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Including the effect of thermal fluctuations in traditional computational fluid dynamics requires developing
numerical techniques for solving the stochastic partial differential equations of fluctuating hydrodynamics.
These Langevin equations possess a special fluctuation-dissipation structure that needs to be preserved by
spatio-temporal discretizations in order for the computed solution to reproduce the correct long-time behavior.
In particular, numerical solutions should approximate the Gibbs-Boltzmann equilibrium distribution, and ideally
this will hold even for large time step sizes. We describe finite-volume spatial discretizations for the fluctuating
Burgers and fluctuating incompressible Navier-Stokes equations that obey a discrete fluctuation-dissipation
balance principle just like the continuum equations. We develop implicit-explicit predictor-corrector temporal
integrators for the resulting stochastic method-of-lines discretization. These stochastic Runge-Kutta schemes
treat diffusion implicitly and advection explicitly, are weakly second-order accurate for additive noise for small
time steps, and give a good approximation to the equilibrium distribution even for very strong fluctuations.
Numerical results demonstrate that a midpoint predictor-corrector scheme is very robust over a broad range of
time step sizes.

DOI: 10.1103/PhysRevE.87.033302 PACS number(s): 47.11.−j, 02.50.Fz, 05.40.Ca

I. INTRODUCTION

Modeling the effects of thermal fluctuations in spatially
extended systems requires introducing Langevin stochas-
tic forcing terms in traditional deterministic models [1,2].
Stochastic effects arise in fluid dynamics because of the
random thermal motion of the molecules constituting the
fluid at the microscopic level. Stochastic effects are important
in flows at micro- and nanoscales typical of new nano-
and microfluidic and microelectromechanical devices [3,4],
novel materials such as nanofluids [5], and biological systems
such as lipid membranes, Brownian molecular motors, and
nanopores [6]. Thermal fluctuations can be amplified by
nonequilibrium effects and affect the macroscale, as in fluid
mixing [7,8], propagation of fronts [9,10], combustion of
lean flames, capillaries [11,12], and hydrodynamic instabilities
[13–15]. Because they span the whole range of scales from the
microscopic to the macroscopic [7,8], fluctuations need to be
consistently included in all levels of description, including
continuum descriptions.

Thermal fluctuations can be included in the classical
Navier-Stokes-Fourier equations of fluid dynamics and related
conservation laws through stochastic forcing terms, as first
proposed by Landau and Lifshitz. The original formulation
was for compressible single-component fluids [16]. However,
the methodology can be extended to other systems such
as fluid mixtures [17], chemically reactive systems [18],
magnetic materials [19], and others [20]. The structure of the
equations of fluctuating hydrodynamics can be, to some extent,
justified on the basis of the Mori-Zwanzig formalism [21,22].
The basic idea is to add a stochastic flux corresponding
to each dissipative (irreversible, diffusive) flux [2], leading
to a continuum Langevin model that ensures the correct
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equilibrium distribution. Specifically, statistical mechanics
tells us that the stationary (invariant) distribution at thermo-
dynamic equilibrium is the Einstein distribution for isolated
systems, and the Gibbs-Boltzmann distribution for systems in
contact with a thermal bath.

As model equations, here we consider the fluctuating
Burgers equation in one dimension and the fluctuating Navier-
Stokes equation in two and three dimensions. These stochastic
conservation laws have nondissipative (skew-adjoint) advec-
tive terms and dissipative (self-adjoint) viscous terms, as well
as stochastic forcing terms that are in fluctuation-dissipation
balance with the dissipative terms. Spatial discretizations of
the corresponding continuum (functional) operators should
preserve these (anti)symmetry properties in order to obey a dis-
crete fluctuation-dissipation balance. In general, constructing
such spatial discretizations (coarse-grained Langevin models)
is nontrivial and may be at odds with other considerations such
as deterministic stability. For example, upwind discretizations
commonly used for advection-diffusion equations add artifi-
cial dissipation to the equations, thus violating fluctuation-
dissipation balance.

