
PHYSICAL REVIEW E 87, 034801 (2013)

Ferromagnetic interaction model of activity level in workplace communication
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The nature of human-human interaction, specifically, how people synchronize with each other in multiple-
participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found
two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first
characteristic is that people quite regularly synchronize their activity level with that of the other participants
in a conversation. The second characteristic is that the degree of synchronization increases as the number of
participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level”
was modeled according to the Ising model. The results of a simulation of activity level based on this model well
reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how
people interact with each other in a conversation.
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Introduction. Many phenomena, such as the synchroniza-
tion of a firefly’s glow with those of other fireflies, suggest
that living animals influence each other more strongly than
was originally thought [1]. In the case of people, many syn-
chronization phenomena, such as synchronization of lengths
of menstrual periods [2] and applause at a concert [3], exist.
In particular, conversation has been found to involve a lot
of synchronization phenomena related to postures, gestures
[4], words, tone of voice [5], and timing of turn taking
[6]. Furthermore, synchronization in a conversation has been
attracting attention, because it is related to affiliation between
conversational partners [7] and makes a conversation smoother
and more successful [8,9]. These research studies, however,
were based on a two-participant conversation; so the dynamics
of synchronization of a multiparticipant conversation, which
often occurs in a real environment condition, has not yet been
revealed.

In the present study, to determine the synchronization
mechanism in a multiparticipant conversation, the effect of
the number of participants on activity-level synchronization
was analyzed through data on real-environment face-to-face
conversation. As for this analysis, all conversations in a
real environment, namely, a company employing 412 people,
were measured over three months by using “wearable social
badges.” The measurement data indicate who met whom, when
and where they met, and what their activity levels were. Ana-
lyzing these data reveals two basic characteristics of the activ-
ity level of human conversation: first, people synchronize with
each other; second, the degree of synchronization increases
as the number of participants increases. A statistical-physics
model including these characteristics was made, and the model
was verified by comparing measurement results and simulation
results of activity level in a conversation. This comparison
indicates that human’s complex synchronizing behavior can
be described using the framework of statistical physics.

Measurement. Social badges and IR beacons were used to
measure the workplace conversations [10]. These devices not
only measure the simple amount of face-to-face conversation
but also predict a person’s state, such as concentrating, when
working alone [11]. Each social badge has three functions.
First, it measures a person’s physical movement (in terms

of an “acceleration signal”) by using a single three-axis
accelerometer. “Zero-crossing counts,” defined as the number
of times an acceleration signal crosses the zero level within
a predefined time, are used to identify individual activity
levels such as being quiet, web browsing, keyboard typing,
gesturing, and walking. Second, it captures the time involved in
face-to-face communication by using six infrared (IR) sensors
that can detect when two people wearing badges are facing
each other. Third, it captures location data by using the IR
sensors to detect when the person wearing the badge is near
an IR beacon.

Conversations in a software-development company were
measured over three months. All 412 people who work
in the main office building cooperated in this experiment
and wore social badges. As for their working roles, 231
people work in development teams, and 181 people work
in management teams. As for their hierarchical positions, 59
people hold positions higher than managerial level, and 353
people hold positions lower than managerial level. To ensure
that conversations are analyzed under the same conditions, it is
necessary to identify whether a communication was a formal
meeting or an informal chat. Accordingly, 42 IR beacons
were set up in all of the 12 meeting spaces in the building,
and all conversations occurring in those meeting spaces were
analyzed.

To model the activity level of conversation, the state of
face-to-face conversation must first be defined in terms of both
individual state and group state. In a conversation, the activity
level of each individual is in a certain state. For example,
someone in a communication who is gesturing, speaking,
or nodding strongly would be at a high-activity level, and
someone just sitting and not reacting would be at a low-activity
level. Although the activity level is actually in a continually
changing state, hereafter, it is simply discriminated as either of
two levels, “active” or “nonactive,” for the sake of simplicity.
Group activity level (Lga) expresses the state in which the
communication itself is active or not. To model this state,
it is assumed that the group state is a summation of each
participant’s state. Lga is defined as

Lga = na/N, (1)
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FIG. 1. Each member’s active state (top) and Lga (group activity
level) (bottom). Each member’s active state looks somewhat random;
however, the moving average of Lga shows the oscillation of activity
level of the conversation.

where na means the number of the participants who are active,
and N means the total number of participants. Lga ranges from
“0” to “1,” where “1” is the maximum activity level (i.e., all
participants are active) and “0” is the minimum activity level
(i.e., nobody in the communication is active). Activity level,
defined above, was calculated from sensor data in the following
way. The activity state of each individual was classified as
either active or nonactive every minute according to the zero-
crossing count, which was calculated every 10 seconds (Z10s).
The maximum Z10s over 1 minute (Zmax) is used to determine
whether the participant is active or not. An example of an
individual’s activity state and Lga in a meeting is shown in
Fig. 1.

