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Robustness of first-order phase transitions in one-dimensional long-range contact processes
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It has been proposed [Ginelli et al., Phys. Rev. E 71, 026121 (2005)] that, unlike the short-range contact
process, the long-range counterpart may lead to the existence of a discontinuous phase transition in one dimension.
Aiming to explore such a link, here we investigate thoroughly a family of long-range contact processes. They are
introduced through the transition rate 1 + a�−σ , where � is the length of inactive islands surrounding particles.
In the former approach we reconsider the original model (called the σ -contact process) by considering distinct
mechanisms of weakening the long-range interaction toward the short-range limit. In addition, we study the effect
of different rules, including creation and annihilation by clusters of particles and distinct versions with infinitely
many absorbing states. Our results show that for all examples presenting a single absorbing state, a discontinuous
transition is possible for small σ . On the other hand, the presence of infinite absorbing states leads to a distinct
scenario depending on the interactions at the perimeter of inactive sites.
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I. INTRODUCTION

Nonequilibrium phase transitions into absorbing states
describe a large assortment of phenomena including chemical
reactions, spreading of disease, competition between species,
wetting processes, calcium dynamics, and others [1,2]. Due
to the lack of analogous examples in equilibrium statistical
mechanics, they are essential in the establishment of the main
ingredients required for the emergence of phase transitions and
critical behavior.

The contact process (CP) [3] is probably the best example
yielding an absorbing phase transition. Particles are created
catalytically but are spontaneously annihilated. This presents
a set of critical exponents belonging to the directed percolation
(DP) universality class. The DP conjecture [4] embraces not
only the CP, but also generic absorbing phase transitions with
no extra symmetries and conservation laws. Examples are
reaction-diffusion processes, cellular automata models, and
even continuous descriptions with multiplicative noise [5,6].
More recently it has been observed experimentally in turbulent
nematic liquid crystals [7].

Differently from the continuous case, one-dimensional
discontinuous absorbing transitions have been much less
observed. Except in special cases [8–10], their manifestation
in short-range systems has been the subject of a long-standing
controversy [11–15]. The absence of a discontinuous transition
would stem from the suppression of compact clusters coming
from large fluctuations in one dimension. On the other hand,
upon increasing the dimensionality, the fluctuations are less
relevant and the formation of compact clusters becomes
possible.

Long-range interactions have been proposed as more
realistic descriptions in different nonequilibrium phenomena,
compared with their short-range counterparts. Some examples
of systems presenting long-range interactions include wetting
phenomena, spreading of diseases over long distances and
others [16–18]. As an effect of long-range interactions,
the absorbing transition may deviate from the original DP
case and belong to different universality classes [19–24].
Another remarkable difference concerns the possibility of

stabilizing compact clusters in one dimension. Ginelli et al.
[25] introduced the σ -CP, in which particles are created and
annihilated as in the usual short-range CP, but the activation
rate depends on the length � of the island of inactive sites
according to the expression 1 + a�−σ . They found that for
0 < σ < 1 the interactions are effectively long-range and the
phase transition becomes discontinuous. On the other hand,
for σ > 1 the long-range parameter does not play a relevant
role and the phase transition remains second order (similar to
its short-range version).

Despite the study of the σ -CP under different methodolo-
gies [25,26], some aspects have not been addressed so far. Is
a first-order transition in the limit of extremely weak (a � 1)
long-range interactions present? Does the competition with
short-range interactions leave the system still able to suppress
fluctuations that destabilize compact clusters? Is the phase
coexistence maintained by changing the interaction rules? and
Does the existence of infinitely absorbing states influence the
order of transition?

