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Percolation thresholds on planar Euclidean relative-neighborhood graphs
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In the present article, statistical properties regarding the topology and standard percolation on relative
neighborhood graphs (RNGs) for planar sets of points, considering the Euclidean metric, are put under scrutiny.
RNGs belong to the family of “proximity graphs”; i.e., their edgeset encodes proximity information regarding
the close neighbors for the terminal nodes of a given edge. Therefore they are, e.g., discussed in the context
of the construction of backbones for wireless ad hoc networks that guarantee connectedness of all underlying
nodes. Here, by means of numerical simulations, we determine the asymptotic degree and diameter of RNGs and
we estimate their bond and site percolation thresholds, which were previously conjectured to be nontrivial. We
compare the results to regular 2D graphs for which the degree is close to that of the RNG. Finally, we deduce the
common percolation critical exponents from the RNG data to verify that the associated universality class is that
of standard 2D percolation.
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I. INTRODUCTION

The pivotal question in standard percolation [1,2] is that of
connectivity. A basic example is 2D random bond percolation,
where one studies a lattice in which a random fraction p of
the edges is “occupied.” Clusters composed of adjacent sites
joined by occupied edges are then analyzed regarding their
geometric properties. Depending on the fraction p of occupied
edges, the geometric properties of the clusters change, leading
from a phase with rather small and disconnected clusters to a
phase where there is basically one large cluster covering the
lattice. Therein, the appearance of an infinite, i.e., percolating,
cluster is described by a second-order phase transition. There
is a wealth of literature on a multitude of variants on the above
basic percolation problem that model all kinds of phenomena,
ranging from simple configurational statistics [3] to “string”-
bearing models that also involve a high degree of optimization,
e.g., describing vortices in high Tc superconductivity [4,5],
the negative-weight percolation problem [6,7], and domain
wall excitations in disordered media such as 2D spin glasses
[8,9] and the 2D solid-on-solid model [10]. Besides discrete
lattice models there is also interest in studying continuum
percolation models, where recent studies reported on highly
precise estimates of critical properties for spatially extended,
randomly oriented, and possibly overlapping objects with
various shapes [11]. Further, percolation phenomena on planar
random graphs and their duals have been studied extensively in
the past [12–14]. Among the latter graphs are, e.g., 2D Voronoi
graphs related to a planar set of points, and their duals, given
by the Delaunay triangulation of an associated auxiliary set
of points [13]. In the latter reference the general interest of
computing percolation thresholds for other random systems is
declared.

Here, we consider the Euclidean relative neighborhood
graph (RNG) for a planar set of, say, N points and determine
the thresholds for bond and site percolation on this type
of random graph. Subsequently, a graph is referred to as
G = (V,E), where V is a set of the nodes [15], and where
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E signifies the respective edgeset. RNGs are based on the
concept of relative closeness [16]. The nodeset of a N -point
RNG is given by a set of N distinct d-dimensional points; i.e.,
V = {p1,p2, . . . ,pN }, where pi = (pi,1, . . . ,pi,d ). Further,
consider a metric Lr , under which for two points pi and pj

the distance measure dr (pi,pj ) is given by

dr (pi,pj ) =
[

d∑
m=1

|pi,m − pj,m|r
]1/r

. (1)

Then, the edgeset E of the RNG is obtained by connecting
two points pi and pj using an undirected edge {pi,pj } if they
are at least as close to each other as to any third point pk; see
Fig. 1(a). Hence, in order to get joined by an edge, the distance
dr (pi,pj ) of the two points has to satisfy the relation

dij ≡ dr (pi,pj ) � max[dr (pi,pk),dr (pj ,pk)] (2)

for all k = 1 . . . N , k �= i,j . If Eq. (2) is satisfied, then the two
nodes are said to be relatively close. In geometrical terms, for
each pair pi and pj of points, the respective distance dij can
be used to construct the lune, lune(pi,pj ). The lune is given
by the intersection of two d-dimensional hyperspheres with
equal radius dij (with respect to the prevailing metric), which
are centered at pi and pj . If no other point pk ∈ V \ {pi,pj }
lies within lune(pi,pj ), i.e., if the lune is empty, Eq. (2) holds
and pi and pj are thus relatively close. In the remainder of
the article, if not stated explicitly, we consider sets of points
in dimension d = 2 for the Euclidean metric L2.