Based on prior work by us and others, we construct
spatial discretizations for the fluctuating Burgers and fluc-
tuating incompressible Navier-Stokes equations that obey a
discrete fluctuation-dissipation balance principle just like the
continuum equations. The main challenge is in constructing
temporal integrators for the resulting large-scale system of
stochastic differential equations. Ideally, the temporal integra-
tors should have higher-order short-time accuracy but also lead
to long-time dynamics that is in agreement with fluctuation-
dissipation balance. Generalizing temporal integrators that are
favored for Langevin equations in low-dimensional systems
(e.g., molecular dynamics) [23] to the equations of fluctu-
ating hydrodynamics would require implicitly handling the
nonlinear advective terms. Solving the resulting large-scale
nonlinear system of equations is computationally expensive
in three dimensions for the Navier-Stokes equations. Mixed
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implicit-explicit Runge-Kutta schemes are used commonly in
the deterministic method of lines, and can be extended to the
stochastic setting with little effort, at least for the case of
additive-noise equations [24].

We derive the conditions for second-order weak accuracy
of implicit-explicit predictor-corrector schemes for additive
noise, and construct several candidate schemes. These semi-
implicit schemes use an implicit midpoint rule for the diffusive
and stochastic terms, which has the remarkable property
that it gives the correct equilibrium distribution independent
of the time step size. The nonlinear advective terms are
handled explicitly using an Euler predictor and a trapezoidal
or midpoint corrector. We explain how to incorporate the
stochastic forcing term in the resulting predictor-corrector
schemes, and numerically study their performance on the
model fluctuating Burgers equation. The numerical results
suggest that the midpoint corrector is particularly robust.
We then extend the spatio-temporal discretization to handle
the incompressibility constraint present in the fluctuating
Navier-Stokes equations in two and three spatial dimensions.
We also include a passively advected fluctuating scalar field,
as encountered in practical problems. The schemes that we
develop and analyze here have already been employed in
Ref. [25] to construct a robust numerical solver for fluctuating
incompressible flows, and to simulate the appearance of giant
concentration fluctuations in diffusively mixing fluids [7,8].

We begin by reviewing the fluctuating Navier-Stokes
equations, and summarize a rather general formulation of
finite-dimensional Langevin equations that obey a fluctuation-
dissipation principle. In Sec. II we explain in detail how to
spatially discretize the fluctuating Burgers in one dimension so
as to obtain a finite-dimensional system of Langevin equations
with the proper structure. We turn our attention to temporal
integrators for solving the resulting large-scale structured sys-
tem of stochastic differential equations in Sec. III. In Sec. III D
we design several implicit-explicit stochastic Runge-Kutta
schemes that are second-order weakly accurate for additive
noise and maintain fluctuation-dissipation balance even for
large time steps. In Sec. IV we explain how the spatio-temporal
discretization developed for the fluctuating Burgers equation
can be generalized to the fluctuating Navier-Stokes equations
with a passively advected scalar field. The performance of the
proposed schemes in the nonlinear (large fluctuation) setting
is investigated in Sec. V, and some concluding remarks are
given in Sec. VI. Several technical calculations are detailed in
the Appendices.

A. Fluctuating hydrodynamics

The prototype stochastic partial differential equation
(SPDE) of fluctuating hydrodynamics is the fluctuating
Navier-Stokes equation. This equation approximates the dy-
namics of the velocity field v(r,t) of a simple Newtonian
fluid in the isothermal and incompressible approximation,
∇ · v = 0,

ρ(∂tv + v · ∇v) = −∇π + η∇2v + ∇ · [
(2kBT η)

1
2 Z

] + f ,

(1)

where π is the nonthermodynamic pressure, ρ is the (constant)
density, η = ρν is the (constant) shear viscosity and ν is

the kinematic viscosity, and f (r,t) is an additional force
density such as gravity [17]. Note that we prefer to use
the standard physics notation instead of the differential
notation more common in the mathematics literature, since
the noise is additive and there is no difference between the
different interpretation of stochastic integrals (e.g., Ito versus
Stratonovich). In the momentum conservation law (1), the
stochastic momentum flux is modeled using a white-noise
random Gaussian tensor field Z(r,t); that is, a tensor field
whose components are independent (space-time) white-noise
processes,

〈Zij (r,t)Zkl(r ′,t ′)〉 = (δikδjl)δ(t − t ′)δ(r − r ′).