To determine if people microscopically synchronize in a
multi-participant conversation, the “transition probability” of
the active state (namely, the probability that activity level will
change) was focused on. If people synchronize their active
state with other participants’ states, a participant’s transition
probability should follow the other participants’ states. For
example, if the number of active-state participants out of
all the other participants increases, a participant’s transition
probability for nonactive to active (Pna→a) should increase,
and that for active to nonactive (Pa→na) should decrease. To
visualize this effect of synchronization, the relation between
Pna→a/Pa→na and the number of other active-state participants
for each size of a conversation (i.e., number of participants) is
plotted in Fig. 2. It is clear from this graph that regardless of the
size of a conversation, Pna→a/Pa→na increases exponentially
as the number of active-state participants increases. In other
words, no matter how big or small the size of the conversation
is, people always synchronize their activity level with that of
others.
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FIG. 2. Single logarithmic graph, showing the relation between
Pna→a/Pa→na and the number of other active-state participants.
To ensure calculation reliability, the points in the graph that were
calculated from samples of less than 10 transitions were excluded.
In addition, the larger the size of a conversation is, the fewer
times a conversation occurs. The size of the target for analysis of
communication was limited to 12 people, under which more than
70% of the points could be calculated from samples of more than 10
transitions.

To quantify this synchronization effect, a “synchronization
index” (=Is) is defined as

Is = � log(Pna→a/Pa→na)

�ra

, (2)

where ra is the ratio of active participants out of all the
other participants. To make the relation of Pna→a/Pa→na and
ra linear, the logarithm of Pna→a/Pa→na was taken. Is is
the gradient of � log( Pna→a/Pa→na) over ra and indicates
how strongly a participant is influenced by the surrounding
conditions. Linearity of � log(Pna→a/Pa→na) and ra is listed in
Table I. According to the table, a significantly high correlation
coefficient for each size of a conversation confirms that people
regularly synchronize with others in a conversation and that Is

is a good index for expressing the synchronization of a human
conversation.

To determine the effect of size of a conversation on synchro-
nization in a multiple-participant conversation, the correlation
between size of a conversation and Is was calculated (see
Fig. 3). The coefficient of the correlation was significant

TABLE I. Linearity of � log(Pna→a/Pa→na) and
ra . No means number of other participants in a
conversation. R means correlation coefficient, and
p means significance probability.

No R p

1 – –
2 0.99 0.07
3 0.97 0.03
4 0.98 0.00
5 0.93 0.01
6 0.92 0.00
7 0.94 0.00
8 0.97 0.00
9 0.93 0.00
10 0.94 0.00
11 0.88 0.00
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FIG. 3. Synchronization Index (Is) versus number of other par-
ticipants in a conversation.

(R = 0.99, p < 1.0 × 10−7) and confirmed that the degree
of synchronization in a conversation gets higher as the number
of other participants increases.

Ferromagnetic model. To develop a model describing
human-human synchronization in a multiple-participant con-
versation, a framework based on statistical physics, which
has proved to be useful to model social dynamics [12]
such as opinion dynamics [13,14], crowd behavior [15], and
stress dynamics [16], was applied. To make a model of a
multiple-participant conversation based on statistical physics,
a full-mesh network structure was chosen. This network
structure was chosen on the supposition that every participant
in the same conversation at least somewhat influences the other
participants. Based on this network structure, an Ising model
of a conversation activity level is proposed as the following
Hamiltonian:

Hi = −J si

∑
〈j〉

sj − Hsi. (3)

Here si is the active state of each participant, taking a value
of either “−1” (nonactive state) or “1” (active state), h is the
coefficient of external effects (such as location), and J is the
coefficient of synchronization. In this model, a participant is
modeled as an atom, the active state of the participant as the
spin of the atom, the external effect as an external magnetic
force, and the randomness of the participant’s transition of
active state as temperature.

Simulation. To determine the macroscopic characteristic of
the Hamiltonian and verify its appropriateness, the proposed
model was simulated by applying the Metropolis method [17].
In this method, the Monte Carlo step, in which the selected
participants’ energy is calculated with flipped active state and
that state is adopted according to the probability given by
Eq. (4) from time step ti to ti+1, is repeated a fixed number of
times to minimize the energy. The participants to be calculated
in a flipped active state are selected randomly in each step,
according to a Gaussian distribution with a mean probability
of 0.5:

Ps(ti )→s(ti+1) =
{

e−�E/T

Z
if �E > 0

1 if �E � 0
. (4)

The difference between the energy of a state before and
after a spin flips is denoted as �E, temperature is T , and
Z is a normalization constant. To conduct this simulation,
parameters H , J , and T have to be determined on the basis of

the measured transition probability. The way to estimate H ,
J , and T is described as follows. J is set as J = 1 because the
number of degrees of freedom of the Ising system is two, and
one of either H , J , or T has to be set.