For a planar set of three points (p1,p2,p3) ≡ (i,j,k), the
above “selection criterion” for RNG edges is illustrated in
Fig. 1(a). Therein, the individual lunes are shown as shaded
regions. Since lune(i,j ) (encompassed by a dashed line) and
lune(j,k) (encompassed by a dotted line) enclose no further
point, the respective pairs of nodes are joined by undirected
edges. Only lune(i,k) (encompassed by a solid line) is not
empty. It encloses the point j , hence the points i and k are
not joined by an undirected edge. The resulting RNG is, thus,
G = (V = {i,j,k},E = {{i,j},{j,k}}).

The RNG for a given set of points considering an Euclidean
metric was introduced by Toussaint in 1980 (see Ref. [16]),
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FIG. 1. Illustration of the Euclidean relative neighborhood graph
(RNG) and its relation to the Denlaunay triangulation (DT) and
minimum-weight spanning-tree (MST) for the same set of points.
(a) In a RNG, two points, say i ≡ pi and j ≡ pj , are connected by
an undirected edge if no third point lies within lune(i,j ) (see text
for more details). Further, a slightly less trivial example for N = 30
points, showing (b) the RNG (black edges) as a spanning subgraph
of the DT (black and grey edges) and (c) the MST (black edges) as a
spanning subgraph of the RNG (black and gray edges).

who discussed its ability to extract perceptual relevant in-
formation from a planar set of points. This is relevant in
the fields of computational geometry and pattern recognition,
where important questions relate to the problem of finding
structure behind the pattern displayed by a set of points.
RNGs find further application in the construction of planar
“virtual backbones” for ad hoc networks (i.e., collections of
radio devices without fixed underlying infrastructure), along
which information can be efficiently transmitted [17–20].
In Toussaint’s seminal article, it was shown (by means of
some illustrative examples) that, depending on the precise
distribution of points in the plane, an instance of a RNG might
behave similar to a minimum weight spanning tree (MST)
(i.e., a spanning tree in which the sum of Euclidean edge
weights is minimal; see Ref. [21]) or a Delaunay triangulation
(DT) (in a DT, two nodes i,j ∈ V are joined by an edge, if
there is a circle passing through them that contains no other
points k ∈ V \ {i,j}; see Ref. [22]) for the underlying set of
points. Toussaint showed that for a planar set of points, the
MST is a spanning subgraph [15] of the RNG, and further,
the RNG is a spanning subgraph of the respective DT. So as
to facilitate intuition, an exemplary RNG involving N = 30
points is shown in Figs. 1(b) and 1(c). In Fig. 1(b), the RNG
is highlighted as a subgraph of the DT, and in Fig. 1(c), the
MST is indicated as a subgraph of the RNG. Finally, Ref. [16]
discusses two algorithms that allow us to compute the RNG
for a given set of points, termed ALG-1 and ALG-2. ALG-1
represents a naive implementation of the RNG construction
rule (see Sec. II) that terminates in time O(N3) and is correct
for d-dimensional sets of points as well as for non-Euclidean
metrics. In contrast to this, ALG-2 is rather fast but limited
to the planar case and to the Euclidean metric. Being slightly
more “special,” ALG-2 is based on the observation that in
the planar case and for an Euclidean metric the RNG is
a subgraph of the DT. Since there are fast algorithms that
allow us to compute a DT for a planar set of points [22,23]
(terminating in time O[N log(N )]), a considerable speedup
can be achieved, resulting in a worst case running time O(N2).
Further, amending ALG-2 by standard techniques to accelerate
“range queries” yields an improved worst-case running time
O[N log(N )] (see discussion in Sec. II).

FIG. 2. Bond percolation on an instance of a relative neighbor-
hood graph for a planar set of N = 512 points. The subfigures relate
to a fraction p of occupied edges, where (a) p = 0.72 (subcritical),
(b) p = 0.79 (close to the critical point), and (c) p = 0.85 (super-
critical). In the subfigures, nodes and edges that comprise the largest
cluster on the lattice are colored black, all other nodes and edges are
colored gray.

