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Memory effect and fluctuating anomalous dynamics of a tagged monomer

Takahiro Sakaue*

Department of Physics, Kyushu University 33, Fukuoka 812-8581, Japan and PRESTO, Japan Science and Technology Agency,
4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

(Received 30 December 2012; published 10 April 2013)

We analyze the anomalous dynamics of a tagged monomer under external navigation. The memory effect
causing the anomaly is elucidated, which depends on the magnitude of the force. In particular, the nonlinear
and nonequilibrium memory effect under strong force is characterized by the force-dependent self-affine process
for the tension transmission along the connectivity. Utilizing such knowledge, a generalized Langevin equation
approach is proposed to quantify the fluctuating dynamics of driven anomalous walkers.
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The connectivity and resultant large internal degrees of
freedom are intrinsic characteristics of polymers, which have
a number of consequences on their dynamical properties. A
nontrivial example is already found in the motion of a tagged
monomer. It has been long known that, unlike an unconnected
simple particle, the diffusion of the tagged monomer is
anomalous; its mean square displacement scales as t2α with
2α < 1 up to a terminal time τeq [1,2]. Recently, Panja has
suggested a generalized Langevin equation (GLE) approach
to the problem, where the memory kernel, derived from the
stress relaxation after step strain, and the colored noise are
related via the fluctuation-dissipation theorem (FDT) [3].

From a broader perspective, the motion of a tagged
monomer is regarded as belonging to a class of stochastic
processes in which the anomaly originates from the memory
built by the superposition of modes with widely separated time
scales [4,5]. Such a situation naturally arises in the connected
systems; yet another important example can be found in the
fluctuation of equilibrium and growing interfaces [6,7], where
the term “monomer” may be used to designate one part of the
spatially extended system. In this paper, we wish to address
the fluctuating dynamical response of a tagged monomer, i.e.,
a fundamental question one encounters when trying to escort
such an anomalous walker.

To reveal the underlying physics causing the memory effect,
we look at the evolution of the tension front, i.e., how the
force guiding a tagged monomer is transmitted through the
connectivity. For weak enough forces, the linear response
theory provides a general answer. However, much less is
known about the motion of the tagged monomer guided by
stronger forces. Here, more dramatic dynamics, including
intense morphological evolution and fluctuating nonequilib-
rium behaviors, are expected, where nonlinear effects inherent
to polymers may set in. Elucidating the memory effect in
such situations is required in various sectors of polymer and
nanobiological sciences, hence it is regarded as an important
challenge. As we shall see, the onset of the strong driving
is identified as a qualitative change in the dynamical scaling
governing the force transmission.

We start with a microscopic model of polymers and derive
a GLE for a tagged monomer. Apart from being a slight
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generalization of the Rouse model result in Ref. [3], this
exercise discloses the limit of the equilibrium approach and at
the same time provides a hint to broaden the use of the GLE
beyond the ordinary linear response regime.

Consider the motion of a tagged monomer in a polymer
chain (with N monomers of size a). Its mathematical descrip-
tion depends on the time resolution of the observation. To see
the point, let us define the characteristic times τ0 � γ a2/kBT

and τeq � τ0(Req/a)z � τ0N
νz, where γ and kBT are the

friction coefficient of individual monomers and the thermal
energy, respectively, and Req � aNν is the equilibrium coil
size. While the first is the microscopic (the monomer scale)
time, the second is the terminal (longest relaxation) time of
the system, where ν and z are as usual the static (Flory) and
dynamical critical indices, respectively [8]. In the standard
approach, the microscopic state of the polymer is specified by
the position vectors of beads {�xn(t)} (n = 0 ∼ N ) and their
dynamics is governed by a coupled Langevin equation for all
of them. The use of white noise there is based on the separation
of the time scale; while we are interested in phenomena coarser
than the time resolution τ0, solvent degrees freedom relax to
equilibrium on a much faster time scale.

