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Transport coefficients from the boson Uehling-Uhlenbeck equation
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Expressions for the bulk viscosity, shear viscosity, and thermal conductivity of a quantum degenerate Bose
gas above the critical temperature for Bose-Einstein condensation are derived using the Uehling-Uhlenbeck
kinetic equation. For contact potentials and hard sphere interactions, the eigenvalues (relaxation rates) of the
Uehling-Uhlenbeck collision operator have an upper cutoff. This cutoff requires summation over all discrete
eigenvalues and eigenvectors of the collision operator when computing transport coefficients. We numerically
compute the shear viscosity and thermal conductivity for any boson gas that interacts via a contact potential. We
find that the bulk viscosity of the degenerate boson gas remains identically zero, as it is for the classical gas.
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I. INTRODUCTION

Kinetic equations provide a means to derive microscopic
expressions for the transport coefficients appearing in the
equations of fluid hydrodynamics. The transport coefficients
for dilute gases at high temperature can be computed using
the Boltzmann equation. However, when the temperature is
lowered enough that quantum degeneracy begins to affect
the behavior of the gas, one must use the Uehling-Uhlenbeck
(U-U) equation [1,2], which is a semiclassical extension of the
Boltzmann equation that accounts for the quantum statistics of
the particles.

There are two traditional approaches to computing transport
coefficients; the method outlined by Chapman and Enskog
[3–6], and a method due to Resibois [7], which directly
uses the microscopic hydrodynamic modes of the system. In
subsequent sections, we use the Resibois method to compute
the transport coefficients of dilute degenerate boson gases,
and we give explicit numerical values for their transport
coefficients just above the Bose-Einstein condensation tem-
perature. Although we focus on boson gases, it is worth
noting that there has been interest recently in the viscosity
of some exotic systems whose relaxation is also governed by
the U-U equation. These include the aftermath of high-energy
collisions, and recent predictions of a universal limit on the
ratio of viscosity and entropy density [3,8–11].

The Resibois method relates the transport coefficients to
the spectral decomposition of the collision operator, and the
discrete eigenvalues (relaxation rates) of the collision operator
are central. For gases that interact via hard-core potentials or
contact potentials, the eigenvalues of the Boltzmann and the
Uehling-Uhlenbeck collision operators have a known upper
cutoff [12] and the eigenvalues rapidly converge towards this
value. When an upper cutoff exists, the contribution to the
transport coefficients from higher eigenmodes can not be
neglected. For gases that interact via a softer potential, such as
V (r) ∼ 1

rn for n > 4, no cutoff exists in the discrete spectrum
of the collision operator and simple approximations can be
used in obtaining transport coefficients. In subsequent sections,
we obtain exact values for the transport coefficients of classical
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hard sphere gases and ultracold boson gases, and we show how
the Eucken number [6,13] of classical gases changes as the
interaction varies from that of a Maxwell gas (n = 4) to a hard
sphere interaction (n → ∞), which is equivalent to a contact
interaction at low temperature.

Typically, in the past, the transport coefficients of dilute
classical hard sphere gases have been obtained by truncating
a Sonine polynomial expansion at low order [4,6,14]. As we
will show, this truncation neglects the effect of the upper cutoff
on collision operator eigenvalues and gives an Eucken number
that differs little from that of a classical Maxwell gas.

In Sec. II we introduce the U-U equation and in Sec. III, we
linearize it and introduce an abstract velocity-space basis that
will be used for calculation. In Sec. IV, we derive microscopic
expressions for the hydrodynamic frequencies by relating them
to the collision operator, and use them to obtain explicit
expressions for the bulk viscosity, thermal conductivity, and
shear viscosity of the gas. We also discuss the proper treatment
of the eigenvalue “cutoff” that is present for hard sphere
and contact interactions. In Sec. V, we present the results
of our numerical calculation of the transport coefficients and
justify our treatment of the eigenvalue cutoff. We conclude by
summarizing our results in Sec. VI.

II. UEHLING-UHLENBECK EQUATION

We consider a dilute gas of noncondensed bosons that
interact via a contact potential U (r) = U0δ

3(r), where U0 =
4πh̄2a/m, h̄ is Planck’s constant, a is the s-wave scattering
length, and m is the mass of a particle. The derivation of a
kinetic equation for this system is discussed in Ref. [15]. Above
the critical temperature for Bose-Einstein condensation, the
dynamics of the gas is governed by the Uehling-Uhlenbeck
(U-U) kinetic equation, which can be written

∂f1

∂t
+ p1

m
· ∇rf1 = −C[f1], (1)

where p1 and r are momentum and position of the bosons,
respectively, and f1 = f (r,p1,t) is the phase space number
density of bosons in the phase space volume p1 → p1 + dp1

and r → r + dr at time t . It is normalized so that N =∫
dr

∫
dp1

(2πh̄)3 f (r,p1,t), where N is the average number of
particles in the gas.
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The quantity C[f1] is the collision integral and is defined

C[f1] = a2

m2π3h̄3

∫
dp2dp3dp4δ

3(p1 + p2 − p3 − p4)

× δ(ε1 + ε2 − ε3 − ε4)[f1f2(1 + f3)(1 + f4)

− (1 + f1)(1 + f2)f3f4] (2)

where ε1 = p2
1/(2m).