Here, bond percolation means that for a given instance
of a RNG we occupy a fraction p of the graph edges and
assess the statistics of clusters of adjacent sites connected by
occupied edges. Examples of bond percolation for an instance
of a RNG for different values of p are shown in Figs. 2(a)
and 2(c). As pointed out above, percolation on the DT of a
given point set in the plane is well understood [13]. Regarding
the subgraph hierarchy MST ⊂ RNG ⊂ DT, the question as to
which subgraph of the DT still features a nontrivial percolation
transition was addressed recently; see Ref. [24]. Intuitively, for
the MST, the site and bond percolation thresholds are 1; i.e., the
transition points are trivial. Considering the RNG for a planar
set of points and using the so called “method of the rolling ball,”
Ref. [24] established the existence of nontrivial site and bond
percolation thresholds by analytic means. However, numerical
estimates for the transition points are not provided in the latter
reference. Here, to elaborate on that, we perform numerical
simulations in order to determine the thresholds of bond and
site percolation on Euclidean RNGs for planar sets of points.
Since the RNGs are subgraphs of DTs we can expect that the
critical exponents that characterize the percolation transition
on RNGs equal the exponents of standard 2D percolation.
The transition is hence expected to be in the 2D percolation
universality class and we are primarily interested in the site
and bond percolation thresholds on Euclidean RNGs.

The remainder of the presented article is organized as
follows. In Sec. II, we introduce the algorithm we use in order
to compute instances of RNGs. In Sec. III, we report on the
numerical simulations and the analysis of the topological and
percolation properties of RNGs. Section IV concludes with a
summary.

II. CONSTRUCTION OF RNGS

Note that a straightforward implementation of the above
RNG characteristics can be achieved by considering each pair
of points [of which there are O(N2)] and checking whether
one of the remaining N2 points lies within their lune to rule
out that they are RNG neighbors. This, however, yields an
algorithm with running time O(N3), referred to as ALG-1 by
Ref. [16]. (However, note that a tremendous speed-up can be
achieved by realizing that already a single point within a given
lune is sufficient to rule out that the respective lune-defining
points are RNG-neighbors. Hence, as soon as for the lune of a
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particular pair of points the first such “intruder” is identified,
one might safely proceed to the next pair of points.)

For the planar case and for the Euclidean metric a more
efficient algorithm, termed ALG-2 (see Ref. [16]), can be
devised. Based on the observation that under the above
assumptions the RNG is a subgraph of the DT, ALG-2 can
be summarized by the following two steps: (i) construct
the DT GDT = (VDT,EDT) for the planar set V of points,
and (ii) prune the edgeset EDT of the DT by deleting all
{pi,pj } ∈ EDT for which lune(pi,pj ) is not empty. The latter
cleanup phase then results in the edgeset E of the RNG for
the underlying pointset. So as to compute the DT of V in
step (i) above, we use the Qhull computational geometry
library [23] (the DT for a set of N points can be computed
in time O[N log(N )] [22,23]). For the implementation of step
(ii) we use the “cell-list” method. Therein, the unit square,
within which the N points are distributed uniformly at random,
is subdivided into L × L cells (where L = √