Now let us tag a monomer at the chain end and follow
its trajectory �x(t) = �x0(t). To obtain a closed equation for
the tagged monomer only, we need to eliminate all the other
monomers’ degrees of freedom. This makes the stochastic
motion of the tagged monomer a non-Markovian process. The
Markovian description is recovered only in a time resolution
coarser than τeq. Therefore, for long polymers (N � 1), there
is an abundant time window for the anomalous dynamics,
which is described by the following equation

�v(t) =
∫ t

−∞
ds μm(t − s) �f (s) + �η(t), (1)

where �v(t) = d �x(t)/dt , μm(t) is a mobility kernel, and �f (t) is
an external force acting on the tagged monomer. The random
force �η(t) satisfies 〈ηα(t)〉 = 0 and its autocorrelation is related
to the kernel via FDT 〈ηα(t)ηβ(s)〉 = kBT μm(t − s)δαβ , where
the averaging operations, denoted by 〈· · · 〉 and · · ·, are
taken over the stochastic noise realizations and the initial
configurations of the polymer at t = −∞, respectively.

To derive Eq. (1) from a microscopic polymer model,
we adopt the “creep” protocol in which one monitors the
time course of the velocity �v(t) of the tagged monomer
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upon switching on the force at t = 0, i.e., �f (t) = 2 �f δ(n)u(t),
where u(t) = 1 for t > 0 and u(t) = 0 for t < 0. Assuming
that the chain conformation is not severely distorted during
the operation process, the long-range excluded-volume (EV)
and hydrodynamic interactions (HIs) are taken into account
through the preaveraging approximation with the equilibrium
monomer distribution [9]. By introducing the normal coordi-
nate �Xp(t) = N−1

∫ N

0 dn cos (pnπ/N )�xn(t) for p = 0,1, . . .,
the equation of motion in the normal coordinate space reads

γp

∂ �Xp

∂t
= −kp

�Xp + �gp + �fp (p = 0, 1, . . .), (2)

with the friction and spring constants γp �
γNν(z−2)/(pν(z−2)−1 + δp0) and kp � kBTp1+2ν/a2N2ν .
The random force �gpα(t) satisfies 〈gpα(t)〉 = 0 and
〈gpα(t)gqβ(t ′)〉 = 2γpkBT δpqδαβδ(t − t ′) [10]. The
external force �f acting on the end monomer is
distributed in the normal coordinate space according to
�fp(t) = 2/(1 + δp0)u(t) �f [9,11].

For p � 1 and t > 0, Eq. (2) is solved as

�Xp(t) = 2 �f
kp

+
(

�Xp(0) − 2 �f
kp

)
exp

(
−kp

γp

t

)

+ γ −1
p

∫ t

0
exp

(
−kp

γp

(t − t ′)
)

�gp(t ′)dt ′. (3)

Upon time derivative and returning to the real coordinate, one
can identify the elements in Eq. (1) as

μm(t) = − 2

γ τ0N2ν(z−1)

∑
p=1

p2ν(z−1)−1e(−t/τeq)pνz

, (4)

η(t) = −2
∑
p=1

pνz

γpτeq

∫ t

0
e{(t−t ′)/τeq}pνz �gp(t ′)dt ′

− 2
∑
p=1

pνz

τeq

�Xp(0)e−(t/τeq)pνz + 2
∑
p=1

1

γp

�gp(t). (5)

By invoking the initial equilibrium distribution Xpα(−∞) =
Xpα(0) = 0 and Xpα(0)Xqβ(0) = (kBT /kp)δpqδαβ [9], the
desired FDT relation follows, which ensures the thermalization
of the tagged monomer’s degrees of freedom. Replacing the
summation in Eq. (4) by the integral, we obtain the power-low
memory kernel

μm(t) � − 1

γ τ0

(
t

τ0

)2(z−1−1)

, (6)

where the negative sign indicates the anticorrelation of the
temporal noise η(t). Together with Eq. (1), the anomalous
exponent is identified as α = 1/z. In the presence of the
guiding force, one finds the average drift

〈��x(t)〉
a

�
( �f a

kBT

)(
t

τ0

)2α

(7)

and the fluctuation around it

〈[δ��x(t)]2〉
a2

�
(

t

τ0

)2α

, (8)

where ��x(t) = �x(t) − �x(0) and δ��x(t) = ��x(t) − 〈��x(t)〉.
Such an anomalous dynamics persists up to the terminal

time τeq, after which the normal drift and diffusion around
it follow with the average velocity 〈�v(t)〉 � �fex/γNν(z−2) and
the diffusion coefficient �kBT /γNν(z−2), respectively.