Aiming to answer these queries, in this paper we investigate
thoroughly a family of one-dimensional long-range contact
models. First, we reconsider the σ -CP by weakening suf-
ficiently the long-range interaction toward the short-range
limit and, further, by introducing an effective competition
with short-range interactions. Although the emergence of a
discontinuous transition is expected not to depend on the
parameter a [25], a quite interesting point would concern
the stabilization of compact clusters over extremely small
long-range interactions (thus close to the short-range regime).
In such cases the long-range interactions should act as a
small (but relevant) perturbation. Second, we consider the
effect of different interaction rules, including creation and
annihilation in the presence of clusters of particles (instead
of the one-particle case) and infinitely many absorbing states.
These models are long-range versions of the named pair-
creation CP, the pair-annihilation model (PAM), the triplet-
annihilation model (TAM), and the pair CP (PCP) [11,27,28].
All models are studied over mean-field approximations and
extensive numerical simulations in the constant-rate (ordinary)
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[1] and the constant-particle-number (conserved) ensembles
[26,29–32]. Our results show that for all systems with a single
absorbing state the occurrence of discontinuous transitions
is held by decreasing σ . For the long-range PCP, on the other
hand, different scenarios are possible. By measuring the length
� between extreme pairs of particles, the transition becomes
first order for low σ . On the other hand, when � is the distance
between a pair and the nearest particle surrounding the inactive
island, the transition is always continuous.

This paper is organized as follows: In Sec. II we describe all
the methods, in Sec. III we present the models and numerical
results, and finally, conclusions are presented in Sec. IV.

II. CONSTANT RATE AND CONSERVED ENSEMBLES

The one-dimensional CP is defined in a chain of L sites
where each site i is attached by a two-state occupation variable
ηi reading ηi = 0 or 1, according to whether it is empty
or occupied, respectively. Interaction rules are composed of
creation and annihilation of particles, represented by transition
rates ωc

i and ωa
i . Particles are created in empty active sites and

are spontaneously annihilated.
Systems are studied in the constant-rate (ordinary) and in

the constant-particle-number (conserved) ensembles [26,29,
31,32]. In the former case the control parameters (creation or
annihilation rates) are held fixed but the total particle number
n̄ fluctuates. It is described by the total transition rate wi ,

wi = ωc
i + αωa

i , (1)

where α denotes the strength of the annihilation rate. For low α,
the phase is active, and particles are continuously created and
annihilated. Upon an increase in α, a phase transition into an
absorbing state takes place. Except for the PCP, the absorbing
state is characterized by a full empty lattice. For the PCP, any
configuration devoid of pairs is absorbing.

The transition point and the nature of transition can be
precisely identified by performing spreading simulations [1].
Starting from an initial seed, this consists of determining the
time evolution of appropriate quantities, such as the survival
probability Ps(t), the total number of particles N (t), and the
mean square spreading R2(t).

At the emergence of the phase transition, these quantities
follow algebraic behaviors given by

Ps(t) ∼ t−δ, N (t) ∼ tη, and R2(t) ∼ t2/z, (2)

where δ, η, and z are their associated dynamic critical expo-
nents. For second-order DP phase transitions, they read δ =
0.159 464(6), η = 0.313 686(8), and z = 1.580 745(10) [6].
In a discontinuous transition, despite the order parameter gap,
they also present algebraic behaviors, with critical exponents
given by δ = 1/2, η = 0, and z = 1, which is compatible with
the Glauber-Ising (GI) model [6].

Thus, spreading simulations can not only locate the transi-
tion point, but also classify the order of transition. A change
in the order of transition will be characterized by an alteration
of the critical exponents. Off the transition regime, the above
dynamic quantities deviate from power-law behaviors.

For systems with infinitely many absorbing states [33],
spreading experiments become particularly hard to use. In

particular, the dynamic exponents δ, η, and z are strongly
dependent on the initial conditions, presenting nonuniversal
values [33–36]. A simpler procedure for locating the critical
point in such cases is to study the order-parameter decay start-
ing from a fully occupied initial condition. Unlike the above
exponents, θ does not depend on the initial configuration. One
expects φ to behave as φ ∼ t−θ at the critical point, where θ =
δ. Conversely, we should expect a non-power-law behavior
at a discontinuous transition. Since alternative methods (e.g.,
hysteretic ones) cannot be used for systems with absorbing
states, another strategy is required. In particular, we have
calculated the probability distribution (in the steady regime)
by considering different initial configurations. A bimodal
distribution reveals the discontinuous transition.