The collision integral explicitly conserves particle number,
momentum, and energy. This can be seen from the five
integrals

∫
dpC[f (r,p,t)] = 0,

∫
dppC[f (r,p,t)] = 0, and∫

dpp2C[f (r,p,t)] = 0. The stationary state (long-time global
equilibrium) solution of the U-U equation is the Bose-Einstein
distribution

f 0(p1) =
(

exp

[
ε1 − μ

kBT

]
− 1

)−1

, (3)

where T is the equilibrium temperature in Kelvin, μ is the
equilibrium chemical potential, and kB is Boltzmann’s con-
stant. Integrating f 0(p1) over momentum gives the equilibrium
particle density n0 of the gas

n0 =
∫

dp1

(2πh̄)3
f 0(p1) = 1

λ3
T

Li3/2(z), (4)

where λT =
√

2πh̄2

mkBT
is the thermal wavelength, z = eμ/(kBT ) is

the fugacity and Li3/2(z) is a polylogarithm. Polylogarithms
appear repeatedly for degenerate gases and are defined by

Lis(z) = 1

�(s)

∫ ∞

0
dt

zts−1

et − z
. (5)

For simplicity we will use the notation σn = Li n+1
2

(z).
It is useful to introduce a dimensionless momentum

c1 = p1/(mvT ) where vT = √
2kBT /m. Then the Uehling-

Uhlenbeck equation can be written

∂f1

∂t
+ vT c1 · ∇rf1 = −γ C ′[f1] (6)

where the dimensionless collision integral C ′[f1] is given by

C ′[f1] = 1

zπ2

∫
dc2dc3dc4δ

3(c1 + c2 − c3 − c4)

× δ
(
c2

1 + c2
2 − c2

3 − c2
4

)
[f1f2(1 + f3)(1 + f4)

− (1 + f1)(1 + f2)f3f4], (7)

and f1 = f (r,c1,t). The overall rate constant is

γ = 8ma2z(kBT )2

πh̄3 , (8)

which now depends on the fugacity and equilibrium tempera-
ture.

III. LINEARIZED U-U EQUATION

In computing transport coefficients, it is sufficient to
consider the relaxation of the gas when it is close to
equilibrium. In that case, the distribution function f (r,c1,t)
will be a slowly varying function of r, and will be close
to its equilibrium value. We can then linearize the U-U
equation by writing f (r,c1,t) = f 0

1 + f 0
1 (1 + f 0

1 )
(r,c1,t),

where f 0
1 = z/(ec2

1 − z) and 
(r,c1,t) contains information
about the small deviations from equilibrium and satisfies
|
| � 1. We substitute this expression for f (r,c1,t) into (7)
and neglect terms of quadratic and higher order in 
 and obtain

∂
1

∂t
+ vT c1 · ∇r
1 = −γC[
1] (9)

where 
1 = 
(r,c1,t) and

C[
1] = 1

zπ2
(
1 + f 0

1

) ∫
dc2dc3dc4δ

3(c1 + c2 − c3 − c4)

× δ
(
c2

1 + c2
2 − c2

3 − c2
4

)
f 0

2

(
1 + f 0

3

)(
1 + f 0

4

)
× [
1 + 
2 − 
3 − 
4] (10)

is the linearized collision operator.
Since Eq. (9) is linear, we may take the Fourier transform

of both the space and time dependence of (9) to obtain

−iωφ1 + ivT (k · c1) φ1 = −γC[φ1] (11)

where φ1 = φ(k,c1,ω) = ∫
dr

∫
dt
(r,c1,t)e−ik·r+iωt . Equa-

tion (11) governs the relaxation of deviations from equilibrium
with wave vector k and frequency ω.

A. Momentum basis

Since (11) is linear, deviations φ(k,c1,ω) will not be
coupled to those of different wave vectors or frequencies
and we may suppress the dependence of φ(k,c1,ω) on k
and ω. We can greatly simplify the notation in the following
calculations by introducing an abstract vector |φ〉 and making
the interpretation φ(c1) = 〈c1|φ〉, where |c1〉 represents an
abstract momentum basis. We define the inner product between
two abstract vectors as

〈χ |φ〉 ≡
∫

dc1w(c1)χ∗(c1)φ(c1), (12)

where the weighting factor w(c1) is defined

w(c1) = 1

π3/2σ0
f 0(c1)[1 + f 0(c1)]. (13)

If C[φ] is interpreted as 〈c1|Ĉ|φ〉, this definition of the
weighting function makes the collision operator symmetric in
the sense that 〈c1|Ĉ|c2〉 = 〈c2|Ĉ|c1〉. In the momentum basis,
the collision operator Ĉ can then be expressed as

Ĉ =
∫

dc1

∫
dc5w(c1)w(c5)|c1〉C(c1,c5)〈c5|, (14)

where C(c1,c5) = 〈c1|Ĉ|c5〉 is the “kernel function” of Ĉ.
It will be convenient to introduce an orthonormal “angle”

basis, |c,l,m〉, which is defined by

〈c1|c,l,m〉 = 1

c1
√

w(c1)
δ(c1 − c)Ym

l (θ1,φ1). (15)

The collision operator can be expressed in the angle basis as

Ĉ = 2π

∫ ∞

0
dc1

∫ ∞

0
dc2

∑
l,m

|c1,l,m〉

× c1c2

√
w(c1)w(c2)Cl(c1,c2)〈c2,l,m|, (16)
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where

Cl(c1,c2) =
∫ 1

−1
d(ĉ1 · ĉ2)C(c1,c2)Pl(ĉ1 · ĉ2) (17)

and Pl is a Legendre polynomial. The function Cl(c1,c2) is the
angular kernel function. In the angle basis, Ĉ is diagonal in
l and m, a fact that follows from the rotational symmetry of
C(c1,c2) [16].