What about the tension transmission? At t < τeq, only some
of the monomers M(t) < N close to the guided monomer
are under the influence of the force, while other N − M(t)
monomers in the rear are still beyond the tension front.
The force balance equation γM(t)ν(z−2)〈v(t)〉 � f leads to
the evolution of the tension front in the internal coordinate
as M(t) � (t/τ0)1/νz. The corresponding physical distance
coincides with the diffusion length of the tagged monomer

R(t) � a(t/τ0)α �
√

〈[δ��x(t)]2〉. (9)

The following two points should be noted: (i) Eq. (9)
can be cast into the so-called Family-Vicsek scaling form
R(t) ∼ ReqFeq(t/τeq) with a scaling function Feq(u) ∼ uα

for u 
 1 [12]. Thus it naturally follows from the hypothesis
that the tension propagation is a self-affine process along with
the relations Req � aNν and τeq � τ0N

νz. (ii) In a Rouse
model (ν = 1/2, z = 4), the tension is diffusively transmitted
along the internal coordinate. The EV [z = (2ν + 1)/ν with
ν > 1/2] or HI (z = 3) alters it in opposite ways, making it
a subdiffusive or superdiffusive process, respectively.

So far, our derivation of the memory kernel relies on the
assumption that the chain conformation is described by the
equilibrium monomer distribution during the whole process.
This, however, breaks down when the guiding force exceeds
the threshold f > f ∗ � kBT /Req, making the preaveraging
scheme unavailable and thus the microscopic derivation of the
GLE for the motion of a tagged monomer elusive. However,
a close inspection of the above derivation indicates that it is
the local equilibration of the tagged monomer’s degrees of
freedom, but not the global equilibration of the system, that,
combined with its linear response property, is essential for the
GLE formalism.

For f > f ∗, one may generalize the anomalous drift and
diffusion relations (7) and (8) as

〈�x(t)〉
a

�
(

f a

kBT

)β1
(

t

τ0

)2α1

, (10)

〈[δ�x(t)]2〉
a2

�
(

f a

kBT

)β2
(

t

τ0

)2α2

, (11)

with the possible nonlinear effect through the exponents βi

(i = 1,2). To derive these anomalous exponents αi and βi

in terms of the memory effect, one needs to analyze the
dynamical behaviors of the whole chain. Note first that the
chain initially at rest cannot follow the tagged monomer while
keeping its equilibrium conformation, thus entailing the strong
deformation [11,13,14]. To get the onset of this nonequilibrium
dynamics, let us assume that Mf monomers initially follow
the driving force �f by keeping the equilibrium size Rf �
aMν

f with the average velocity �vf � �f /γM
ν(z−2)
f . For the

argument to be consistent, the shear rate in the spatial domain
of size Rf should be smaller than the relevant relaxation
rate. We thus find τ0M

νz
f vf /Rf � 1 ⇔ Rf � kBT /f . For

Rf < Req ⇔ f > f ∗ � kBT /Req, the equilibrium treatment
is valid only up to the time

τ0f � τ0M
νz
f � τ0(f a/kBT )−z. (12)
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From then on, the progressive conformational deformation
process sets in toward the global steady state, which is
characterized by the longitudinal length Rss ∼ Nf (1−ν)/ν and
the velocity vss ∼ f z−2/Rss [11,15].

At time t > τ0f , M(t) (>Mf ) anterior monomers constitute
the responding domain assuming an instantaneous steady-state
conformation with longitudinal length R(t) and the moving
velocity v(t) � dR(t)/dt . The growth of M(t) with time
is identified as the evolution of the tension front, which
in turn operates as a memory effect for the motion of the
tagged monomer. The above view of the growing moving
domain provides the following construction of the dynamical
scaling, for which one may apply the steady-state friction and
extensional laws to the moving domain:

R(t)

a

v(t)τ0

a
�

(
f a

kBT

)z−2

,

(13)
R(t)

a
� M(t)

(
f a

kBT

)(1−ν)/ν

.

This leads us to identify the exponents α1 = 1/4 and β1 =
(z − 2)/2 with the “force-dependent” self-affine growth law
for the tension front

R(t) � a

(
f a

kBT

)(z−2)/2 (
t

τ0

)1/2

(14)

and the terminal time

τss �
(

f a

kBT

)(2/ν)−z

N2 (15)

at which the tension reaches the rear end and thus the polymer
attains the global steady-state conformation in compliance
with the guiding force. At t > τss , the drift becomes normal
with d〈�x(t)〉/dt = vss . Equations (14) and (15) together with
the steady-state extension Rss given below Eq. (12) constitute
the Family-Vicsek scaling [12] 〈�x(t)〉 ∼ R(t) ∼ RssF(t/τss)
with a scaling function F(u) ∼ u1/2 for u 
 1 to characterize
the self-affinity of the nonequilibrium tension transmission
process.

