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Adequacy of the virial equation of state and cluster expansion
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The limits for the accuracy of the virial expansion and the problem of its divergence have been investigated
using the exact cluster expansion of the configuration integral. In the subcritical temperature regimes the virial
equation of state is applicable up to the singularity point of the isothermal compressibility, i.e., to the possible
beginning of the condensation process. At supercritical temperatures this equation should be applicable within
the region where the cluster expansion is adequate. The problem of the virial series divergence has been found to
be irrelevant to the actual behavior of the cluster expansion. Considering the Lennard-Jones fluid as well as the
system of hard spheres, the inadequate behavior of the cluster expansion has been discovered in the high density
regime. The major reason for this inadequacy should be the basic simplification of the cluster expansion: the
integration of irreducible diagrams over the infinite limits.
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I. INTRODUCTION

There are a number of theoretical approaches [1–4] to
derive the virial equation of state (VEOS), but all of them
are based on the Gibbs canonical or grand canonical ensemble
in the approximation of the low density of the particle number
ρ = N/V . One of the most rigorous approaches was presented
by Mayer [4]: The configuration integral of a system with the
pair additive interaction potential U (rij )

QN = 1

N !

∫
V N

exp

[
− 1

kT

∑
i<j

U (rij )

]
drN (1)

may be expressed in the form of the so-called cluster expansion

QN = 1

N !

∫
V N

∏
i<j

(1 + fij )drN, (2)

where fij = exp(−U (rij )
kT

) − 1 is Mayer’s function.
Using the complex combinatorial methods and diagram

technique at the thermodynamic limit (N → ∞), Mayer
derived the virial expansion for the pressure, where the virial
coefficients Bk+1’s are related to the corresponding irreducible
cluster integrals βk’s

Bk+1 = − k

k + 1
βk. (3)

Each βk is an integral of the sum of all possible products of
Mayer functions for (k + 1) particles over their configuration
phase space (but in practice the integral is over the infinite
limits) which cannot be expressed in terms of any low order
irreducible integrals. Unfortunately, the explicit calculation of
the irreducible integrals or the corresponding virial coefficients
in Eq. (3) is a complicated technical problem even for the
simplest interaction potentials. At present, the maximum order
of the calculated coefficients is the tenth for the hard spheres [5]
and the eighth for the Lennard-Jones fluid [6,7]. Moreover,
the precision of the highest order coefficients is seriously
limited.

In addition to this technical problem, VEOS has also a
number of theoretical limitations. The infinite virial series
may diverge under some conditions and this divergence cannot
correspond to the behavior of real systems.

The problem of the virial expansion divergence has been
investigated in many papers [2,8–10] and some researchers
[8,9] including Mayer [4] assumed the explicit relation
of the divergence region to the region of condensation.
In Refs. [11–13] this assumption was directly used for
determining the condensation curve. There were the first
70 virial coefficients calculated approximately on the basis
of the Ornstein-Zernike equation [14] and the extrapolated
divergence curve of VEOS was investigated [13].

On the other hand, some studies [15,16] indicated the
absence of any connection between the phase transitions and
the singularity points of the virial expansion. For example,
in the system of hard spheres the numerical experiments
[17,18] indicated the phase transition at a density about
2/3 of the close-packing density, but the corresponding
VEOS (extrapolated by Carnahan and Starling [15]) had no
singularity around this point.

Apart from the convergence condition, Mayer pointed to
another quantitative restriction on his derivation of VEOS [4]
(in contrast to other approaches, where the qualitative criterion
“low density” was used)

∑
k

kβkρ
k < 1. (4)

Equation (4) limits the density more strictly in comparison
to the convergence condition: at the minimum density that
violates this inequality the virial series still has a finite value,
i.e., the divergence may be observed only at higher densities.
Despite this fact, the convergence condition is conventionally
regarded (for some unknown reason) as the sole criterion of
VEOS adequacy.

Today the real limits of the applicability of the virial
expansion cannot be considered as strictly determined. All the
simplifications and limitations used in the proofs of VEOS that
are able to affect its adequacy may be listed as the following:
(i) integration of the cluster and irreducible cluster integrals
over the infinite limits; (ii) virial series convergence; and (iii)
inequality (4).

