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Information-theoretic versus thermodynamic entropy production in autonomous sensory networks
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For sensory networks, we determine the rate with which they acquire information about the changing external
conditions. Comparing this rate with the thermodynamic entropy production that quantifies the cost of maintaining
the network, we find that there is no universal bound restricting the rate of obtaining information to be less than this
thermodynamic cost. These results are obtained within a general bipartite model consisting of a stochastically
changing environment that affects the instantaneous transition rates within the system. Moreover, they are
illustrated with a simple four-states model motivated by cellular sensing. On the technical level, we obtain an
upper bound on the rate of mutual information analytically and calculate this rate with a numerical method that
estimates the entropy of a time series generated with a simulation.
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I. INTRODUCTION

Acquiring and processing information about the instanta-
neous state of the environment is a prerequisite for survival for
any living system. Sensory and signal transducting networks
have evolved to achieve this task under a variety of external
conditions as, e.g., the work on bacteria like Escherichia
coli has demonstrated so beautifully [1–3]. Maintaining any
biochemical network, however, has a metabolic cost associated
with its inherent nonequilibrium nature. This fact prompts the
question whether there is a relation between the performance
of the network and its free energy consumption. For sensory
adaptation in E. coli, such a tradeoff between adaptation speed
and accuracy and the energy dissipation rate has recently been
found in a theoretical model and confirmed with experimental
data [4].

From a more information-theoretic perspective, the ques-
tion alluded to above can be formulated more generally as
to whether there is any quantitative relation between the rate
with which such a network acquires information about the ever
changing environmental conditions and the rate of entropy
production associated with the functioning of the network.
The universal concept for quantifying one side of this balance
is mutual information, or, more precisely, the rate of mutual
information. In the context of sensing, this rate has been
introduced in [5], where it was explored for the special case of
Gaussian input and output signals and various network motifs.
Importantly, as pointed out in [5], because it takes temporal
correlations into account the rate of mutual information is
different from the static mutual information, which has been
the subject of several recent investigations in genetic regulatory
networks [6]. On the other hand, calculating the rate of mutual
information without the assumption of Gaussian statistics
represents a main challenge.

In this paper, we obtain an upper bound on the rate of
mutual information for a general bipartite model consisting
of an environment that switches stochastically between an
arbitrary number of states and a network for which the
internal transition rates depend on the instantaneous state of
the environment. This setup has the advantage that the total
system is in a nonequilibrium steady state generated by a
Markovian dynamics which facilitates the analysis. Still, since
the internal process is non-Markovian, deriving the expression

for this bound as done below becomes nontrivial. Moreover, to
calculate the precise value of the rate of mutual information we
apply a numerical method that estimates the entropy rate of a
single time series produced from a numerical simulation [7–9].
For evaluating the second side of the balance introduced above,
we need the rate of (thermodynamic) entropy production, as
it has been derived for any network with given transition rates
some time ago [10] and revitalized in the context of stochastic
thermodynamics as reviewed in [11].

Significant progress in relating information-theoretic con-
cepts to thermodynamic ones has recently been achieved in
the context of feedback-driven systems [12–17]. For these
systems, the amount of mutual information between the
system and controller enters the corresponding thermody-
namic expressions on the level of generalized fluctuation
theorems and second-law-like inequalities. In particular, the
net-power output of such systems cannot exceed the rate of
mutual information acquired. The single cell, however, is
an autonomous system for which a separation into an act
of measurement and subsequent feedback control does not
come naturally. Whether despite this fundamental difference
between a feedback-driven system and an autonomous one,
an analogous constraint on a putative efficiency relating the
rate of acquiring information with the thermodynamic cost of
maintaining the sensory network exists will be explored here.

The paper is organized as follows. In Sec. II we analyze the
rate of mutual information in a simple toy model. The general
framework, for which our results are valid, is introduced in
Sec. III. Section IV contains the comparison between the
dissipation rate and the mutual information rate for a model of
a cell computing an external ligand concentration. The rate of
mutual information in equilibrium is discussed in Sec. V. We
conclude in Sec. VI.

II. TOY MODEL

To introduce this rate of mutual information between the
external and internal processes and compare it to the entropy
production, we first consider the minimalistic model shown in
Fig. 1. The environment is supposed to switch stochastically
with rate γ between two possible states XA and XB . Within the
system, there is an internal degree of freedom, which exists also
in two different states that are correlated with the environment
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FIG. 1. (Color online) Network and transition rates of a simple
model of an internal process Y coupled to an external one X.

state. Specifically, if the external state is XA (XB) and the
internal state is in the “false” state YB (YA), the internal state
changes to YA (YB) with a rate k+. We also allow for a (small)
rate k− inducing “false” transitions. Later we will consider
a more realistic model for bacterial chemotaxis, where the
external states correspond to the state of a receptor sitting on
the membrane, while the internal states correspond to some
internal protein that can be transformed to an active form with
transition rates that depend on the state of the receptor.