In the constant-rate ensemble, the control parameter is the
total particle number n. Particles are created as in the ordinary
case, but instead of creating new particles, a cluster of k sites
leaves its place and jumps to k active sites. One may define the
conserved ensemble as a 2k-site process, in which creation and
annihilation occur simultaneously according to the following
transition [32]:

w = ωa
i ωc

jω
c
l . . . ωc

m︸ ︷︷ ︸
k-creation processes

. (3)

It has been shown [31,32] that in the thermodynamic limit the
above dynamics is equivalent to that studied in the constant-
rate ensemble. The parameter ᾱ fluctuates and is calculated
through the expression

ᾱ =
〈
ωc

j

〉
c

k
〈
ωa

i

〉
c

, (4)

where 〈· · ·〉c denotes a generic average evaluated over the
conserved ensemble. An immediate advantage concerns its
simplicity for locating the transition point. In this case, by
considering a system constrained in the subcritical regime,
e.g, a finite number of particles placed in an infinite lattice, the
addition of particles drives the system toward the transition
point α0 according to the expression [26,29,32,37]

ᾱ − α0 ∼ n−1. (5)

Thus, from the above, the transition point is obtained by
linear extrapolation in 1/n. Another advantage refers to the
classification of the phase transition, obtained by measuring
the particle structures for different n values. For second-order
transitions, the clusters are fractals [38], whereas they become
compact in a discontinuous transition. With R being the mean
distance of particles located at extremities of the system, we
have that [1,26,32]

R ∼ n1/dF , (6)

where dF is the fractal dimension. For one-dimensional
systems belonging to the DP universality class dF reads
0.74792 . . ., whereas at phase coexistence it is the proper
euclidean dimension d = 1 (consistent with the existence of
compact clusters). The above values are related to the dynamic
exponents through the expression dF = 2(η + δ)/z.
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FIG. 1. Pair mean-field approximation phase diagram in space α

versus σ . Solid and dashed lines denote second- and first-order phase
transitions, respectively, and the filled circle denotes the tricritical
point.

III. MEAN-FIELD APPROXIMATION

Before performing simulations we analyzed the models
by means of a cluster approximation at the level of two
nearest-neighbor sites [26]. In this case, the system is described
by the one-site probabilities P (0) and P (1) and the two-site
probabilities P (11), P (10), P (01), and P (11). However, only
two of them are independent. The generic probability of a
string of � consecutive sites is approximated by

P (η1,η2,η3, . . . ,η�) = P (η1,η2)P (η2,η3) · · ·P (η�−1,η�)

P (η2)P (η3) · · · P (η�−1)
.

(7)

By choosing P (1) = 〈ηi〉 and P (11) = 〈ηiηi+1〉 and taking
into account the translation invariance, their evolution equa-
tions read

d

dt
〈ηi〉 = 〈(η̄i − ηi)wi(η)〉 (8)

and

d

dt
〈ηiηi+1〉 = 〈(η̄i − ηi)ηi+1wi(η)〉

+ 〈ηi(η̄i+1 − ηi+1)wi+1(η)〉, (9)

where η̄i ≡ 1 − ηi . By using approximation (7), we get a set
of two closed equations for P (1) = ρ and P (11) = φ. In the
stationary state we found, for all models studied, a general
structure in the relation for α vs ρ, given by

αρ = αcρ + Aρ2 (10)

up to order ρ2, where αc is a numerical constant and A depends
on the other parameters but not on α. From this equation it fol-
lows that a critical line occurs at α = αc and A < 0. When A >

0, the transition becomes first order and a tricritical point oc-
curs at A = 0. The phase diagram is of the type shown in Fig. 1.