The simplification of the pair additivity of the interaction
potential could be added to this list, but there are the
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well-known methods to take the possible nonadditivity into
account remaining within the virial expansion [19].

Therefore, the major aim of this paper is to investigate
the actual influence of the simplifications and limitations
enumerated above on the boundaries of the adequacy of VEOS,
in particular, and on the accuracy of the cluster expansion, in
general.

II. EXACT REPRESENTATION OF
THE CLUSTER EXPANSION

With respect to the symmetry for the permutation of indices,
the configuration integral in Eq. (2) is expressed by the so-
called cluster integrals bj

QN = V N
∑
{mj }

N∏
j=1

b
mj

j

mj !
. (5)

In turn, each cluster integral can be expressed as the
sum of the products of some irreducible integrals. Different
irreducible integrals of the same order k only differ from each
other by their integration limits. Regarding the cluster integrals
as independent of the volume (at this stage the real integration
limits are replaced by the infinite limits), i.e., considering all
the irreducible integrals of the kth order as absolutely identical,
Mayer derived the expression for any cluster integral in terms
of the irreducible ones [4]

bj = j−2
∑
{nk}

j−1∏
k=1

1

nk!

(
j

βk

V k

)nk

. (6)

Expressions (5) and (6), together with an analysis of the
logarithm of activity as the power series of density and
the density as the power series of activity limited by the
convergence condition and inequality (4), make it possible
at the thermodynamic limit to obtain the virial equation of
state [4].

In Ref. [20] another approach was offered to derive an accu-
rate expression for the cluster expansion of the configuration
integral (5) based on Eq. (6) without those restrictions on the
density, but still using the integration over the infinite limits

QN = V NF (N), (7)

where F (N) is the coefficient at yN in the power expansion of
the following function

F (y) =
⎛
⎝1 −

∑
k�1

k
βkρ

kyk

Nk

⎞
⎠

× exp

⎛
⎝y −

∑
k�1

k

k + 1

βkρ
kyk+1

Nk
+

∑
k�1

βkρ
kyk

Nk−1

⎞
⎠ .

(8)

For direct computations, Eq. (7) with respect to function
(8) may be conveniently used in the following form

QN = V N

N !
qN, (9)

where

qn = 1 +
n∑

i=1

(N − i)
i∑

k=1

(i − 1)!

(i − k)!

kβkρ
k

Nk
Mi−k,

and the value Mk is defined in the following recursive
expression

Mk = Mk−1 +
k∑

i=1

iβiρ
i

Ni−1

(k − 1)!

(k − i)!

[
Mk−i − (k − i)

N
Mk−1−i

]
,

while M0 = 1 and Mk<0 = 0.
For analysis, Eq. (7) may be treated as the polynomial in

density (see the Appendix)

QN = V N

N !

(
1 +

N∑
k=1

akρ
k

)
. (10)

Each coefficient ak in the term of power k is defined by the
complicated sum

ak = gN−k,k −
k∑

i=1

iβi

Ni
gN−k,k−i ,

where gi,k is the coefficient at xk in the power expansion of
the function

Gi (x) = 1

i!

⎛
⎝1 −

∑
j�1

j

j + 1

βjx
j

Nj

⎞
⎠

i

exp

⎡
⎣N

∑
j�1

βjx
j

Nj

⎤
⎦

=
∑
k�0

gi,kx
k.

For comparison, the configuration integral that corresponds
to the virial expansion has the form

QN→∞ = ρ−N exp

(
N

∞∑
k=1

βk

k + 1
ρk

)
. (11)

It has been proved by the authors of Ref. [20], considering
any finite number (k � N ) of irreducible integrals at the
thermodynamic limit (N → ∞), that exact cluster expansion
(10) and corresponding virial expansion (11) coincide in the
domain limited by condition (4), but disagree fundamentally
when density violates this condition. Similar results were
obtained by the authors of Ref. [21] and, independently,
Ref. [22] by explicit calculations (for extremely limited N ,
unfortunately) using Eqs. (5) and (6).