N ), and the 2D
cell-indices (i1,i2) = (�Lpi,1�,�Lpi,2�) for all points pi ∈ V

are determined. Each cell then is equipped with a list of the
points it contains. If the lune of a particular pair {pi,pj } of
points then needs to be checked for emptiness, only a small
number nij of cells close to the cells with indices (i1,i2) and
(j1,j2) have to be addressed to reach all candidate points. Note
that the number nij of cells to be checked depends on the
precise distance dij between the respective points. Typically,
for large N , nij is small for points located in the “bulk” of
the unit square, and nij can be rather large for points that
are located along the circumference of the convex hull of V .
The speed-up achieved by the cell method is quite impressive.
The average running time 〈tN 〉 of the improved algorithm
ALG-2-CELL, for small systems of size N < 200 averaged
over 500 instances, is illustrated in Fig. 3(a). The solid line
indicated in the figure is a fit to a function of the form
〈tN 〉 ∝ N log(N ). However, note that for N not too small,
the data also fits well to an effective power-law function that
increases ∝N1.28(2).
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FIG. 3. Finite-size scaling analysis for (a) the average running
time 〈tN 〉 of the RNG algorithm for comparatively small system sizes
N = 12 . . . 192, (b) the main plot shows the average degree 〈kN 〉 of
the RNG nodes, and the inset illustrates the power-law correction to
the scaling behavior of the average RNG diameter 〈RN 〉.

Subsequently, we will use ALG-2-CELL to compute the
Euclidean RNG for 2D sets of points and we compute the
bond and site percolation thresholds on these graphs.

III. RESULTS

In the current section we will use ALG-2-CELL to
compute the Euclidean RNG for planar sets of N = 144
(=122) . . . 36 864 (=1922) points, where results are averaged
over 2000 independent RNG instances. In Sec. III A, we report
on some topological properties of RNGs and then we compute
the bond and site percolation thresholds on these graphs. The
data analysis for the respective bond percolation problem is
discussed in detail in Sec. III B, and the discussion for the site
percolation problem in Sec. III C is kept more brief. A visual
account of bond percolation on an instance of a N = 512 RNG,
i.e., a 2D system of effectively L × L points, is given in
Figs. 2(a)–2(c).

A. Topological properties of planar RNGs

First, we discuss two topological characteristics of RNGs,
namely the average node degree and diameter (i.e., the longest
among all shortest paths) of the RNG in the limit N → ∞.
Bear in mind that the nodes of a N -point RNG are distributed
uniformly at random in the unit square. Thus, one might expect
that the scaling behavior of observables in a 2D RNG depends
on the effective system length L = N1/2.

Average degree of the RNG. The scaling behavior of the
average degree 〈kN 〉 as function of the RNG size N is shown in
Fig. 3(b). Therein, the solid line indicates a fit to the function
〈kN 〉 = k∞ − aN−b, where we find the asymptotic average
degree k∞ = 2.5576(3), a = 1.85(5), and b = 0.503(5) for a
reduced χ -square value χ2

red = 0.76 (the fit had an overall
number of ndof = 9 (number of data points) − 3 (number of fit
parameters) = 6 degrees of freedom [25]). For the largest
system size considered, i.e., N = 36 864, the probability
mass function of the node degrees reads P [deg(i) = 1] =
0.0264, P [deg(i) = 2] = 0.4442, P [deg(i) = 3] = 0.4842,
P [deg(i) = 4] = 0.0451, P [deg(i) = 5] = 0.0001. No nodes
with deg(i) = 6 were observed.

Average diameter of the RNG. The average diameter 〈RN 〉
of the RNG as function of N is summarized in the inset of
Fig. 3(b). For a planar graph like the RNG one can already
expect the approximate scaling behavior 〈RN 〉 ∝ N1/2. Upon
analysis we found that the data fits best to a function of
the form 〈RN 〉 = R0N

1/2[1 + bN−ω/2], where ω indicates
a correction-to-scaling exponent. We estimate R0 = 1.75(2),
b = 0.42(1), and ω = 0.32(3) for a reduced χ -square value
χ2

red = 1.64 (considering ndof = 6 degrees of freedom). In the
inset of Fig. 3(b), we aimed to extract the correction to scaling
according to 〈RN 〉N−1/2 − R0 ∝ N−ω/2. The numerical value
of R0 can also be set into a context [16]: for the MST one
has 〈RMST

N 〉 = RMST
0 N1/2, where 0.5 � RMST

0 � 0.707; see
Refs. [26,27]. Since the RNG is a supergraph of the MST,
one thus might expect to find R0 � RMST

0 .