As we will show below in Eq. (18) using a general
framework, the rate I at which the internal system acquires
information about the time-dependent state of the environment
is bounded from above by

I (u) = f (k+,k−) + f (k−,k+), (1)

where

f (x,y) ≡ x(y + γ )

2γ + x + y
ln

x(x + y + 2γ )

2xy + (x + y)γ
. (2)

For k− = 0 and in the limit k+ � γ , the rate of mutual
information can be understood as follows. The uncertainty
about the external time series X(t) still left after recording
the internal time series Y (t) is basically the specific time
lapse between a change in the external conditions and the
change of the internal state since for k− = 0 an internal jump
takes place only after an external jump. Thus the system
can localize the change in the external conditions within a
time window of width 1/k+. Encoding the length of intervals
between switching events on a scale 1/k+ requires a number
of order k+/γ , which carries ln(k+/γ ) units of information
(measured throughout this paper using natural logarithms).
Since these switching events take place with a rate γ , the rate
of mutual information, for k− = 0 and k+ � γ , is I � γ ln k+

γ
.

Therefore, in this limit, the upper bound (1) gives the correct
value of the rate of mutual information.

The dissipation rate σ associated with this network fol-
lows from the standard expression for Markovian processes,
recalled in Eq. (21) below, which gives

σ = g(k+,k−) + g(k−,k+), (3)

where

g(x,y) ≡ x(γ + y)

2γ + x + y
ln

x

y
. (4)

The thermodynamic entropy production fulfills σ � 0 and is
zero only if detailed balance is fulfilled (k− = k+).
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FIG. 2. (Color online) The rate of mutual information I, esti-
mated with the numerical method explained in the text, the upper
boundI (u), and the thermodynamic entropy production σ as a function
of k− for k+ = 25 and γ = 1. Here and in the following figures the
common unit of time is arbitrary and the error in the numerics is less
than the size of the symbols.

Whereas the rate of mutual information is finite at k− = 0,
the entropy production diverges as k− → 0. Therefore, when
the system is far from equilibrium (k− � k+) the dissipation
rate is larger than the mutual information rate. On the other
hand, at equilibrium (k− = k+) both quantities are zero: There
is no dissipation and the internal and external processes are
uncorrelated. Note that in this case also the internal process
becomes Markovian. In Fig. 2 we compare the rate of mutual
information obtained from numerical simulations, as explained
below, with the thermodynamic entropy production. There
is a value of k−, which depends on k+ and γ , beyond
which the mutual information rate becomes larger than the
thermodynamic entropy production. Thus, as our first main
result, we have found that in the most simple conceivable
model the rate of mutual information is not bounded by the
dissipation rate.

III. GENERAL FRAMEWORK

We now address the problem of calculating the upper bound
on the rate of mutual information within a general bipartite
model. It will be convenient to first treat time as discrete with
a spacing τ . We denote the external states by α,β and their
transition probabilities by Wαβ ≡ wαβτ , where the transition
is from α to β. The transition probability from the internal state
i to the internal state j , given that the external state is α, is
Wα

ij ≡ wα
ij τ . Hence, the transition probabilities of the internal

transitions depend on the instantaneous external state. States
of the total system are thus determined by the pair (α,i), with
the transition probabilities of this full Markov process given
by

W
αβ

ij ≡
⎧⎨
⎩

wαβτ if i = j and α �= β,

wα
ij τ if i �= j and α = β,

0 if i �= j and α �= β.

(5)

In the context of cellular sensing, the external transition rates
wαβ are related to processes that happen outside the cell and
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that are not influenced by the biochemical reactions inside
the cell. The internal biochemical reactions are related to the
transition rates wα

ij , depending on the external state α. A central
consequence of the independence of wαβ on the internal state i

is that the external process is also Markovian, while the internal
process is in general non-Markovian.