We may now express the linearized U-U equation as an
operator equation. Without any loss of generality, we can
assume that the wave vector k = kêz, where êz is a unit vector
along the z direction. The U-U equation then takes the form

−iω|φ〉 + ivT kĉz|φ〉 = −γ Ĉ|φ〉, (18)

where ĉz is now an operator defined by ĉz|c〉 = cz|c〉. This
form of U-U equation allows us to determine the microscopic
frequencies as a perturbation expansion in powers of k.

B. Spectrum of the collision operator

The spectrum of the collision operator plays a fundamental
role in both the derivation of the hydrodynamic equations and
the calculation of transport coefficients. By inspection, we can
see that the collision operator has five zero eigenvalues, which
correspond to the five conserved quantities (particle number,
momentum, and energy) in a two-body collision. The nonzero
eigenvalues are all positive and, for hard sphere or contact
interactions, approach a finite limiting value λM = σ3

z
[12,16].

The representation of Ĉ in the angle basis shows that the
eigenfunctions of the collision operator are states of definite
l and m. This allows us to use the indices n, l, m to label the
eigenfunctions |φn,l,m〉 of Ĉ and write

〈c′,l′,m′|φn,l,m〉 = φn,l(c
′)δl,l′δm,m′ , (19)

where φn,l(c) is the radial part of the eigenfunction. If we define
φn,l,m(c,θ,ϕ) = 〈c|φn,l,m〉, where |c〉 = |c,θ,ϕ〉 in spherical
coordinates, then the radial part of the eigenfunction is given
by

φn,l(c) = c
√

w(c)
∫

d�Y ∗m
l (θ,ϕ)φn,l,m(c,θ,ϕ). (20)

For example, the particle number conservation eigenfunction
is φ0,0,0(c) = 1 and the radial part is φ0,0(c) = c

√
4πw(c).

The radial part of the eigenfunctions satisfy the orthogonality
condition ∫ ∞

0
dcφ∗

n′,l(c)φn,l(c) = δn′,n. (21)

IV. RELATION OF TRANSPORT COEFFICIENTS
TO EIGENVALUES

In order to relate the transport coefficients to the eigenvalues
of the collision operator, we will equate frequencies obtained
from the linearized hydrodynamic equations to frequencies
derived directly from the U-U equation.

A. Hydrodynamic frequencies

A derivation of the linearized hydrodynamic equations
and the hydrodynamic normal mode frequencies for a dilute
fluid at temperatures above the critical temperature for Bose-
Einstein condensation can be found in Ref. [14]. For such a
fluid there are five microscopically conserved quantities and
therefore five hydrodynamic normal modes. The normal mode
frequencies are as follows.

ω1 = ω2 = − ik2η

mn0
, (22a)

ω3 = − ik2κ

n0cp

, (22b)

ω4 = −kcs − ik2

2mn0

[
ζ + 4

3
η + 4mκσ2

15kBσ4

]
, (22c)

ω5 = kcs − ik2

2mn0

[
ζ + 4

3
η + 4mκσ2

15kBσ4

]
, (22d)

where η is the shear viscosity, κ is the thermal conductivity,
and ζ is the bulk viscosity. The speed of sound is given by

cs =
√

5kBT σ4

3mσ2
, (23)

and the specific heats at constant pressure and constant density
are given by

cp = 5kBσ0σ4

2σ 2
2

(
5σ0σ4 − 3σ 2

2

2σ0σ2

)
(24)

and

cn = 3kB

2

(
5σ0σ4 − 3σ 2

2

2σ0σ2

)
, (25)

respectively.

B. Microscopic frequencies

To obtain microscopic expressions for the hydrodynamic
frequencies, we apply standard Rayleigh-Schroedinger degen-
erate perturbation theory to the Eq. (18), using the wave vector
k as the small parameter and vT kĉz as the perturbation. As
a first step, we expand ω and |φ〉 in powers of k so that
ω = ω(0) + kω(1) + k2ω(2) + · · · and |φ〉 = |φ(0)〉 + k|φ(1)〉 +
k2|φ(2)〉 + · · · and we then substitute these equations into
Eq. (18) and require that the coefficients of each power of
k vanish separately.