IV. NUMERICAL RESULTS

Except for the PCP model, numerical simulations are per-
formed for large system sizes (L = 216) and periodic boundary
conditions. In the conserved case, Monte Carlo simulations are
started by constraining the system in the subcritical (absorbing)
regime. In practice, it is done by taking finite ns in a large L

and check whether a particle touches the border. If a particle
reaches the border, we increase L. By simulating distinct
ns [with ᾱ computed from Eq. (5)], the transition point α0

is obtained by means of a linear extrapolation in 1/n. The
nature of the phase transition is identified by calculating the
fractal dimension, measured from the dependence of R on n.
Further, we check the above results by performing epidemic
simulations starting from an initial seed in which the transition
point α0 is located by identifying algebraic behaviors for N and
Ps . Their corresponding dynamic exponents η and δ classify
the order of transition.

A. Long-range contact process (σ -CP)

In the usual CP, particles are created in empty sites
surrounded by at least one particle and are spontaneously
annihilated. It is defined by the transition rates

ωc
i = 1

2
(1 − ηi)

∑
δ

ηi+δ (11)

and

ωa
i = ηi, (12)

for particle creation and annihilation, respectively. In the σ -CP
the creation rate is replaced by the expression

ωc
i = 1

2

∞∑
�=1

(
1 + a

�σ

)
ηi−1η̄i η̄i+1 · · · η̄i+�−1ηi+�

+ 1

2

∞∑
�=1

(
1 + a

�σ

)
ηi+1η̄i η̄i−1 · · · η̄i−�+1ηi−�, (13)

which depends on �, a, and σ and η̄i ≡ 1 − ηi . For a = 0,
one recovers the original short-range CP, whose second-order
phase transition occurs at αc = 0.303227 . . . [1].

Here we have weakened the long-range interaction toward
the short-range limit, in order to see if phase coexistence still
exists for a � 1. In Fig. 2, we show results for a = 0.05.
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FIG. 2. (Color online) Left: Log-log plot of the average cluster
size R versus the total number of particles n for several values of
σ for a = 0.05. The top and bottom predicted curves have slopes of
1.337 04 and 1, respectively. Data points have been shifted in order
to avoid overlap. Right: Log-log plots of Ps (top) and N (bottom)
for distinct values of α for σ = 0.1. Predicted asymptotic slopes
are consistent with GI values. Inset: Parameter ᾱ versus n−1 in the
conserved ensemble.
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Note that the fractal dimension changes (from 0.75 to 1)
for σ < σt = 0.4(1), consistent with the emergence of a
discontinuous transition for smaller σ . Spreading experiments,
shown at the right for σ = 0.1, confirm this conclusion. At
α0 = 0.312 15(5), both quantities, Ps and N , present algebraic
behaviors consistent with exponents δ = 1/2 and η = 0,
respectively. The above estimate agrees very well with the
conserved ensemble result, α0 = 0.312 21(3). In addition, we
have also studied the possibility of discontinuous transitions
for more extreme cases. For a = 0.01 and σ = 0.005, the tran-
sition is first order, yielding, at α0 = 0.305 72(3), a value rather
close to the short-range case, 0.303 227. For completeness,
we have considered the opposite case, e.g., the occurrence
of discontinuous transition for larger a values. Our results
(not shown) support that the first-order transition line moves
toward larger σ values. For example, for a = 5 and σ = 1.2,
the transition is first order, occurring at αc = 0.439 655(5).
The crossover occurs at σt = 1.3(1), which is larger than the
σt = 1.0(1) for a = 2.

The above conclusions are also predicted by pair mean-field
results. They give a critical line at the value αc = 1/2 and a
tricritical point occurring at

ζ (σt ) = 1 + a

a
, (14)

where ζ (σ ) is the Riemann ζ function defined by ζ (σ ) =∑∞
k=1 k−σ . From the above, it follows that σt > 1, in accor-

dance with numerical results for larger a but not for sufficient
small a values.