It is possible to show that Eqs. (10) and (11) differ
principally in the high density regimes even considering all
(N − 1) irreducible integrals at the thermodynamic limit. Let
us represent Eq. (10) in the form

QN = NN

N !

(
1

ρN
+

N∑
i=1

aN−i

ρi

)
.

The logarithm of this expression at the thermodynamic limit

lim
N→∞

(ln QN ) ∼ N ln f (ρ) ,
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FIG. 1. The discontinuity of the Lennard-Jones fluid isotherm of
Eq. (7) with the virial coefficients to the eighth order at temperature
T ∗ = 1.34 (N = 8000). The dashed curve demonstrates the behavior
of free energy a per particle.

where the function

f (ρ) = lim
N→∞

(
1

ρN
+

N∑
i=1

aN−i

ρi

)1/N

(12)

remains finite at any arbitrarily high density. Accordingly, the
pressure as the derivative of the logarithm of function (12) does
not diverge at the virial series’ singularities. Therefore, the
divergence of the virial series (at subcriticals or supercritical
temperatures) has no relation to the actual behavior of the exact
cluster expansion (7) of the configuration integral.

On the other hand, this actual behavior of Eq. (7) or its
representations (9) and (10) has its own specific features. For
example, the configuration integral (10) may have negative
values under certain conditions that correspond to the complex
values of function (12) and its logarithm. Such inadequate
behavior may set some serious restrictions on the applicability
of the cluster expansion and should be investigated.

III. NUMERICAL INVESTIGATIONS

The behavior of the cluster expansion in comparison to the
virial expansion was investigated for the Lennard-Jones fluid.
The computations were based on expression (7) and VEOS,
correspondingly, taking into account the first seven irreducible
integrals or, in practice, the virial coefficients up to the eighth
order (the last three coefficients were interpolated from the
data of the authors of Refs. [6,7]). Some of the computational
results are presented in Figures 1, 2, and 3. In the figures,
the following symbols are used for pressure P ∗ = Pσ 3/ε and
temperature T ∗ = kT /ε, where σ and ε are the parameters of
the Lennard-Jones potential.
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FIG. 2. Curves of the isotherm discontinuities in Eq. (7) for
N = 5 × 105. Dashed lines show the boundaries where the deviation
of VEOS with n coefficiens from VEOS with (n + 1) coefficients
reaches 3.6% (n = 4), 1.8% (n = 5), or 0.6% (n = 6). The numbers
in the figure indicate the maximum order of virial coefficients taken
into account.

At supercritical temperatures the regimes of high density
were found in which the configuration integral decreases
rapidly approaching zero and even negative values. There are
the corresponding jumps of pressure in these regimes.

Figure 1 shows the typical essential discontinuity of the
isotherm and the corresponding decrease of the Helmholtz
free energy. The negative section of the isotherm at higher
densities has no physical meaning and the free energy has
complex values there. Similar discontinuities are observed
at supercritical temperatures for any number (from 1 to 7)
of the irreducible integrals used in the calculations (Fig. 2).
The positions of these discontinuities are slightly different for
various N . As N increases they move to higher densities, but
for sufficiently large N this dependence becomes unessential.
For N from 100 000 to 500 000 the difference is less than
the line width in Fig. 2, and there is no reason to expect
that these discontinuities may disappear at the thermodynamic
limit. As it was noted in the previous section, the configuration
integral in Eq. (7) may have negative (nonphysical) values at
some conditions. Supercritical temperatures (the virial series
is negative) and high densities (note that the cluster integrals
are independent of the density) may satisfy these conditions.