Note that in principle the stochastic momentum flux should
have the symmetrized form (kBT η)1/2(Z + ZT ) [17]; how-
ever, for incompressible flow with constant viscosity this is
not necessary [25].

The fluctuating Navier-Stokes equation, like other aug-
mented Langevin equations of interest [26], obeys a
fluctuation-dissipation principle, as explained more precisely
in Sec. I B. Specifically, (1) is constructed so that, at thermody-
namic equilibrium, the invariant measure (equilibrium distri-
bution) for the fluctuating velocities with periodic boundaries
is the Gibbs-Boltzmann distribution with a coarse-grained free
energy or Hamiltonian given by the kinetic energy of the fluid,
formally,

Peq(v) = Z−1 exp

[
−

∫
d r ρv2

2kBT

]
δ

( ∫
d r ρv

)
δ(∇ · v).

This is ensured by constructing the stochastic forcing term so
that its covariance is proportional to the viscous dissipation
operator η∇2. The advective operator (v · ∇), is, at least
formally, Hamiltonian [27] in nature, which means that it pre-
serves the equilibrium distribution dictated by the competition
between the dissipative and the stochastic forcing terms. We
argue that these well known observations about the structure
of the continuum equations should guide the construction of
spatio-temporal discretizations [28].

We have formally written Eq. (1) as an infinite-dimensional
stochastic differential equation. However, the interpretation of
the nonlinear term v · ∇v requires giving a precise meaning to
products of distributions, which cannot be defined in general
and requires introducing some sort of regularization. An
alternative is to define a discrete hydrodynamic field directly
via some form of averaging of the molecular configuration of
the fluid, and to obtain directly a finite-dimensional system
of stochastic ordinary differential equations (SODEs) for
the discrete variables through the Mori-Zwanzig formalism
[22,29,30]. While such an approach has certain advantages
from a coarse-graining perspective, the notion of a continuum
equation and the applicability of traditional methods for
computational fluid dynamics is lost or at least obscured.

Here we adopt a middle ground between the “continuum”
and the “discrete” approach to fluctuating hydrodynamics.
Specifically, we first spatially discretize the SPDE to obtain
a system of SODEs, in the spirit of the “method of lines”.
Our focus here is on the temporal integrators for the resulting
system of SODEs. We do not consider the convergence of
the numerical method as the spatial discretization is refined,
as one would in deterministic fluid dynamics. Rather, we fix
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the spatial discretization and assume that the hydrodynamic
cells are sufficiently large, specifically, that they contain,
on average, sufficiently many fluid molecules Np � 1. This
ensures that the equilibrium fluctuations will be on the order
of O(N−1/2

p ) relative to macroscopic fields. We also assume
that the transport coefficients have been renormalized to
account for the finite number of fluid particles (molecules)
used to define the hydrodynamic fields [8,31]. There is
strong numerical evidence that under these conditions spatio-
temporal discretizations can correctly capture the leading-
order (measurable) effects of fluctuations at large scales, such
as fluctuation-driven transport in nonequilibrium systems [8],
large-scale inhomogeneities arising during free fluid mixing
[25], and diffusive effects on the very long-time dynamics
such as drifts in propagating fronts [32] and shocks [33].

B. Fluctuation-dissipation balance in
generic Langevin equations

The fluctuating hydrodynamic formalism finds its founda-
tion in the theory of coarse graining [34]. One of the central
objects in the theory is the coarse-grained Hamiltonian or
a coarse-grained free energy, which determines the Gibbs-
Boltzmann equilibrium probability density for the coarse
variables x ∈ RN ,

Peq(x) = Z−1 exp

[
−H (x)

kBT

]
, (2)

where Z is a normalization factor and the scaled temperature
kBT sets the unit of energy. We will set kBT = 1 for simplicity
through the remainder of this paper. Note that in many cases the
actual Hamiltonian (total energy) may be expressible in terms
of the coarse-grained variables and is strictly conserved [2],
but this is not the case for isothermal systems.