A stochastic trajectory with N jumps is denoted by
{(Xt,Yt )}Nτ

t=0, where {Xt }Nτ
t=0 ({Yt }Nτ

t=0) represents the external
(internal) process. The information-theoretic entropy rate of
the full process measures how much the entropy of the
trajectory grows with N . In the limit N → ∞, it is given
by [18]

HX,Y = − 1

τ

∑
i,j,α,β

P α
i W

αβ

ij ln W
αβ

ij , (6)

where P α
i denotes the stationary state probability distribution

and, from Eq. (5), the diagonal terms take the form

Wαα
ii = 1 −

∑
β �=α

wαβτ −
∑
j �=i

wα
ij τ. (7)

Moreover, the external process {Xt }Nτ
t=0 is also Markovian,

which implies for its entropy rate

HX = − 1

τ

∑
α,β

P αWαβ ln Wαβ, (8)

where P α = ∑
i P

α
i and Wαα = 1 − ∑

β �=α wαβτ . Here, we
are interested in calculating the rate of mutual information
defined as [18]

IX,Y = HX + HY − HX,Y . (9)

The still missing piece for evaluating this expression is the
entropy rate of the internal process HY , which is not known
because Yt is in general non-Markovian. However, this quantity
is bounded from above and from below by the relation [18]

H (Yn+1|Yn, . . . ,Y1,X1) � HY � H (Yn+1|Yn, . . . ,Y1), (10)

which involves conditional entropies. Here, we are considering
a finite sequence of n jumps of the internal process starting
with the stationary state probability distribution. These bounds
become better as n increases and for n → ∞ both converge
to the same value which is the entropy rate HY [18]. The first
upper bound is given by

H (Y2|Y1) = − 1

τ

∑
Y1

P (Y1)
∑
Y2

P (Y2|Y1) ln P (Y2|Y1). (11)

Using the transition rates (5), for Y2 �= Y1, we have

P (Y2|Y1) =
∑

X1
P (Y2,Y1,X1)

P (Y1)
=

∑
α P α

i wα
ij τ

Pi

, (12)

where we substituted X1 → α, Y1 → i, and Y2 → j . With this
relation it is easy to obtain

H (Y2|Y1)

= −
∑
i,α

P α
i

∑
j �=i

(
wα

ij ln

∑
β P

β

i w
β

ij τ

Pi

− wα
ij

)
+ O(τ ).

(13)

Moreover, from Eqs. (6) and (8), we get

HX − HX,Y =
∑
i,α

P α
i

∑
j �=i

(
wα

ij ln wα
ij τ − wα

ij

) + O(τ ). (14)

Therefore, the first upper bound for the rate of mutual
information, as obtained from Eqs. (9), (13), and (14), reads

I
(u,1)
X,Y =

∑
i,α

P α
i

∑
j �=i

wα
ij ln

wα
ij

wij

+ O(τ ), (15)

where

wij ≡
∑

β

P (β|i)wβ

ij (16)

is the mean internal transition rate and P (β|i) = P
β

i /Pi is
the probability of being in the external state β given that the
internal state is i. More generally, we find that up to O(τ ln τ )
all upper bounds with finite n are given by this expression,
meaning that

I
(u,n)
X,Y =

∑
i,α

P α
i

∑
j �=i

wα
ij ln

wα
ij

wij

+ O(τ ln τ ). (17)

As for the lower bounds, we find that I
(l,n)
X,Y = O(τ ln τ ) for all

n. Therefore, we conclude that the rate of mutual information
in the continuous time limit is bounded from above by

I (u) =
∑
i,α

P α
i

∑
j �=i

wα
ij ln

wα
ij

wij

. (18)

We note that all the bare entropy rates diverge as ln τ for
τ → 0 and, therefore, cannot be defined in this limit [19,20].
However, the rate of mutual information is a well behaved
quantity in this limit with no logarithmic divergences.

Let us now explain the numerical method we use
to estimate the entropy rate HY of the non-Markovian
time series {Yt }Nτ

t=0. The random matrix T (Yt ,Yt−1), is
defined as T (Yt ,Yt−1)Xt ,Xt−1 = P [Yt ,Xt |Yt−1,Xt−1], where
P [Yt ,Xt |Yt−1,Xt−1] is a conditional probability. If the external
states take the values Xt = 1, . . . ,�, thenT is a � × � matrix,
where the internal variables (Yt ,Yt−1) make the matrix random.
It is simple to show that [7,8]

P
[{Yt }Nτ

t=0

] = VT (YN,YN−1), . . . ,T (Y1,Y0)P0, (19)

where P [{Yt }Nτ
t=0] is the probability of the time series, V is a

vector with all components equal to 1, and P0 is a vector with
components P (Y0,X0), for X0 = 1, . . . ,�. From this relation,
it is then possible to show that given a typical long time series
{yt }Nτ

t=0, one can estimate the entropy rate HY by the formula
[7–9]