B. Results for bond percolation on planar RNGs

To simulate the bond-percolation problem on instances
of RNGs, we implemented the highly efficient, union-find
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based algorithm due to Newman and Zif; see Refs. [3,28].
Therein, initially, each node comprises its own (single-node)
cluster. We proceed by choosing edges from E, one after the
other, in random order. For each edge we check whether its
terminal nodes belong to different clusters. If this is the case,
the respective clusters are merged using the “union-by-size”
approach. Once all edges are considered, the particular RNG
instance is completed. In principle, this allows us to compute
observables very efficiently with a resolution of O(1/|E|).
For a more clear presentation, and so as to be able to compute
proper errorbars for the observables below, we consider 2000
independent RNG instances for a given value of N and
approximately 80 supporting points on the p axis (in the
vicinity of the critical point) for which averages are computed.
The observables we consider below can be rescaled following
a common scaling assumption. Below, this is formulated for
a general observable y(p,L). This scaling assumption states
that if the observable obeys scaling, it might be rewritten as

y(p,L) = L−bf [(p − pc)L1/ν], (3)

wherein ν and b represent dimensionless critical exponents (or
ratios thereof, see below), pc signifies the critical point, and
f [·] denotes an unknown scaling function [2,29]. Following
Eq. (3), data curves of the observable y(p,L) recorded at
different values of p and L collapse, i.e., fall on top of each
other, if y(p,L)Lb is plotted against the combined quantity
ε ≡ (p − pc)Lν and if further the scaling parameters pc, ν,
and b that enter Eq. (3) are chosen properly. The values of the
scaling parameters that yield the best data collapse determine
the numerical values of the critical exponents that govern
the scaling behavior of the underlying observable y(p,L).
In order to obtain a data collapse for a given set of data
curves we here perform a computer-assisted scaling analysis;
see Refs. [30,31].

The aim of such a “data-collapse” procedure is to exploit
finite-size effects in order to estimate the critical parameters
that govern the scaling behavior of the observables of interest.
In this regard, note that systems of small size might exhibit
systematic corrections to scaling that possibly obscure the
scaling behavior of observables, represented by a scaling
assumption of the form of Eq. (3); see Ref. [29]. For finite-size
scaling analyses that utilize the data-collapse technique, it is
thus common practice to limit the analysis to the larger system
sizes, for which corrections to scaling are less pronounced,
and to discard small systems, which are presumably affected by
stronger systematic corrections to scaling [31]. In the presented
study, if not stated explicitly, the scaling analysis is limited to
the three largest systems, N � 9216. The resulting numerical
estimates of the critical thresholds and exponents for bond and
site percolation on planar Euclidean RNGs are listed in Table I.
In the subsequent paragraphs, we report on the results found
for different observables.

Percolation probability. In order to provide a measure
of percolation probability for the 2D RNG, we proceed as
follows: For each instance of a N -point RNG we first determine
the L points that are closest to the left, right, top, and bottom
boundary. As a sufficient condition for percolation along, say,
the horizontal direction, we consider the event that a point
on the left and the right boundary are part of the same cluster.
Here, we put under scrutiny the particular event that the system

TABLE I. Critical properties that characterize bond and site
percolation (BP and SP, respectively) on Euclidean RNGs for planar
sets of points. From left to right: critical point pc (obtained from
the analysis of the Binder ratio), critical exponents ν and β obtained
from the order parameter, and γ , obtained from the order parameter
fluctuations and the scaling behavior of the average size of the finite
clusters for BP and SP, respectively.

Type pc ν β γ

RNG-BP 0.771(2) 1.33(6) 0.15(2) 2.40(6)
RNG-SP 0.796(2) 1.33(6) 0.14(3) 2.39(7)