In the limit when k = 0, Eq. (18) can be written

−iω
(0)
β

∣∣φ(0)
β

〉 = −γ Ĉ
∣∣φ(0)

β

〉
. (26)

From this it is clear that the unperturbed eigenvectors |φ(0)
β 〉 are

just the eigenvectors of the collision operator Ĉ. Let us denote
the eigenvalues of the collision operator as λβ so that

Ĉ
∣∣φ(0)

β

〉 = λβ

∣∣φ(0)
β

〉
. (27)

We will denote the five degenerate “zero” eigenvalues of
Ĉ by β = 1, . . . ,5. The remaining positive nondegenerate
eigenvalues of Ĉ will be denoted by β = 6, . . . ,∞. The five
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eigenvectors of Ĉ with β = 1, . . . ,5 represent microscopi-
cally conserved quantities. When properly normalized [using
Eq. (12)] they are given by

〈
c
∣∣φ(0)

1

〉 = 1, (28a)〈
c
∣∣φ(0)

2

〉 = 2σ0√
3
(
5σ4σ0 − 3σ 2

2

)
(

c2 − 3σ2

2σ0

)
, (28b)

〈
c
∣∣φ(0)

3

〉 =
√

2σ0

σ2
cx, (28c)

〈
c
∣∣φ(0)

4

〉 =
√

2σ0

σ2
cy, (28d)

〈
c
∣∣φ(0)

5

〉 =
√

2σ0

σ2
cz. (28e)

Since λβ = 0 (β = 1, . . . ,5), we must apply degenerate pertur-
bation theory [14,17] to determine the linear combinations of
|φ(0)

β 〉 (β = 1, . . . ,5) appropriate for a convergent perturbation
expansion. They are

∣∣ψ (0)
1

〉 = ∣∣φ(0)
3

〉
, (29a)∣∣ψ (0)

2

〉 = ∣∣φ(0)
4

〉
, (29b)∣∣ψ (0)

3

〉 = −
√

1 − α2
∣∣φ(0)

1

〉 + α
∣∣φ(0)

2

〉
, (29c)∣∣ψ (0)

4

〉 = 1√
2

( − α
∣∣φ(0)

1

〉 − √
1 − α2

∣∣φ(0)
2

〉 + ∣∣φ(0)
5

〉)
, (29d)

∣∣ψ (0)
5

〉 = 1√
2

(
α
∣∣φ(0)

1

〉 + √
1 − α2

∣∣φ(0)
2

〉 + ∣∣φ(0)
5

〉)
. (29e)

where α =
√

3σ 2
2 /(5σ0σ4). For β > 6, |ψ (0)

β 〉 = |φ(0)
β 〉.

The perturbation expansion for the eigenfrequencies of the
linearized U-U equation can now be written

ωβ = −iγ λβ + vT k
〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β

〉
− iv2

T k2

γ

∑
β ′,λβ′ �=λβ

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′

〉 〈
ψ

(0)
β ′

∣∣ĉz

∣∣ψ (0)
β

〉
λβ ′ − λβ

+ · · · .

(30)

We will only need to consider the hydrodynamic modes β =
1, . . . ,5. The restriction in Eq. (30) that λβ ′ �= λβ indicates that
β ′ � 6. With these considerations, we may rewrite Eq. (30) as

ωβ = vT k
〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β

〉
− iv2

T k2

γ

∞∑
β ′=6

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′

〉 〈
ψ

(0)
β ′

∣∣ĉz

∣∣ψ (0)
β

〉
λβ ′

+ · · · . (31)

Since the eigenvalues λβ ′ are all positive, the term of order
k2 lies on the negative imaginary axis and the hydrodynamic
modes to decay towards global equilibrium.

C. First-order corrections

The first-order corrections to the hydrodynamic frequencies
are given by

ω
(1)
β = vT k

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β

〉
. (32)

It is straightforward to compute these quantities in the angle
basis and we find

ω
(1)
1 = ω

(1)
2 = ω

(1)
3 = 0 and − ω

(1)
4 = ω

(1)
5 = vT k

√
5σ4

6σ2
.

(33)

The frequencies ω
(1)
4 and ω

(1)
5 correspond to sound waves

traveling at the speed cs , which matches the result (23) obtained
from hydrodynamics.

D. Second-order corrections

The second-order corrections to the hydrodynamic frequen-
cies ωβ (β = 1, . . . ,5) are given by

ω
(2)
β = − iv2

T k2

γ

∞∑
β ′=6

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′

〉 〈
ψ

(0)
β ′

∣∣ĉz

∣∣ψ (0)
β

〉
λβ ′

. (34)

This expression is only of practical value when a small number
of terms are needed for the sum to converge. In the case of
the classical Maxwell gas, this is guaranteed because only a
limited number of inner products 〈ψ (0)

β ′ |ĉz|ψ (0)
β 〉 are nonzero.

For other classical soft potentials, the convergence comes from
the steadily increasing λβ ′ .