Further, we introduce the competition with short-range
interactions. This is accomplished by performing short- and
long-range process probabilities p and 1 − p, respectively.
For low p, one expects qualitative behavior similar to that
in the full long-range case, whereas for extremely large p,
if a change in the transition occurs, it should manifest for a
sufficiently low σ . In Fig. 3 we examine the phase transitions
for p = 0.98 and different σ values. As in the previous
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FIG. 3. (Color online) Left: Log-log plot of the average cluster
size R versus the total number of particles n for several values of σ

int the subcritical regime. Top and bottom straight lines have slopes
of 1.337 04 and 1, respectively. Data points have been shifted in
order to avoid overlap. Right: Log-log plots of the time evolution
of Ps (left) and N (right) for distinct values of α for σ = 0.1 (top)
and σ = 0.3 (bottom), respectively. Predicted asymptotic slopes are
consistent with GI (top) and DP (bottom) values.
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FIG. 4. Parameter α versus σ for different values of p. Solid and
dashed lines denote second- and first-order transitions, respectively.
For each p, absorbing and active phases are located above and below
the corresponding lines, respectively.

case, the system structure also changes upon a decrease in
σ and clusters become compact for σ < 0.3. This is also
checked by comparing the time evolution of Ps and N for
σ = 0.3 and σ = 0.1. At the transition points αc = 0.3057(1)
and α0 = 0.310 45(5), the above quantities present distinct
algebraic behaviors consistent with the DP and GI exponents.
In Fig. 4 we show the phase diagram for distinct (but large)
values of p. As expected, the coexistence line moves toward
lower values of σ .

In summary, the above “weakening” approaches show that
a small long-range “perturbation” in the original CP suffices
to provoke a change in the order of transition.

B. Long-range pair creation, pair- and triplet-annihilation
contact models

Here we study the effect of distinct interaction rules on
the long-range CP. The first change, called the σ -pair CP, is
similar to the σ -CP, but new particles can be created only in
empty sites surrounded by pairs of particles. The creation rate
ωc

i reads

ωc
i = 1

2

∞∑
�=1

(
1 + a

�σ

)
ηi−2ηi−1η̄i η̄i+1 · · · η̄i+�−1ηi+�

+ 1

2

∞∑
�=1

(
1 + a

�σ

)
ηi+2ηi+1η̄i η̄i−1 · · · η̄i−�+1ηi−�.

(15)

The limit a = 0 corresponds to the short-range
pair-creation contact model case, in which a DP
phase transition occurs at αc = 0.133 97(4) [32]. In
Fig. 5, we show the main results for distinct σ values and
a = 2. The transition is also continuous for σ > 1 and
becomes first order for 0 < σ < 1. However, as an effect of
the creation in the presence of pairs, the clusters are somewhat
more compact than the usual σ -CP. For example, for σ = 0.5
the cluster density ρ = N/R (evaluated from the inverse
of the slopes of curves R vs n) is about 0.78 for the σ -CP,
whereas it reads 0.81 for the σ -pair CP. However, the creation
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CP for distinct values of σ . The top and bottom straight lines have
slopes of 1.337 04 and 1, respectively, and they have been shifted in
order to avoid overlap. Inset: Phase diagram. Solid and dotted lines
denote continuous and discontinuous transitions, respectively.

by pairs of particles is not sufficiently effective to shift the
coexistence line for larger σ . In contrast to the σ -CP, the above
results are not predicted by the pair mean-field approximation,
in which the phase transition is always first order. On the
other hand, when σ → ∞ the parameter α → 1/4, which is
in accordance with the mean-field short-range case.

Next, we consider the opposite situation, in which particles
are created as in the above σ -CP, but only pairs of particles are
allowed to be annihilated. The annihilation rate ωa

i reads

ωa
i = ηiηi+1. (16)

Equation (4) is used to calculate ᾱ in the conserved ensemble
for k = 2. For a = 0 one recovers the original PAM, in which
a DP continuous phase transition occurs at αc = 0.186 22(3)
[27,32].

Like the σ -CP, for a = 2 the phase transition becomes first
order for 0 < σ < 1. The crossover between continuous and
discontinuous occurs between 0.8 and 1.1. In Fig. 6 we show
the main results for distinct σ values. As a consequence of the
pair annihilation, the compact clusters are less dense than in
the previous cases (e.g., for σ = 0.5 the cluster density ρ is
about 2/3).