As discussed at length by Grabert [35], a Markovian
approximation within the Mori-Zwanzig formalism can be
used to obtain a generic Langevin equation of motion [26]
for an arbitrary choice of the microscopic ensemble,

∂t x = −N(x)
∂H

∂x
+ (2kBT )1/2 B(x) W(t)

+ (kBT )
∂

∂x
· N�(x), (3)

where W ∈ RNw denotes white noise, the formal temporal
derivative of a collection of independent Brownian motions,
and an Ito interpretation is assumed. We will typically suppress
the explicit dependence on x and write the mobility operator
as N ≡ N(x). In the generic Langevin equation (3), the skew-
adjoint operator

S = −S� = 1
2 (N� − N)

generates the “conservative” part of the dynamics, and the
self-adjoint positive semidefinite operator

M = M� = 1
2 (N + N�) � 0

generates the “dissipative” part of the dynamics, since

dH

dt
= −

(
∂H

∂x

)T

N
∂H

∂x

= −Re

[(
∂H

∂x

)T

· M · ∂H

∂x

]
� 0.

The operator B(x) is constrained, but not uniquely determined,
by the fluctuation-dissipation balance condition

B B� = M.

The last term in (3) is an additional “spurious” or “thermal”
drift term whose form depends on the particular interpretation
of the stochastic equations [36], which we take to be in the
sense of Ito. In the case of the fluctuating Burgers and Navier-
Stokes equations this term will vanish.

The dynamics (3) is ergodic and time reversible (under
an appropriate parity transformation for the variables) with
respect to the distribution (2). It is not hard to show using
the corresponding Fokker-Planck Equation that (2) is an
equilibrium distribution for (3), as desired, at least if one makes
the nonrestrictive assumption that M 	 0. More precisely, the
invariant measure for the coarse-grained variables is dμeq =
μeq(dx) = Peq(x)dx. We will assume here that the dynamics
is ergodic with respect to a unique equilibrium distribution,
which may not be the case if H (x) is not defined everywhere.
It is important to point out that when Langevin equations of the
form (3) are applied in a nonequilibrium setting, the dynamics
may not be ergodic with respect to any distribution, even at
steady state.

II. FLUCTUATING BURGERS EQUATION

The analysis and numerical solution of the incompressible
Navier-Stokes equation is complicated by the presence of the
incompressibility constraint. We begin our discussion by con-
structing a spatial discretization of the simpler unconstrained
fluctuating Burgers equation for the random field u (x,t),

∂tu + cu ∂xu = ν ∂2
xxu + (2ν)

1
2 ∂xZ, (4)

where ν is a diffusion coefficient and c sets the scale for the
advection speed. This equation mimics some of the properties
of the fluctuating Navier-Stokes equation (1), in particular, it
obeys a fluctuation-dissipation balance principle with respect
to the Gibbs-Boltzmann distribution with a Hamiltonian
H = ∫

dx u2/2. The fluctuating Burgers equation can also
be written in conservative form,

∂tu = −∂x

[
c
u2

2
− ν∂xu − (2ν)

1
2 Z

]
,

showing that the total momentum
∫

u dx is conserved with
periodic boundary conditions. Note that here the stochastic
forcing term is linear and involves the spatial derivative of
white noise [37], rather than white noise itself as in the
stochastic Burgers equation studied, for example, in Ref. [38].
Equations of this type arise as coarse-grained models of
the behavior of one-dimensional lattice gases, such as the
asymmetric excluded random walk model [37].