At subcritical temperatures there is no discontinuity ob-
served even for the extremely high densities (ρ � 10). In
contrast, in the high density region beyond the singularity
point of the isothermal compressibility (

∑
kβkρ

k = 1), which
corresponds to the boundary of condition (4), the pressure
stops changing (Fig. 3). On the one hand, it may indicate
the beginning of the condensation process at this point (see
Refs. [20,21,24]), but on the other hand, at very high densities,
which must correspond to the liquid and solid states (the points
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FIG. 3. Isotherms of VEOS with the first four (dot-dashed lines)
and eight (dashed lines) virial coefficients of the Lennard-Jones
potential for different temperatures T ∗ (from bottom to top: 1.1;
1.2; 1.3; 1.6; 2.5; 5.0). There are also the corresponding isotherms
of Eq. (7) for N = 105 (solid lines), curves of their discontinu-
ities (dot-dashed and dashed lines), and vapor-liquid coexistence
curve (•) [23].

to the right of the coexistence curve in Fig. 3), the pressure
constancy does not correspond to the real behavior of the
system.

The behavior of VEOS in comparison to Eq. (7) is illustrated
in Fig. 3 for both the subcritical and supercritical regions. The
virial isotherms are absolutely identical to the corresponding
isotherms of Eq. (7) up to the boundary of condition (4)
at subcritical temperatures and to the discontinuity points
described above at the supercritical region.

VEOS including any finite number of coefficients stays
regular in all regimes because the divergence may only be
present for infinite virial series. For VEOS with a given
number of coefficients the applicability may be approximately
tested by the relative deviation of the pressure when one
more virial coefficient is added to the equation. The shape
of the lines where this deviation reaches some considerable
value (0.5–5.0%) correlates to the boundary of condition
(4) at subcritical temperatures and has some correlation
(possibly accidental) with the curves of the discontinuities
at supercritical temperatures (Fig. 2).

Any conclusion about the inadequacy of the cluster ex-
pansion based on the example of one specific interaction
potential taking into account the limited number of the
irreducible integrals should not be regarded as absolutely
proved. Therefore, the corresponding studies have been carried
out for hard spheres considering all the possible (N − 1)
irreducible integrals using the approximation of Carnahan and
Starling [15]. Since all the integrals in this approximation are
negative (there is no attraction in the potential of hard spheres)
the behavior of pressure in the system of hard spheres should be

similar to the behavior of the isotherms for the Lennard-Jones
fluid at supercritical temperatures.

The calculations for various N really demonstrate the
similar discontinuities of the pressure curves. Moreover, at
N → ∞ their position asymptotically approaches the density
about 0.58 of the close-packing density, i.e., somewhat below
the experimental phase transition point [17]. For hard spheres
the pressure curve of VEOS coincides with the corresponding
curve of Eq. (7) up to this discontinuity point and stays regular
at higher densities not indicating any phase transition even
when the density exceeds the close-packing one.

IV. CONCLUSION

The analyses as well as the numerical study based on the
examples of the hard spheres and the Lennard-Jones fluid for
both VEOS and the cluster expansion of the configuration
integral enable to make several important conclusions.

At subcritical temperatures the region of the appropriate
behavior of VEOS is limited by condition (4) at least as long
as the cluster expansion itself remains adequate there.

The applicability of VEOS in the region of supercritical
temperatures does not have such strong limitations. Rigorous
consideration suggests that the virial equation, which was
initially derived from the cluster expansion, should not be
treated as absolutely adequate outside the domain of the cluster
expansion accuracy. Moreover, there are some indications that
the variation of the number of coefficients in VEOS leads to
the significant deviations of pressure outside this domain.

The well-known problem of the virial expansion divergence
is relevant to the virial representation of the cluster expansion
and not to the exact cluster expansion. As to the applicability
of the cluster expansion of the configuration integral, it should
be limited seriously at both the subcritical and supercritical
regions. At subcritical temperatures the possible beginning of
the condensation process is observed (see Refs. [20,21,24]),
but the pressure constancy even at very high densities is similar
to some collapse of the system and has no physical meaning.

In the region of supercritical temperatures for sufficiently
large but finite densities, the cluster expansion in Eq. (7)
approaches zero or even negative values that cannot correspond
to the actual behavior of the configuration integral in Eq. (1),
in principle. The zero value of the configuration integral must
correspond to the statistically unrealizable states of the system,
for example, to the densities over the close-packing of hard
spheres and so on. Neither the integrand nor integral (1) can
be negative.