Using Eq. (5) we built the phase diagram shown in
Fig. 7. Since 〈ωc

i 〉c is proportional to �−σ , it increases upon
a decrease in σ . On the other hand, the average 〈ωa

i 〉c also
increases, as a result of more compact particle displacements.
The competition between averages results in a net increase in α

with a decrease in σ . Similarly to the σ -CP the pair mean-field
approximation also gives first- and second-order transitions,
with the tricritical point given by

ζ (σt ) = 4
1 + a

a
. (17)

Again, from this equation it follows that σt > 1. The pair mean
field predicts a critical line at αc = 1/2.
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FIG. 6. (Color online) Log-log plot of R versus n for the long-
range PAM and distinct values of σ . Straight lines have slopes of
1.337 04 (top) and 1 (bottom), respectively, and they have been shifted
in order to avoid overlap. Right: Log-log plot of the time evolution
of Ps (left) and N (right) for distinct α values for σ = 0.3 (top)
and σ = 1.2 (bottom), respectively. Predicted asymptotic slopes are
consistent with GI (top) and DP (bottom) values.

Now we consider the influence of the annihilation of three
adjacent particles. This study is motivated by previous work
[27,32] which shows that the inclusion of triplet annihilation
causes large differences in the phase diagram, compared with
single and pair annihilations. The transition rate ωa

i is then
given by

ωa
i = ηi−1ηiηi+1, (18)

and particles are created as in the σ -CP. In the conserved
ensemble, Eq. (4) is used to calculate ᾱ for k = 3. The short-
range case (a = 0) has been extensively studied in Refs. [27,
32], where a continuous phase transition belonging to the DP
universality class takes place at αc = 0.148 98(5). In Figs. 8
and 9, we plot the average cluster size R versus n and the
phase diagram for different values of σ . As in previous cases,
the phase transition is second order for σ > 1, becoming first
order for 0 < σ < 1. The crossover between continuous and
discontinuous takes place between 0.8 and 1.1. As an effect
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FIG. 7. Parameter α versus σ for the long-range PAM. Solid and
dashed lines denote second- and first-order transitions, respectively.
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range TAM and distinct values of σ . Straight lines have slopes of
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order to avoid overlapping. Right: Log-log plots of the time evolution
of Ps (left) and N (right) for distinct values of α for σ = 0.3 (top)
and σ = 1.2 (bottom), respectively. Predicted asymptotic slopes at
the top and bottom are consistent with GI and DP values.

of the triplet annihilation, the compact clusters are less dense
than in all previous cases (for a = 2).

Using the same procedure as adopted previously, we built
the phase diagram shown in Fig. 7. The transition point α

varies mildly with σ , as an effect of the simultaneous increase
in 〈ωc

i 〉c and 〈ωa
i 〉c with a decrease in σ . For smaller a, the

system also presents phase coexistence, although the crossover
seems to occur for smaller σ compared with the case a = 2.
For example, for a = 0.1 and σ = 0.5, the transition is second-
order ocurring at αc = 0.1503(1), whereas for σ = 0.1 the
phase coexistence occurs at α0 = 0.1554(2).

As in the previous cases, the pair mean-field approximation
reproduces first- and second-order transitions, with a critical
line and tricritical point occurring at αc = 2/3 and

ζ (σt ) = 9
1 + a

a
, (19)

respectively. Also, as in the previous cases, it follows that
σt > 1. In summary, the existence of a discontinuous transition
in both the PAM and the TAM for 0 < σ < 1 indicates that

0.5 1 1.5 2
σ

0.15

0.16

0.17

α

active

absorbing

FIG. 9. Parameter α versus σ for the long-range TAM. Solid and
dashed lines denote second- and first-order transitions, respectively.

pair and triplet annihilations do not provoke fluctuations strong
enough to lead to the suppression of compact clusters.