To derive the diffusion exponents α2 and β2 one notes that
the frictional response is generally nonlinear, i.e., β1 
= 1. We
thus extend Eq. (1) as

δε �v(t ; �f ) = ε

∫ t

−∞
ds μm(t − s; f ) �f (s) + �η(t ; f ), (16)

where δε �v(t ; �f ) = �v(t ; �f (1 + ε)) − �v(t ; �f ) and ε �f (with ε 

1) is an additional small force to probe the linear re-
sponse property of the driven tagged monomer around
its dynamical average state. The nonlinear mobility kernel
μm(t ; f ) now depends on the guiding force, which can be
obtained as

μm(t ; f ) � − 1

γ τ0

(
f a

kBT

)β1−1 (
t

τ0

)2(α1−1)

. (17)

Despite the nonequilibrium conformation of the entire poly-
mer, the local relaxation of the tagged monomer is achieved on
much faster time scale. This fact is in fact implicit in the above
derivation of the memory kernel in conformity with the grow-
ing steady-state domain. This indicates that the FDT relating

the noise intensity to the mobility is still valid to ensure the
local relaxation of the tagged monomer’s degrees of freedom
to the instantaneous steady-state within our time resolution.
Therefore, we have 〈ηα(t ; f )ηβ(s; f )〉 = kBT μm(t − s; f )δαβ

and hence the GLE formalism to describe the fluctuation of
the tagged monomer around the average dynamics, leading to
the identifications α2 = α1 and β2 = β1 − 1.

We now discuss the preceding results: (i) First, let us
check the dynamical crossover and associated time scales
emerging from the present theory. Upon comparing the
drift [Eqs. (7) and (10)] with the diffusion [Eqs. (8) and
(11)], we again find the characteristic time τ0f [Eq. (12)],
which separates the diffusion dominating equilibrium dy-

namics
√

〈[δ�x(t)]2〉 � R(t) > 〈�x(t)〉 at t < τ0f and the
drift dominating nonequilibrium dynamics 〈�x(t)〉 � R(t) >√

〈[δ�x(t)]2〉 at t > τ0f . In approaching the weak force
limit f → f ∗, two characteristic time scales converge to the
equilibrium terminal time, i.e., τ0f , τss → τeq � τ0(Req/a)z,
ensuring the correct crossover to the near-equilibrium regime
discussed earlier. (ii) A Rouse model is special in that the
superficial response behaviors remain the same across f = f ∗,
i.e., α = α1 = α2 = 1/4, β1 = 1, and β2 = 0. The reason of
course lies in the strict linearity of the Rouse model. However,
a qualitative change in the underlying physics shows up, as
evidenced by the crossover from diffusive to driven tension
transmissions. The latter is accompanied by the progressive
morphological evolution, signaling the nonequilibrium dy-
namics. The same remark applies also to the fluctuation of
interfaces. (iii) For long chains (N � 1) driven by moderate
forces f ∗ 
 f 
 kBT /a, there is a wide time window
τ0 < t < τ0f < τss during which the fluctuations play a major
role.

To summarize, we have clarified a link between equilib-
rium and nonequilibrium memory effects causing anomalous
dynamics in a class of stochastic processes. The physical
origin of the memory is the self-affine tension transmission
process through the connectivity. While in near equilibrium
the growth of the tension front is controlled by the dynamic
exponent z, its scaling behavior qualitatively changes in the
nonequilibrium regime. In polymers, this entails the nonlinear
force dependence in the growth law due to the EV and/or HIs.
The GLE approach is proposed to be useful to describe the fluc-
tuating dynamics of such strongly driven anomalous walkers.
We hope that the present study will stimulate a range of related
fields by providing a fresh viewpoint from which to analyze
nonequilibrium memory effects. For instance, its application to
various dynamical processes, e.g., the surface growth [6,7], the
zipping of two strands [16], and the polymer detachment from
absorbing surfaces [17], is an interesting challenge, where
the role of fluctuations is expected to be important if driven
by moderate forces. Among others, the polymer translocation
across a pore would be a good candidate, which is currently
a subject of interdisciplinary research. Indeed, the fluctuation
effect in the driven translocation is one of the latest topics under
debate [18–21].
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