HY ≈ 1

Nτ
ln

∥∥∥∥∥
N∏

t=1

T (yt ,yt−1)

∥∥∥∥∥ , (20)

where ‖·‖ is any matrix norm. Therefore, following [9], we
can calculate HY numerically by generating an internal time
series with a simulation and calculating the above product by
normalizing it after a certain number of steps (keeping track
of the normalization factors), as explained in [21]. In Fig. 3,
we plot upper and lower bounds on the mutual information
rate, obtained from Eq. (10), and the numerical simulation
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FIG. 3. (Color online) The lower and upper bounds on the mutual
information rate and the numerical simulation result as a function of
τ for k− = 5, k+ = 25, and γ = 1. The simulations were done for a
time series with N = 1010.

result. For small τ , the numerically obtained rate of mutual
information shows linear behavior, which we extrapolate to
τ → 0 to estimate the rate of mutual information in the
continuous time limit.

The other central physical observable we consider here is
the thermodynamic entropy production [10,11,22], which for
the present class of Markov processes reads

σ =
∑
α,β

P αwαβ ln
wαβ

wβα
+

∑
α

∑
i,j

P α
i wα

ij ln
wα

ij

wα
ji

, (21)

where the first term on the right-hand side is due to the external
transitions and the second is the contribution from internal
transitions. If the same pair of internal states can be connected
by different types of transitions, as in the model discussed
next, the second term requires an additional summation over
the different “channels” ν with corresponding rates w

α(ν)
ij [10].

IV. THERMODYNAMICALLY CONSISTENT MODEL

We finally use this framework to analyze a thermodynami-
cally consistent minimal four-states model for a cell estimating
a ligand concentration c [2,3,23–26]. The external states are
related to a receptor that can be either bound by a ligand
or empty. Moreover, the receptor can be in an “on” state
or “off” state. We assume a high binding affinity of the on
state, i.e., whenever the receptor is occupied by an external
ligand it is in the on state. Likewise, any unbound receptor
is in the off state. Under these simplifying conditions the
state of the receptor (on or off) corresponds to what was
called above the external process Xt . The transition from on
to off happens at a rate koff , whereas the binding rate kon

is proportional to the ligand concentration c. The internal
state is associated with a downstream protein that can be
in an inactive (Y ) or, due to phosphorylation, in an active
state Y ∗. For simplicity, we assume a two-states internal
system corresponding to one downstream protein. In reality,
the number of downstream proteins is much larger than
one [26], however, this simplification is not harmful for the

FIG. 4. (Color online) The entropy production rate σ , the upper
bound I (u), and the numerically determined rate of mutual informa-
tion I as a function of a for the thermodynamically consistent model
shown in the inset. The other parameters are set to kon = koff = 1,
κ− = 1/10, κ+ = 4/10, ω− = 1/10, and ω+ = 6/10.

qualitative comparison between the mutual information rate
and thermodynamic entropy production.

The crucial coupling of the internal process to the instan-
taneous state of the environment, here encoded by the state
of the receptor, arises from the fact that the receptor in the
on state speeds up phosphorylation, which happens at a rate
κ+, by a factor of a � 1 compared to the action of an empty
receptor. Dephosphorylation, i.e., the process where Y ∗ gives
a phosphate Pi to an adenosine diphosphate (ADP), occurs
at a rate ω+, which leads to the following internal adenosine
triphosphate (ATP) consumption cycle

Y + ATP
(a)κ+−−−⇀↽−−−
(a)κ−

Y ∗ + ADP
ω+−⇀↽−
ω−

Y + ADP + Pi, (22)

where the factor a arises only if the receptor is in the on state.
The full network of transitions is shown in Fig. 4. Thermo-
dynamic consistency requires, first, that we also allow for the
reverse transitions of phosphorylation and dephosphorylation
with nonzero rates (a)κ− and ω−, respectively. Second, it
imposes a relation between the free energy associated with
the ATP hydrolysis μ and the kinetic rates, which reads

μ = kBT ln
κ+ω+
κ−ω−

, (23)

where kB is Boltzmann’s constant and T the temperature
[10,11].

In Fig. 4, we compare the rate of mutual information,
obtained by the numerical simulation with the rate of free
energy consumption σ as a function of the enzymatic en-
hancement a. For a = 1, the internal state is decorrelated from
the external one, leading to I = 0. However, if μ �= 0, the
internal network still consumes free energy. With increasing a

the rate of mutual information increases, eventually becoming
larger than the rate of free energy consumption. Thus, this
thermodynamically fully consistent model confirms what
we have found previously in the simple model: In such
autonomous networks the rate of mutual information is not
bounded by the free energy consumption required to maintain
the network.
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V. MUTUAL INFORMATION IN EQUILIBRIUM
NETWORKS

While a cell undoubtedly is a nonequilibrium system, it
is instructive to explore whether mutual information can be
nonzero even under equilibrium conditions, i.e., for transition
rates such that the steady state fulfills detailed balance. Two
cases must be distinguished.