C. Long-range pair contact process (σ -PCP)

In the PCP, only pairs of particles can be annihilated
or create new particles. Unlike all previous models, any
configuration devoid of pairs is absorbing and thus the PCP
displays infinitely many absorbing states. The order parameter
is the pair density φ instead of the particle density ρ. The
PCP model has been extensively studied in the past [28,32],
and despite the differences from all the previous models, its
absorbing transition belongs to the DP universality class. Let
p the probability of annihilating pairs of particles, the phase
transition occurs at pc = 0.077 090(5) [28,32]. The parameters
p and α (used here) are related through the expression
p = α

α+1 .
The long-range version can be introduced similarly as in

all previous cases. However, in order to investigate the role of
infinitely absorbing states, we take two different cases. In the
former, the activation rate is given by Eq. (15), implying that
the distance � is measured up to the nearest particle at the edge
of an inactive island. The latter takes into account the distance
up to the nearest pair, given by

ωc
i = 1

2

∞∑
�=1

(
1 + a

�σ

)
ηi−2ηi−1η̄i · · · ηi+�ηi+�+1

+ 1

2

∞∑
�=1

(
1 + a

�σ

)
ηi+2ηi+1η̄i · · · ηi−�−1ηi−�. (20)

In both cases, the annihilation rate is given by Eq. (16).
Since the existence of infinite absorbing states makes the

use of spreading simulations difficult, we adopt the procedure
described in Sec. II, consisting of studying the time evolution
of the pair density φ starting from a fully occupied lattice. In
Fig. 10 we plot the decay of φ for different σ values by taking
the first version. We focus the analysis on the case for a = 2
and low σ , in order to see the effect of strong long-range
interactions. We see that for both cases, the decay of φ is
algebraic at 0.188 05(5) (σ = 0.5) and 0.2365(1) (σ = 0.1),
with exponents consistent with the DP value θ = 0.159 464(6)
[see short (black) lines]. This is the first evidence that the phase

4 6 8 10 12
-2.5

-2

-1.5

-1

-0.5
0.2360
0.2365
0.2370

4 6 8 10 12
ln t

-2.5

-2

-1.5

-1

-0.5

ln
 φ

0.1875
0.18805
0.1885

FIG. 10. (Color online) Log-log plots of the time evolution of the
pair density φ starting from a fully occupied lattice for σ = 0.5 (left)
and σ = 0.1 (right) for different α values. The short (black) lines by
the middle curves have slopes consistent with 0.159 464(6).
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FIG. 11. (a) Log-log plot of φ versus � ≡ αc − α for different σ

values and L = 3200. Straight lines have slope 0.276 486. Log-log
plots of φ versus L for (b) σ = 0.5 and (c) σ = 0.1. Straight lines
have slope 0.252 0718. (d) Dependence of ψ on α, where ψ = φ

(crosses) and ψ = ρ − φ (circles) for σ = 0.1.

transition in such a case is second order for all σ values. In
order to confirm this query, we also obtained static exponents,
by performing steady numerical simulations. In the case of
a continuous transition, φ will behave as φ ∼ (αc − α)β ,
where β is the associated critical exponent. In Fig. 11(a), we
show a log-log plot of φ vs � ≡ αc − α using the previous
estimates for the αc values. Note that both curves present slopes
consistent with the DP value β = 0.276 486 [bold (black)
lines], confirming the second-order phase transition.

We also studied the dependence of the order parameter φ

on the system size L. At criticality φ decays according to
the power law φ ∼ L−β/ν⊥ , where ν⊥ is the critical exponent
associated with the spatial length correlation. In fact, as
shown in Figs. 11(b) and 11(c), for all α’s (circles) φ also
decays algebraically with L, with critical exponents consistent
with the DP value of 0.252 0718 (solid lines). The above
conclusions remain valid for larger a values. For example,
for a = 5 and σ = 0.5, φ presents an algebraic decay at
αc = 0.3318(2), with a dynamic exponent consistent with the
DP one. The absence of a discontinuous transition can be
understood by inspecting the density of particles surrounded
by at least one empty site ρ − φ, which determines the strength
of the long-range interaction in this case, as shown in Fig. 11(d)
for σ = 0.1. The existence of infinitely absorbing states causes
ρ − φ to change very slightly (close to the transition), implying
that active states with low φ are not destabilized by the
long-range interaction (even for low σ ), and hence no abrupt
change in φ occurs and the transition remains continuous.