When the eigenvalue spectrum has a cutoff, as it does for
hard spheres and contact interactions [16], there are an infinite
number of terms with λβ ′ ≈ λM , and when they are summed
they give a finite contribution to the transport coefficient.
We can rearrange the summation in Eq. (34) to simplify
the computation of the large number of terms that must be
included. We rewrite Eq. (34) in the form

ω
(2)
β = − iv2

T k2

γ

[〈
ψ

(0)
β

∣∣ĉ2
z

∣∣ψ (0)
β

〉 − 〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β

〉2
λM

+
βmax∑
β ′,=6

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′

〉 〈
ψ

(0)
β ′

∣∣ĉz

∣∣ψ (0)
β

〉
μβ ′

]
, (35)

where μβ ′ = ( 1
λβ′ − 1

λM
)−1 and βmax is chosen so that

λβmax ≈ λM . In contrast to Eq. (34), only the first few terms
contribute to the sum in Eq. (35), because μβ ′ rapidly becomes
large. As we will show in Sec. V, Eq. (35) must be used to
obtain correct results for hard spheres and contact interactions.
In Appendix A, we show in more detail how Eq. (35) is
obtained from Eq. (34).

E. Microscopic expressions for the transport coefficients

We now equate the microscopic frequencies to the hydrody-
namics frequencies. As we show in Appendix B, the transport
coefficients can be written as

η

ξ
= σ4

2σ3
+ 8πσ0

15z

n
(2)
max∑

n=0

|Qn|2
μn,2

, (36)
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2mκ

5kBξ
=

(
7σ6σ2 − 5σ 2

4

)
4σ2σ3

+ 8πσ0

15z

n
(1)
max∑

n=1

|Rn|2
μn,1

, (37)

ζ

ξ
= 8πσ0

9z

n
(0)
max∑

n=2

|Sn|2
μn,0

, (38)

where ξ = 1
8πa2

√
πmkBT

2 and

Qn =
∫ ∞

0
dcc3

√
w(c)ψ (0)

n,2(c), (39)

Rn =
∫ ∞

0
dcc2

√
w(c)

(
c2 − 5σ4

2σ2

)
ψ

(0)
n,1(c), (40)

Sn =
∫ ∞

0
dcc3

√
w(c)ψ (0)

n,0(c). (41)

The lower limits of the n summations come from the condition
that λn,l > 0. The upper limits of the n summations, n(l)

max, are
the analogy to βmax for a specific value of l.

The expression for the bulk viscosity ζ implies that it is
zero, because Sn is identically zero for n � 2. This is easily
seen if we note that c3√w(c) is a linear combination of ψ

(0)
0,0(c)

and ψ
(0)
1,0(c) [see Eq. (20)], and thus the function c3√w(c) is

orthogonal to ψ
(0)
n,0(c) for n � 2. Only the two values S0 and S1

are nonzero, but these are not included in the sum because λ0,0

and λ1,0 are zero. The fact that a monatomic gas has zero bulk
viscosity is well known [18,19]. Here we have shown that this
result holds true in a quantum treatment of the noncondensed
Bose gas.

V. NUMERICAL COMPUTATION OF
TRANSPORT COEFFICIENTS

Numerical computation of transport coefficients requires a
numerical computation of the eigenvalues and eigenvectors of
the collision operator. We form a matrix representation of the
collision operator and diagonalize it [16,20]. Our results are
obtained by performing the calculation with several different
matrix sizes, and extrapolating these results to an infinite
matrix size when appropriate.

In Fig. 1 we show our numerical results for the transport
coefficients of a degenerate noncondensed boson gas. The
transport coefficients are plotted versus the reduced temper-
ature T/TC , where TC is the critical temperature for Bose-
Einstein condensation. Note that the transport coefficients have
an overall dependence on

√
T , which is divided out in the

dimensionless transport coefficients. We also plot the Eucken
number, which is defined as mκ/(ηcn), where cn is given in
Eq. (25).

Filled circles (black) depict the “exact” U-U equation result
of Eqs. (36) and (37) (with contact potential). The straight
solid (blue) line depicts the U-U value as T/TC → ∞ (the
Boltzmann limit). The straight dashed (red) line depicts the
approximate classical result obtained by using only the lowest
order sonine polynomial [6,14]. The open circles (gray) show
the results obtained by using Eq. (34) instead of Eq. (35) and
ignoring the cutoff behavior.

The transport coefficients for the degenerate boson gas
are indistinguishable from the classical Boltzmann values
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FIG. 1. (Color online) (a) Shear viscosity η, (b) thermal con-
ductivity κ , and (c) the Eucken number versus temperature in
dimensionless units. Solid circles (black) indicate the results of
Eqs. (36) and (37), open circles (gray) show the results when Eq. (34)
is used instead of Eq. (35). The straight dashed line (red) shows the
classical lowest-order approximation using one Sonine polynomial
and the straight solid line (blue) show the results of Eqs. (36) and
(37) in the Boltzmann limit T → ∞.

for temperatures above 20TC , but become sensibly different
for T < 10TC . As one approaches TC , the shear viscosity
decreases to a value that is approximately 82% of its
value at high temperature. The thermal conductivity shows
a minimum around T = 1.5TC at approximately 95% of its
high-temperature values and then increases as the temperature
approaches TC , perhaps anticipating the appearance of second
sound [14,21] below TC .