simultaneously percolates along both independent directions
(other criteria yield similar results). The finite-size scaling
analysis of the corresponding percolation or “spanning” prob-
ability P (p) is summarized in Fig. 4. Setting b = 0 in Eq. (3)
(as appropriate for a dimensionless quantity) and restricting the
analysis to the interval ε = [−1.2,1.2] on the rescaled p axis
for systems of size N � 1024, we find that pc = 0.771(1) and
ν = 1.35(7) yield a best data collapse with “collapse-quality”
S = 0.84 (the numerical value of S measures the mean-square
distance of the data points to the master curve, described by
the scaling function, in units of the standard error [30]). Note
that the numerical value of the correlation length exponent is
in good agreement with the standard 2D percolation exponent
ν = 4/3 ≈ 1.333. As pointed out above, small system sizes
are presumably affected by systematic corrections to scaling
that result in a scaling behavior that deviates from that implied
by the scaling assumption Eq. (3). However, note that this
also depends on the observable under consideration [29].
In particular, the percolation probability is significantly less
effected by such corrections than, e.g., the order parameter
[Eq. (5) considered further below]. In this regard, Table II
also lists the scaling parameters resulting from a similar
analysis, carried out to assess the dependence of the spanning
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FIG. 4. Finite-size scaling analysis of the bond percolation
probability P (p) (i.e., the probability of simultaneous percolation
along both independent directions; see text) on RNGs for planar sets
of N = 1024 . . . 36 864 points, averaged over 2000 different graph
instances. The main plot shows the data collapse obtained using
Eq. (3), and the inset illustrates the raw data close to the critical
point.
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TABLE II. Scaling parameters that result from a finite-size scaling analysis for bond percolation on Euclidean RNGs, taking into account
different minimal system sizes Nmin in the range ε = [−1,1]. From left to right: minimal system size Nmin considered for the data-collapse
procedure, collapse quality S, critical point pc, and critical exponent ν derived from the analysis of the spanning probability, and, collapse
quality S, critical point pc, and critical exponents ν and β obtained from an analysis of the order parameter.

Spanning probability Order parameter

Nmin S pc ν S pc ν β

256 1.91 0.771(1) 1.40(7) 1.63 0.7701(5) 1.29(2) 0.156(7)
596 0.83 0.771(1) 1.37(8) 1.13 0.7706(5) 1.30(3) 0.147(8)
1024 0.66 0.771(1) 1.37(9) 0.92 0.7706(5) 1.31(3) 0.145(9)
2304 0.61 0.771(1) 1.4(1) 1.02 0.7706(5) 1.31(4) 0.14(1)
4096 0.69 0.771(1) 1.4(1) 0.76 0.7704(6) 1.29(6) 0.15(1)
9216 0.66 0.771(1) 1.4(1) 0.50 0.7708(7) 1.33(6) 0.15(2)
16384 0.39 0.771(2) 1.5(2) 0.22 0.7715(7) 1.33(12) 0.13(2)

probability on the smallest system size Nmin considered for the
data-collapse. As evident from the table, the scaling parameters
show no strong dependence on Nmin.

Order parameter statistics. As a second observable we
consider smax, i.e., the relative size of the largest cluster of
points joined by edges. In this regard, a further dimensionless
quantity commonly referred to in the analysis of phase
transitions is the Binder ratio [32]:

b(p) = 1

2

[
3 −

〈
s4

max(p)
〉

〈
s2

max(p)
〉2

]
. (4)

This ratio of moments scales according to Eq. (3), where, as
for the spanning probability above, b = 0. As can be seen
from the inset of Fig. 5(a), the Binder ratio exhibits a nice
common crossing point of the data curves for different values
of N . The best data collapse (obtained in the (unsymmetrical)
range ε ∈ [−0.1,1.0]) yields pc = 0.772(2), and ν = 1.4(2)
with a quality S = 1.22. As evident from the rescaled data
[main plot of Fig. 5(a)], there are rather strong deviations
from the expected scaling behavior as p < pc. To account
for this, the scaling analysis is performed in the rather un-
symmetrical interval ε ∈ [−0.1,1.0] on the rescaled p axis to
accentuate the region p > pc where b(p) seems to scale well.
As above, the numerical value of the exponent ν is in agreement
with the standard 2D percolation exponent. Considering the
order parameter