First, we stay within our framework of Markov processes
of the form (5), where the external transition rates wαβ are
independent of the internal state i. A nonzero rate of mutual
information in equilibrium can then occur if the external
process only affects the time scale of the internal transition
rates, i.e., if for all i,j the ratio wα

ij /w
α
ji is independent of α

and if wα
ij = w

β

ij does not hold for all α,β. As an example,
consider the model of Fig. 1 with k+ = k− and the left vertical
transition rates for X = XA multiplied by a factor r . This is
clearly an equilibrium model obeying detailed balance and for
r �= 1 the rate of mutual information is not zero.

The above example is a rather contrived case where the
external states distinguish between internal processes that
differ only by the time scale of the transitions. The question
we raise in this paper, whether the dissipation rate bounds the
rate of mutual information, is nontrivial for Markov processes
of the form (5), for which the external process truly affects the
internal process and for which if detailed balance is fulfilled
in a point of the phase diagram then all internal processes are
exactly the same, i.e., wα

ij ≡ wij . In this case, at equilibrium
the internal process becomes also Markovian and decoupled
from the external process, implying a zero rate of mutual
information. Hence, it is not clear a priori whether the rate
of mutual information is bounded by the dissipation rate under
nonequilibrium conditions.

Second, a different situation arises if one gives up the
condition that the external process Xt is unaffected by the
internal process Yt . By dropping this distinction, a general
pair of stochastic variables that together fully specify an
underlying Markov process fulfilling detailed balance might
have a nonzero rate of mutual information. An important
example in the context of chemotaxis is the Monod-Wyman-
Changeux (MWC) model [3]. This model describes the
allosteric interaction between the kinase activity of the receptor
(on or off) and its affinity for ligand binding (bound or
unbound). This aspect can be made explicit also with the toy
model of Fig. 1. If we modify the transition rates from XB

to XA when Y = YA by a factor k+/k− and when Y = YB

by an factor k−/k+ (see [6] for a similar model), we get an
equilibrium MWC-like model which should have a nonzero
rate of mutual information between Xt and Yt . For this variant,
it is not possible to distinguish an external process influencing
the internal process but not being influenced by it. More
precisely, the transition rates are no longer of the form (5)

with wαβ independent of the internal state i. While it would be
interesting to calculate the rate of mutual information for the
MWC model, our framework based on the rates of the form
(5) is not yet appropriate to do so. In general, our framework
is suited to study the rate of mutual information involving an
external process that influences the chemical reactions inside
the cell but is not affected by them.

VI. CONCLUSION

In this final section we first come back to a topic raised in
the Introduction, namely how our main result, i.e., no bound
between the rate of mutual information and dissipation, relates
to the apparently quite different results for feedback-driven
systems. In this last case, information acquired through a
measurement is used to extract net work from a thermal bath.
The amount of net work is limited by the information. Here, for
the sensory network, we have investigated a complementary
issue, namely whether the amount of information is limited by
the chemical work, or free energy consumption, required to
maintain the network. How this information is now used in a
second step for an action that possibly performs work on some
other element is an interesting, but quite different question. As
an important aside, we note that for an autonomous network
the whole issue of writing the information into a memory
whose erasure will require free energy [27,28] is irrelevant as
the erasure process is trivially included in the reaction scheme.

Clearly, these concluding remarks touch on deep issues
concerning a future theory comparing comprehensively au-
tonomous with feedback-driven systems which is a distinction
that may become blurred in the microworld. On a more specific
level, our study should now be refined by incorporating further
elements of a more elaborate model of a sensory network,
i.e., including several receptors, several proteins, allowing for
adaptation, and the like. The quantitative balance between the
information rate and entropy production will depend on such
details, and thus, e.g., the optimization of the “efficiency” will
become an interesting issue. Searching for a hard universal
thermodynamic bound for it, however, should be futile, as our
simple model shows. Furthermore, it would be worthwhile to
investigate the relation between the rate of mutual information,
the dissipation rate, and the adaptation error in the context
of the energy-speed-accuracy relation found in [4]. Finally,
an exact calculation of the rate of mutual information which
would replace the upper bound we have derived here remains
an open mathematical challenge.
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