The Eucken number is useful for comparing our results to
other systems and experiments, because it is independent of the
overall interaction strength. To test the validity of our result,
we compare Eucken numbers in the classical limit. We have
calculated the Eucken number for soft potentials (V (r) ∼ r−n),
as a function of n, in the classical limit (T/TC → ∞). This
is accomplished by a using a generalization of the polynomial
method for the Maxwell gas [20]. The results of this calculation
are shown in Fig. 2. With a potential that goes as r−4, the
Eucken number is 5/2. As the power of 1/r is increased, the
Eucken number slightly increases at first and then drops toward
the hard sphere result (thick black line), which takes account
of the cutoff. At very high powers of 1/r , increasingly large
matrix sizes are needed to see convergence toward the hard

042109-5



ERICH D. GUST AND L. E. REICHL PHYSICAL REVIEW E 87, 042109 (2013)

4 5 6 8 10 15 20 30 40 50 70 100
2.25

2.30

2.35

2.40

2.45

2.50

2.55

Power of 1 r

Eu
ck
en
N
um
be
r

400
350
300
250
200

Matrix Size

FIG. 2. (Color online) Variation of the Eucken number with the
power of 1/r in the classical limit calculated with several matrix
sizes. The thick solid line near the bottom shows the hard sphere result
obtained by using Eq. (35). The thin solid line near the top shows
the hard sphere result obtained when using Eq. (34). The dashed
line (red) shows the classical lowest-order approximation using one
Sonine polynomial and is exactly equal to 5/2. The Eucken number
for the Maxwell gas (r−4) is also exactly 5/2.

sphere result. We find that the Eucken number of a true hard
sphere gas is approximately 2.27.

If Fig. 2, the thin line (gray) shows the hard sphere
result when the cutoff behavior is ignored by directly using
Eq. (34). The dashed line (red) shows the approximate hard
sphere result of 5/2 that is obtained by using only one
Sonine polynomial. The Eucken number for soft potentials
are close to both of these values, but as the potential
becomes harder (n → ∞), it approaches the true hard sphere
value.

It is interesting to note that experimentally observed Eucken
numbers [22] for high-temperature dilute gases are much
closer to 5/2 than they are to the true hard sphere result. This
should not be taken as validation of the “cutoff-ignoring” or
“one Sonine” methods, because these systems in fact interact
via a soft repulsive potential. One might consider using the
observed Eucken number of the gas to estimate the power of
1/r in the interaction potential.

These results are applicable to BECs because the low-
energy bosons interact via a contact potential [23], so the
eigenvalues of the collision operator will have a cutoff, and
one must be careful to include cutoff effects when computing
transport properties.

VI. CONCLUSION

We have derived an expression for the transport coefficients
of a monatomic dilute Bose gas that obeys the Uehling-
Uhlenbeck kinetic equation. Our expression relates the trans-
port coefficients to a spectral decomposition of the linearized
collision operator. This illuminates the relation between the
collision operator, the microscopic hydrodynamic modes, and
the transport coefficients.

We have calculated the transport coefficients of a Bose
gas interacting with a contact potential as they vary with
temperature. Overall, we find that the transport coefficients
of the Bose gas decrease faster than a classical gas with
decreasing temperature, owing to the increased scattering
produced by the Bose enhancement factors in the collision
integral. We also observe a sharp increase in the thermal
conductivity as the temperature nears TC , which may be a
precursor of the onset of second sound in the condensate. Using
the U-U equation instead of the Boltzmann equation does not
change the fact the the bulk viscosity for a monatomic gas is
zero.

Finally, we have shown that when an eigenvalue cutoff
exists, as it does for contact interactions in the U-U collision
operator, it is important to treat the cutoff correctly when
calculating transport properties.
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APPENDIX A: EXPRESSION FOR FREQUENCY
CORRECTIONS IN THE PRESENCE OF

AN EIGENVALUE CUTOFF

In this appendix, we demonstrate how Eq. (35) is derived
from Eq. (34). We begin with the crucial assumption that
beyond a certain order (β ′) the numerically calculated eigen-
values/eigenvectors become erroneous due to truncation errors
in the matrix representation of the collision operator. The
highest reliable eigenvalue/eigenvector pair will be labeled
with βmax. The rapid convergence of eigenvalues to their
limiting value makes it acceptable to replace the remaining
eigenvalues with the limiting value λM .

We seek a form of Eq. (34) that does not explicitly depend
on the eigenvalues or eigenvectors with β ′ > βmax. To do this,
we first split the sum in Eq. (34) into two parts,

ω
(2)
β = − iv2

T k2

γ

[
βmax∑
β ′=6

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′

〉 〈
ψ

(0)
β ′

∣∣ĉz

∣∣ψ (0)
β

〉
λβ ′

+ 1

λM

∞∑
β ′>βmax

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′

〉 〈
ψ

(0)
β ′

∣∣ĉz

∣∣ψ (0)
β

〉]
, (A1)

where the first term accounts for the eigenmodes which are
given accurately from the numerical calculation, and the
second term contains all higher-order eigenmodes, which are
not accurately determined by the numerical calculation.