It is worth mentioning that the absence of a discontinuous
transition is not predicted by mean-field approximations. Upon
taking two site correlations, the transition is discontinuous for
σ < σt , with a tricritical point separating the first and second
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FIG. 12. (Color online) Log-log plot of the time decay of φ for
σ = 1.2 (a) and for σ = 0.1 (b). Probability distribution Pφ vs φ for
the σ -PCP and (c) σ = 1.2 and (d) σ = 0.1.

lines given by

ζ (σt ) = 2
1 + a

a
. (21)

Again, from this equation it follows that σt > 1. The pair mean
field predicts a critical line at αc = 1/4.

In Fig. 12, we show the main results for the second version.
In Figs. 12(a) and 12(b) we compare the time decay of φ

for a = 2 with σ = 1.2 and σ = 0.1, respectively. In the
former case, the slope at αc = 0.093 12 agrees with the value
0.159 464(6), consistent with the emergence of second-order
transitions for σ > 1. In contrast, the decay for σ = 0.1 is
slightly different from that in the previous case, suggesting a
first-order transition. The phase coexistence is confirmed by
plotting the pair density probability distribution Pφ , as shown
in Figs. 12(c) and 12(d) for σ = 1.2 and σ = 0.1, respectively.
In fact, for σ = 0.1Pφ is bimodal. Similar results for σ = 0.5
support a first-order transition for 0 < σ < 1. This result can
be understood by noting that in the present case φ plays a
role similar to that of ρ in the σ -CP. The dynamics described
by Eqs. (16) and (20) allows us to relate the σ -PCP and
the σ -CP through the transformation ηiηi+1 → η′

i . Since in
the σ -CP states of low densities are disrupted by long-range
interactions, a similar conclusion is valid for the σ -PCP. For
the previous version, such an analogy cannot be drown, due to
the dependence on one site occupied in the perimeter instead
of two occupied sites. To close this section we remark that the
coexistence line also seems to move toward larger σ values
when a increases, although the crossover between the two
regimes is broader than for the σ -CP.

V. CONCLUSION

First-order phase transitions into absorbing states require
a robust mechanism of preventing the creation of particles
in low-density regimes. Although there is strong evidence
that they cannot occur in one-dimensional short-range CPs, a
long-range counterpart reported by Ginelli et al. [25] revealed
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such a possibility. Aimed at uncovering the fundamental
mechanisms ruling long-range interactions as an effective
mechanism of forming compact clusters, here we have
investigated thoroughly a family of interaction rules. Our
study includes seven contact models grouped in three distinct
approaches. In the former, we have weakened long-range
interactions and taken the competition between them with
frequent short-range dynamics, whereas the latter replaces
single by cluster interactions. All these results supported that a
long-range small perturbation suffices to suppress low-density
stable states, in the sense that the undertaken weakening
long-range interactions are not sufficiently “strong” to destroy
compact clusters. The mean-field approach gave us some
insight to understand the above conclusions. Except for the
σ -pair CP, the approximated expressions present a general
structure, predicting a change in the phase transition for all
a and σ . However, in contrast with numerical results, the
critical lines present the same transition point αc (for all
σ > σt ). Unlike previous cases, the presence of infinitely
many absorbing states leads to novel and different scenarios,
depending on the particle structures surrounding the edges

of inactive sites. One of them predicts conclusions similar
to those obtained with the previous models, whereas in the
other version, the phase coexistence is destroyed. This result
cannot be understood by the two-site mean-field theory, in
which the phase transition also becomes first order for small
values of σ . Although an increase in fluctuations may predict
a second-order transition for small σ , we believe that, in the
present case, a very large order of approximation would be
required to reproduce a continuous transition. In summary,
long-range interactions constitute an effective dynamics to
create a discontinuous phase transition, even for the extreme
limits undertaken here. As the final remark, we should
mention that the effect of other dynamics such as diffusion
and quenched disorder and its competition with long-range
interactions should be investigated in a future contribution.
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