The only simplification used in the transformation of
expression (1) to Eq. (7) is the infinite limits of integration,
i.e., the independence of the cluster and irreducible integrals
on density. This independence should be the actual reason for
the inadequate behavior of the cluster expansion in Eq. (7).
At low temperatures all the known integrals of higher orders
are positive and it means that the attractive part of the
interaction potential dominates over repulsion (independently
of the density). Therefore, it is obvious that the attractive forces
lead to the condensation process, but there is no repulsion to
stop the possible collapse. When the volume decreases, the
integration over the real limits would appropriately reduce the
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values of the cluster integrals and even change their sign that
would make the repulsion dominant.

At supercritical temperatures the reason for the discon-
tinuities of the isotherms is the same: In the high density
regimes the effect of repulsion may only be accurate (without
the jumps of pressure) if the decrease of the system volume
exactly corresponds to the decrease of absolute values of
cluster integrals.

Unfortunately, there was no quantitative criterion found for
the inadequacy of the cluster expansion at subcritical temper-
atures, but the liquid branch of the experimental coexistence
curve may be considered as a possible approximate boundary
of this inadequacy. At supercritical temperatures, the points
where the integration over the infinite limits leads to the
incorrect results, i.e., the curves of discontinuities, may be
determined more confidently (Fig. 2).

As a result, the line bounding the domain, where the
cluster expansion may be estimated as absolutely inadequate,
consists of two branches that start at the critical point
and go to the higher densities: one with the increase of
temperature (the discontinuity curve) and the other with its
decrease (liquid branch of the coexistence curve) (Fig. 3).
However, the integration over the infinite limits may influence
the behavior of the system even at lower densities. It is
impossible to determine the exact boundaries of the cluster
expansion adequacy without accurate information about the
actual dependence of the cluster integrals on density. This
issue requires further research.
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APPENDIX: POLYNOMIAL FORM OF
THE CLUSTER EXPANSION

In the power expansion of the exponent in function (8) for
both variables y and ρ⎛

⎝∑
i�0

yi

i!

⎞
⎠

⎛
⎝∑

{lk}

∏
k�1

1

lk!

[
− k

k + 1

βkρ
kyk+1

Nk

]lk

⎞
⎠

×
⎛
⎝∑

{mk}

∏
k�1

1

mk!

[
βkρ

kyk

Nk−1

]nk

⎞
⎠ =

∑
n�0

∑
i�0

wn,iy
nρi,

each coefficient wn,i is defined in the following expression

wn,i =
n−i∑
j=0

1

j !

⎛
⎝∑

{lk}

∏
k�1

1

lk!

[
− k

k + 1

βk

Nk

]lk

⎞
⎠

×
⎛
⎝∑

{mk}

∏
k�1

1

mk!

[
βk

Nk−1

]nk

⎞
⎠ , (A1)

where the sets of integers {lk} and {mk} must satisfy the
equations ∑

k�1

klk +
∑
k�1

kmk = i, (A2)

∑
k�1

(k + 1)lk +
∑
k�1

kmk = n − j.

The last equation may be combined with Eq. (A2) and
transformed to ∑

k�1

lk = n − i − j. (A3)

On the other hand, the coefficients defined in Eq. (A1), taking
into account Eqs. (A2) and (A3), are also presented in the
similar power expansion of another function

Gi (x) = 1

i!

⎛
⎝1 −

∑
j�1

j

j + 1

βjx
j

Nj

⎞
⎠

i

exp

⎡
⎣N

∑
j�1

βjx
j

Nj

⎤
⎦

=
∑
k�0

gi,kx
k,

where gi,k = wk+i,k .
The cluster expansion of the configuration integral in Eq. (7)

is related to the coefficient at yN in the power expansion of
function (8)

QN = V N

N !

(
N∑

i=0

wN,iρ
i −

N∑
k=1

k
βkρ

k

Nk

N−k∑
i=0

wN−k,iρ
i

)

= V N

N !

(
1 +

N∑
k=1

akρ
k

)
,

where

ak = wN,k −
k∑

i=1

iβi

Ni
wN−i,k−i = gN−k,k −

k∑
i=1

iβi

Ni
gN−k,k−i ,

which exactly corresponds to Eq. (10).
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