To simplify the second term on the right-hand side of
Eq. (A1), we rewrite it as

∞∑
β ′>βmax

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′

〉 〈
ψ

(0)
β ′

∣∣ĉz

∣∣ψ (0)
β

〉

=
∞∑

β ′′=1

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′′

〉 〈
ψ

(0)
β ′′

∣∣ĉz

∣∣ψ (0)
β

〉
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−
5∑

β ′′=1

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′′

〉 〈
ψ

(0)
β ′′

∣∣ĉz

∣∣ψ (0)
β

〉

−
βmax∑
β ′′=6

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′′

〉 〈
ψ

(0)
β ′′

∣∣ĉz

∣∣ψ (0)
β

〉
. (A2)

The first term is identified as 〈ψ (0)
β |ĉ2

z |ψ (0)
β 〉, due to the fact that

the eigenvectors |ψ (0)
β ′′ 〉 with β ′′ = 1, . . . ∞ form a complete

set. The second term is identified as 〈ψ (0)
β |ĉz|ψ (0)

β 〉2, due to

the fact that the eigenvectors |ψ (0)
β 〉 satisfy 〈ψ (0)

β |ĉz|ψ (0)
β ′′ 〉 =

δβ,β ′′ 〈ψ (0)
β |ĉz|ψ (0)

β 〉 for β ′′ = 1, . . . 5. The third term can be
combined with the first term of Eq. (A1).

Using these simplifications, we obtain

ω
(2)
β = − iv2

T k2

γ

[〈
ψ

(0)
β

∣∣ĉ2
z

∣∣ψ (0)
β

〉 − 〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β

〉2
λM

+
βmax∑
β ′=6

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′

〉 〈
ψ

(0)
β ′

∣∣ĉz

∣∣ψ (0)
β

〉
μβ ′

]
(A3)

where μβ ′ = ( 1
λβ′ − 1

λM
)−1.

This approximate expression for ω
(2)
β does not depend

on any of the unreliable eigenmodes or eigenvalues. It is
approximate because in deriving it, we have replaced a portion
of the eigenvalues with λM . The appropriateness of this
replacement may be judged by examining the values μβ ′ ,
which quickly become large as the eigenvalues approach λM .
A negative value of μβ ′ indicates that λβ ′ is erroneous and we
use this as the condition for determining βmax.

APPENDIX B: CALCULATION OF FREQUENCY
CORRECTIONS

In this appendix, we give some details of the calculations
needed to obtain Eqs. (36), (37) and (38) from the general
expression Eq. (35).

The second-order corrections to the hydrodynamic frequen-
cies can be written as

ω
(2)
β = − iv2

T k2

γ

[
�β

λM

+ �β

]
, (B1)

where we have defined

�β = 〈
ψ

(0)
β

∣∣ĉ2
z

∣∣ψ (0)
β

〉 − 〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β

〉2
, (B2)

and

�β =
βmax∑
β ′=6

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
β ′

〉 〈
ψ

(0)
β ′

∣∣ĉz

∣∣ψ (0)
β

〉
μβ ′

. (B3)

Or, more explicitly,

�β =
∑
l,m

λn,l<λM∑
n,λn,l>0

〈
ψ

(0)
β

∣∣ĉz

∣∣ψ (0)
n,l,m

〉 〈
ψ

(0)
n,l,m

∣∣ĉz

∣∣ψ (0)
β

〉
μn,l

. (B4)

Simplification of Eqs. (B2) and (B4) can be done relatively
quickly by using the angle basis defined in Sec. III A. First

we must express the zeroth-order eigenstates in terms of the
|c,l,m〉 basis. They are

〈
c,l,m

∣∣ψ0
1

〉 =
√

4πσ0w(c)

3σ2
c2δl,1(δm,1 − δm,−1), (B5a)

〈
c,l,m

∣∣ψ0
2

〉 = i

√
4πσ0w(c)

3σ2
c2δl,1(δm,1 + δm,−1), (B5b)

〈
c,l,m

∣∣ψ0
3

〉 = 2σ2

5σ4s2
c
√

4πw(c)

(
c2 − 5σ4

2σ2

)
δl,0δm,0, (B5c)

〈
c,l,m

∣∣ψ0
4

〉 = c

√
4πσ0w(c)

3σ2

(
−

√
2σ2

5σ4
c2δl,0 + cδl,1

)
δm,0,

(B5d)

〈
c,l,m

∣∣ψ0
5

〉 = c

√
4πσ0w(c)

3σ2

(√
2σ2

5σ4
c2δl,0 + cδl,1

)
δm,0.

(B5e)

Expressing the operator ĉz in the |c,l,m〉 basis provides and
elegant an economical way to evaluate �β and �β . We can do
this by inserting identity operators to obtain

ĉz =
∫ ∞

0
dc

∑
l,m

∫ ∞

0
dc′ ∑

l′,m′

∫
dc1|c,l,m〉

× 〈c,l,m|ĉz|c1〉〈c1|c′,l′,m′〉〈c′,l′,m′|. (B6)

We then use the definitions (15) to get

ĉz =
∫ ∞

0
dc

∑
l,m

∑
l′,m′

|c,l,m〉

×
[∫

d�czY
∗m
l (θ,φ)Ym′

l′ (θ,φ)

]
〈c,l′,m′| (B7)

Performing the angular integration in the bracketed term
involves Wigner 3-j symbols, but can be simplified to

ĉz =
∫ ∞

0
dcc

∞∑
l=0

l∑
m=−l

|c,l,m〉

×(Jl+1,m〈c,l + 1, − m| + Jl,m〈c,l − 1, − m|), (B8)

where Jl,m =
√

(l−m)(l+m)
(2l−1)(2l+1) . We can also obtain a compact

expression for ĉ2
z in the angle basis.