Pmax(p) = 〈smax(p)〉, (5)

the best data collapse (obtained in the range ε ∈ [−1,1]) yields
pc = 0.7708(7), ν = 1.33(6), and β = 0.15(2) with a quality
S = 0.50; see Fig. 5(b). If we fix the numerical values of
the critical exponents to the expected values ν = 4/3 ≈ 1.333
and β = 5/36 ≈ 0.139, we are left with only one adjustable
parameter, resulting in the estimate pc = 0.7711(6) with
S = 0.88. As evident from Table II, the estimates of the
scaling exponents for all considered minimal sizes Nmin �
256 are in reasonable agreement with their expected values.
Nevertheless, there seems to be a slight systematic drift in the
parameters pc and ν toward larger values for increasing Nmin.
A further critical exponent can be estimated from the scaling
of the order parameter fluctuations χ (p), given by

χ (p) = N
[〈
s2

max(p)
〉 − 〈smax(p)〉2

]
. (6)

A best data collapse for this observable (attained in the
range ε ∈ [−0.2,0.2]) results in the estimates pc = 0.769(4),
ν = 1.30(3), and γ = 2.40(6) with a quality S = 0.24; see
Fig. 5(c). Note that the numerical value of the fluctuation
exponent is in agreement with the expected value γ =
43/18 ≈ 2.389.

Average size of the finite clusters. As a last observable, we
consider the average size 〈Sfin(p)〉 of all finite clusters for a
particular RNG, averaged over different instances of RNGs.
The respective definition reads [2,33]

Sfin(p) =
∑′

s s2 ns(p)∑′
s s ns(p)

, (7)

where ns(p) signifies the probability mass function of cluster
sizes for a single RNG instance at a given value of p. Note
that the sums run over finite clusters only [2,33] (indicated
by the prime); i.e., if the precise configuration features a
system-spanning cluster (spanning horizontally or vertically or
both), this cluster is excluded from the sums that enter Eq. (7).
The average size of all finite clusters is expected to scale
according to Eq. (3), where b = −γ /ν. Restricting the data
analysis to the interval ε ∈ [−1,1] on the rescaled p axis, the
optimal scaling parameters are found to be pc = 0.770(2), ν =
1.36(4), and γ = 2.33(5) with a quality S = 0.61 (not shown).
Note that here, the numerical values of the extracted exponents
are in reasonable agreement with the expected values and
the estimate of the critical threshold for bond percolation is
consistent with the numerical values found above.

C. Results for site percolation on planar RNGs

The analysis in terms of the site percolation problem
was carried out analogous to that of the bond percolation
problem in the preceding subsection. However, we here list
only the estimates of the critical points obtained from the
data collapse analysis for the different observables. In this
regard we have pc = 0.799(1) (percolation probability), pc =
0.796(2) (Binder ratio), pc = 0.795(1) (order parameter),
pc = 0.794(4) (order parameter fluctuation; see Tab. I), and
pc = 0.798(3) (average size of the finite clusters). Further,
the critical exponents ν = 1.33(6) and β = 0.14(3) obtained
from the order parameter and γ = 2.39(7), obtained from the
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FIG. 5. Finite-size scaling analyses related to the relative size
smax of the largest cluster of sites on RNGs for planar sets of N =
1024 . . . 36 864 points, averaged over 2000 graph instances. The main
plots show the data collapse obtained according to Eq. (3), and the
insets illustrate the raw data close to the critical point. The subfigures
show different ways to analyze smax in terms of (a) the Binder ratio
b(p), (b) the order parameter smax(p), and (c) the fluctuation χ (p) =
Nvar(smax) of the order parameter.

scaling behavior of the average size of the finite clusters, are
listed in Table I.

IV. DISCUSSION AND SUMMARY

In the present article we have closely investigated the
statistical and percolation properties of planar Euclidean

RNGs via numerical simulations. In regard of the subgraph
hierarchy MST ⊂ RNG ⊂ DT, recently the question was
raised which subgraph of the DT (on which the percolation
problem is well studied) still features a nontrivial percolation
transition [24]. Intuitively, for the MST this is not the case
since the threshold is expected to be unity. For the RNG,
previous analytic studies established the existence of nontrivial
site and bond percolation thresholds [24], but no numerical
estimates were provided. Here we quote pRNG

c,bond = 0.771(2)
and pRNG

c,site = 0.796(2), obtained by means of finite-size scaling
analyses in terms of the “data-collapse” technique. Further,
we also deduced the critical exponents that govern both
percolation transitions on the RNG and found them to be
consistent with those that describe the standard 2D percolation
phenomenon (as expected). So as to yield maximally justifiable
results through numerical redundancy, we considered various
observables to estimate the critical points and exponents.

