of the dissipation constant and characteristic
frequency satisfies a linear fit on a semilogarithmic scale, as
shown in the inset of Fig. 3. We mention, in passing, that
the observed correlation between the dynamical factors and
the specific heat for finite-size systems are reminiscent of the
recent experimental results [10] on the behavior of specific
heat with temperature in cobalt oxide layers and micrograins,
characterized by an antiferromagnetic transition. One observes
a significant reduction of magnetic ordering temperature or
Neel temperature for thin layers, i.e., for smaller system
size. We, however, emphasize that this correlation should
not be extended further for a quantitative comparison since
in our model the spin bath consists of independent spins,
whereas the experimental situation corresponds to interacting
spins via exchange interaction of order of Neel tempera-
ture. A more suitable experimental systems for probing the
correlation between dynamical factors and the specific heat
may be the two-level system in superconducting circuits
coupled to a fermionic bath [28] employed for the study of
decoherence.

IV. CONCLUSION

In this work we have examined the behavior of specific
heat of a spin- 1

2 system coupled to a spin bath with finite

coupling strength. The basis of our analysis is the mapping of
the spin-spin-bath Hamiltonian into its oscillator counterpart
using a Holstein-Primakoff transformation followed by subse-
quent diagonalization of the Hamiltonian in its coherent-state
representation. The derived expression for the specific heat
is characterized by the dynamical correction factors over and
above the usual thermal equilibrium factors. By tuning the
system size it is possible to realize this dynamical contribution
to specific heat and its consequences. We summarize the main
conclusions of this study as follows.

(i) The c-number quantum Langevin equation assumes
exactly the traditional classical form; the essential difference,
however, lies in the nature of noise characteristics due to
the spin bath. Therefore, the susceptibility, the key quantity
for calculation of free energy associated with the quantum
Langevin equation, also retains its standard form. The under-
lying universality of the spin bath is, therefore, reflected in the
analysis so far as the dynamic behavior is concerned.

(ii) The expression for specific heat both in the high- and
low-temperature regions appears as a sum of the products of a
thermal equilibration factor and a dynamical correction factor
the later being a function of the ratio of the friction coefficient
and the characteristic frequency of the system. Up to a leading
order the specific heat at low temperature can be expressed as
Cv = A(γ0/ω0)T + B(γ0/ω0)T 3, which reflects the general
behavior of the degenerate Fermi system. The modification by
dissipative contributions due to the ohmic bath is very much
similar to that for the bosonic bath. This again highlights the
similarities of the behavior of the spin bath and the harmonic
bath as T → 0.

(iii) The high-temperature behavior of the spin bath is
dominated by thermal saturation of the two levels of the spin
system. Up to a leading order, the specific heat below the
saturation temperature can be expressed as Cv = C(γ0/ω0) 1

T 2 .
The result corresponds to the qualitative behavior of a
single spin- 1

2 system. The transition between the low- and
high-temperature regimes is marked by an abrupt jump
accompanied by a shift towards lower temperatures for the
smaller dissipation characteristic of the reduced system size.
For higher dissipation, i.e., in the thermodynamic limit, we
observe a smooth crossover of specific heat.
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