From Eq. (4) it is clear that, the ratio of transition probability
under different conditions (namely, ra and No) is described as

P(na→a,ra,N)

P(a→na,ra,N)
= e

−(E(a,ra,N)−E(na,ra,N))

T . (5)

This ratio of transition probability is useful, because even
though either �Ena→a or �Ea→na being negative and Pna→a

or Pa→na being 1, the ratio could be described in an equation
as Eq. (5) without dividing into cases. log(Pna→a/Pa→na)
could be assumed to have a linear relationship with ra

according to the measurement results listed in Table I. On
the basis of Eq. (3), Eq. (5), and the measurement result
that log(Pna→a/Pa→na) and ra have a linear relationship,
log(Pna→a/Pa→na) is given as

log

(
P(na→a,ra,No)

P(a→na,ra,No)

)
= Is(No)ra + B(No), (6)

Is(No) = 4

T
No, (7)

B(No) = − 2

T
No + 2H

T
. (8)

The procedure to estimate parameters T and H consists of
two steps. First, both Is(No) and B(No) were estimated by the
method of least squares using measurement data varying in
terms of ra . Is(No) and B(No) shown in the Fig. 4 “experi-
ment,” which were estimated from experiment data, suggest
the linearity of Is(No) versus No (R = 0.99, p < 1.0 × 10−7)
and B(No) versus No (R = −0.98,p < 1.0 × 10−7). The
result also suggests that T and H are independent of No and
can be treated as constant values. Second, T was estimated
from Eq. (7) and Is(No), and H was estimated from Eq. (8)
and B(No).

Performing the two steps described above gave {H,J,T }
as {−3.20,1.0,17.5}. Parameter H being negative means that
external effects lower a participant’s activity level. This result
is consistent with those of former studies, suggesting that
formal communications, such as those occurring in meeting
places, tend to be one-way and not active [18]. The present
experiment focused on conversations occurring in meeting
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FIG. 4. Experimentally measured and simulated results Is(No)
(left) and B(No) (right) versus number of other participants in a
conversation.
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FIG. 5. Probability density of Lga (i.e., group activity level) of
(a) experimental measurement data and (b) simulation results.

places, so the result that external effects lower a participant’s
activity level is persuasive.

The simulation of activity level in a conversation was
conducted with the estimated parameters {H,J,T }. In the
simulation, the active-state calculation was iterated 10 000
times. To confirm that the estimated parameters could repro-
duce the microscopic measurement result, Is(No) and B(No)
were calculated. The simulation data plotted in the Fig. 4
“simulation” show that the estimated parameters {H,J,T } well
reproduce the measurement results, namely, Is(No) and B(No),
especially the important microscopic characteristic that the
degree of synchronization gets higher as the number of other
participants increases.

The simulated probability density of Lga was then com-
pared with that of measurement, which is a macroscopic
characteristic of activity level in a conversation. The prob-
ability density of Lga , which was calculated from both
simulation and measurement results, is plotted in Fig. 5.
The experimental measurements shows that the distribution
of probability density of Lga gets high kurtosis and average
Lga decreases as the number of participants increases. This
result is caused by the synchronization effect. When the
number of participants is low, such as two, Is is low, and
participants are not affected by the other participants so much.
As a result, the probability density of Lga is almost uniform,
regardless of external effects. However, when the number
of participants increases, Is increases, and the participants
strongly synchronize their active states with those of the
others’. In that situation, Lga gets lower, even if the external
effect lowering participants’ activity levels stays constant,
because the synchronization effect strengthens the external
effect. The simulation results shown in Fig. 5(b) show the
same trend as the measurement results, thereby verifying the
appropriateness of the simulation model.

Summary. A ferromagnetic human-human interaction
model, namely, a model describing how people synchronize
with each other in a multiple-participant conversation, was
proposed. This model is based on two microscopic char-
acteristics of activity level in a conversation, which were
found in a real-environment face-to-face conversation. The
first characteristic is that the activity level of a participant
in a conversation regularly synchronizes with the other
participants. The second characteristic is that the degree
of synchronization increases as the number of participants
increase. The results of a conversation activity-level sim-
ulation based on the proposed model reproduce not only
the microscopic synchronizing characteristics, but also the
macroscopic group activity level trends, which were also
found in a real-environment face-to-face conversation. We
hope this finding, that is, a person’s synchronizing interaction
can be modeled precisely with a framework based on statistical
physics, will trigger additional research for human-behavioral
science.
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