As discussed in Sec. III A, the asymptotic average degree
for the RNG reads k∞ = 2.5576(3). In order to put the
above critical points into a context, we might attempt to
compare them to the threshold values for regular 2D lattices
with a similar degree (an extensive collection of percolation
threshold for various graph settings, along with links to the
respective scientific literature, can be found under Ref. [34];
the referenced version of the webpage was very useful in order
to accomplish the above task). For example, the site and bond
percolation thresholds for the (3,122)-Archimedean lattice,
having degree k = 3, read pc,bond = 0.74042081(10) [35] and
pc,site = 0.807900764 . . . [36]. Both are actually not that far
from the respective thresholds on the RNG. (Further, for the
k = 3 Martini lattice, one has pc,bond = 0.707107 . . . [37] and
pc,site = 0.764826 . . . [38].) Regarding 2D random lattices,
site and bond percolation on the Voronoi tesselation of a planar
pointset, also having degree k = 3, give rise to the threshold
values pc,bond = 0.666931(5) and pc,site = 0.71410(2) [13]. In
addition, site percolation on planar �3 random graphs result in
pc,site = 0.7360(5) [14]. In comparison, the estimates from the
latter random graphs are less close to the estimates for the RNG
as compared to the (3,122)-Archimedean lattice thresholds.

One reason that RNGs exhibit an average degree less
than 3 is the existence of many two-coordinated nodes, see
Fig. 2 and the probability mass function of node degrees
specified in Sec. III A. Momentarily disregarding RNG nodes
with degrees larger than three, an approximate model of
a lattice with such characteristics might be constructed by
considering, say, the honeycomb lattice (which has degree
k = 3) with an extra node in each bond [39], here referred to
as “double-bond” honeycomb lattice (DBHL). This modified
honeycomb lattice has an average degree 〈k〉 = 2.4, which
is smaller than the average degree of the RNG. Regarding
bond percolation, the respective threshold is simply the square
root of the bond percolation threshold on the honeycomb
lattice, i.e., pDBHL

c,bond ≈ 0.8079 [39] (also see the discussion of
the subdivided hexagonal lattice in Ref. [40]). Note that this
is equal to the site percolation threshold on the (3,122) lattice,
because the latter is the covering graph [15] of the DBHL
[39] (i.e., both are related via a site-to-bond transformation).
Further, site percolation on the double-bond honeycomb lattice
is similar to site-bond percolation on the usual honeycomb
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lattice with the site threshold equal to the bond threshold [39].
An estimate of this threshold reads pc ≈ 0.8219 [35], and
hence pDBHL

c,site ≈ 0.8219. Both thresholds are slightly larger
than those on the RNG. Note that one can modify the simple
square lattice in a similar manner to yield a “double-bond”
square lattice (DBSL). It exhibits an average degree 〈k〉 =
2.667, which is larger than that of the RNG. The thresholds for
bond and site percolation, pDBSL

c,bond ≈ 0.707 and pDBSL
c,site ≈ 0.75,

respectively, are consequently smaller than the estimates for
the RNG [39].

Regarding the subgraph hierarchy MST ⊂ RNG ⊂ DT,
the observed percolation thresholds follow the commonly
accepted belief that the percolation threshold is a decreasing
function of the average degree (however, note that counterex-
amples might be constructed [40]). This is in full accord with
the containment principle due to Fisher [41], stating that if G′

is a subgraph of G, then it holds that pG′
c � pG

c for both bond
and site percolation.

As pointed out in the introduction, RNGs are discussed in
the context of the construction of planar “virtual backbones”

for ad hoc networks that guarantee connectedness of all
considered nodes [17–20]. In this regard, from a point of
view of stability, it would be interesting to quantify how
susceptible RNGs are with respect to a random failure and
targeted removal of nodes and to compare the results to other
“proximity graph” instances which are discussed in the same
context. Such investigations are currently underway [42].
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