Calculating �β using the expressions (B5) and (B8), one
obtains

�1 = �2 = σ4

2σ2
, (B9)

�3 = σ2

2σ4

7σ6σ2 − 5σ 2
4

5σ0σ4 − 3σ 2
2

, (B10)

�4 = �5 = 7σ6σ2 − σ 2
4

12σ2σ4
. (B11)

To demonstrate the method of calculation for �β , we outline
the calculation of �1 below. Starting with Eq. (B4) with β = 1,
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we begin by inserting the expression (B8) for both occurrences
of ĉz and using the relations in Eqs. (B5) and (19) to obtain

�1 = 4πσ0

3σ2

n
(l)
max∑

n,λn,l>0

∑
l,m

1

μn,l

∑
l1,m1

∑
l2,m2

×
∫ ∞

0
dc1c

3
1

√
w(c1)ψn,l(c1)

∫ ∞

0
dc2c

3
2

√
w(c2)ψ∗

n,l(c2)

× δl1,1
(
δm1,1 − δm1,−1

)
δm,−m1δl,l2

(
δm2,−1 − δm2,1

)
δm,m2

× (
Jl1+1,m1δl,l1+1 + Jl1,m1δl,l1−1

)(
Jl2+1,m2δl2+1,1

+ Jl2,m2δl2−1,1
)
. (B12)

Performing the summations and some minor simplifications,
we get

�1 = 8πσ0

15σ2

n
(2)
max∑

n=0

|Qn|2
μn,2

, (B13)

where Qn is given in Eq. (39). In a similar calculation, we find
that �2 = �1 and that

�3 = 16πσ 2
2 σ0

15σ4
(
5σ4σ0 − 3σ 2

2

) n
(1)
max∑

n=1

|Rn|2
μn,1

, (B14)

�4 = �5 = 8πσ0

45σ4

n
(1)
max∑

n=1

|Rn|2
μn,1

+ 16πσ0

45σ2

n
(2)
max∑

n=0

|Qn|2
μn,2

+ 4πσ0

9σ2

n
(0)
max∑

n=2

|Sn|2
μn,0

, (B15)

where Rn and Sn are those given in Eqs. (40) and (41).
In carrying out the calculation of �β for this five cases (β =

1, . . . ,5), we find that there is only one remaining summation.
The range of this summation must be restricted so that 0 <

λn,l < λM . We define n(l)
max in analogy with βmax as the largest

value of n for which the numerically computed λn,l is less than
λM for a given value of l.
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[12] I. Kuščer and M. M. R. Williams, Phys. Fluids 10, 1922 (1967).
[13] Byung Chan Eu, Transport Coefficients of Fluids (Springer-

Verlag, Berlin, 2006).

[14] L. E. Reichl, A Modern Course in Statistical Physics, 3rd ed.
(Wiley-VCH, Weinheim, 2009).

[15] E. D. Gust and L. E. Reichl, arXiv:1202.3418 (2012).
[16] E. D. Gust and L. E. Reichl, Phys. Rev. E 81, 061202 (2010).
[17] Eugene Merzbacher, Quantum Mechanics (Wiley, New York,

1961).
[18] Walter G. Vincenti and Charles H. Kruger, Jr., Introduction to

Physical Gas Dynamics (Robert E. Krieger, Huntington, New
York, 1967).

[19] Rick E. Graves and Brian M. Argrow, J. Thermophys. Heat
Transfer 13, 337 (1999).

[20] E. D. Gust and L. E. Reichl, Phys. Rev. E 79, 031202 (2009).
[21] S. J. Putterman, Superfluid Hydrodynamics (North-Holland,

Amsterdam, 1974).
[22] CRC Handbook of Chemistry and Physics, 93rd ed. (CRC Press,

Boca Raton, 2012), pp. 6–21, 6–229, 6–240.
[23] C. J. Pethick and H. Smith, Bose-Einstein Condensation in

Dilute Gases (Cambridge University Press, Cambridge, 2002).

042109-8

http://dx.doi.org/10.1007/BF01339761
http://dx.doi.org/10.1103/PhysRev.43.552
http://dx.doi.org/10.1103/PhysRevD.52.3591
http://dx.doi.org/10.1103/PhysRevC.53.3069
http://dx.doi.org/10.1103/PhysRevA.63.033608
http://dx.doi.org/10.1007/BF01009709
http://dx.doi.org/10.1103/PhysRevD.69.116004
http://dx.doi.org/10.1103/PhysRevD.69.116004
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1103/PhysRevC.77.034905
http://dx.doi.org/10.1103/PhysRevA.86.013617
http://dx.doi.org/10.1103/PhysRevA.86.013617
http://dx.doi.org/10.1063/1.1762388
http://arXiv.org/abs/arXiv:1202.3418
http://dx.doi.org/10.1103/PhysRevE.81.061202
http://dx.doi.org/10.2514/2.6443
http://dx.doi.org/10.2514/2.6443
http://dx.doi.org/10.1103/PhysRevE.79.031202