In this section we show how the fluctuating Burgers
equation can be spatially discretized in a manner that leads to
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a generic Langevin equation of the form (3). This construction
will be extended to the Navier-Stokes equations with a
passively advected scalar in Sec. IV. Our approach to the
spatial discretization follows standard practice in deterministic
fluid dynamics. Specifically, we construct the spatially discrete
system by combining locally accurate spatial discretizations
of the differential operators (e.g., gradient, divergence and
Laplacian) that appear in the the SPDE. However, in addition
to focusing on accuracy and stability when choosing the
spatial discretization, we pay particular attention to preserving
fluctuation-dissipation balance. This means that we want to
obtain a system of SODEs whose structure is given in (3)
and whose invariant distribution (equilibrium distribution) is
a natural discretization of the Gibbs distribution dictated by
equilibrium statistical mechanics.

A. Continuum fluctuating Burgers equation

One can, at least formally, consider a generic Langevin
equation for an infinite-dimensional field [2]. The fluctuating
Burgers equation (4) is a prototype of such an equation. In
this formalism the coarse-grained Hamiltonian is a functional
of the field and the partial derivatives should be interpreted
as functional derivatives, and contractions by a field imply
integrations over the spatial domain. For Eq. (4), the (formal)
free energy functional is

H [u(x,t)] =
∫

u2

2
dx, (5)

so that
∂H

∂u
≡ δH [u (x,t)]

δu
= u.

The dissipative and fluctuating dynamics in (4) are gener-
ated by the constant operators

M = −ν∂2
xx and B = ν

1
2 ∂x,

which in higher dimensions become multiples of the Lapla-
cian and divergence operators, respectively. The conservative
dynamics for the Burgers equation is Hamiltonian and gener-
ated by the skew-adjoint linear operator S (u) defined through
its action on a field w (x,t) [27],

S (u) w = − c

3
[u∂xw + ∂x (uw)] . (6)

The v · ∇v term in the higher-dimensional fluctuating Navier-
Stokes equation (1) can similarly be written in terms of a
skew-adjoint operator, although there are some complications
in handling the divergence-free constraint [39].

A detailed description of the meaning and importance
of the Hamiltonian nature of the nonlinear deterministic
dynamics and the Poisson bracket associated with S is given
in Refs. [2,27]. For our purposes, the most important property
of Hamiltonian dynamics is that it is incompressible in phase
space,

∂

∂u
· S (u) = ∂

∂u
· N� (u) = 0. (7)

This implies that the dynamics of the inviscid Burgers equation
preserves not just functions (such as the Hamiltonian itself) but
also phase-space measures (such as the Gibbs distribution),

and thus any probability density that is a function of H

only is a candidate equilibrium distribution. The inviscid
Burgers equation may also be written in Hamiltonian form
using the Hamiltonian H = ∫

(u3/6)dx with S = −∂x [27,40].
However, in fluctuating hydrodynamics the choice of the
coarse-grained Hamiltonian is dictated by statistical mechan-
ics and the equilibrium Gibbs distribution is maintained via
the fluctuation-dissipation balance between the viscous and
stochastic terms.

B. Discrete fluctuating Burgers equation

The preceding discussion of how the fluctuating Burgers
equation can be written in the form of a generic Langevin
equation (3) is formal and merely informs our choice of
spatial discretization. The discretized u = {u1, . . . ,uN } can
be thought of as a finite-volume representation of the field
u(x,t) on a regular grid with spacing 	x, specifically, uj can
be thought of as representing the average value of u(x,t)
over the interval (cell) [j	x, (j + 1)	x]. As we already
discussed, this is merely a formal association and the actual
physical object is the discrete (coarse-grained) u (t) and not
the hypothetical u(x,t). Similarly, the spatially discretized
collection of white-noise processes (	x)−1/2 W can formally
be associated with the space-time white noise Z .

We take the coarse-grained Hamiltonian function to be the
natural (local equilibrium [29]) discretization of (5),

H (u) =
N∑

j=1

	x

2
u2

j , (8)

We will construct a spatial discretization that leads to a finite-
dimensional generic Langevin equation of the form (3),

∂t u = S
∂H

∂u
+ ν

	x
D2

∂H

∂u
+

(
2ν

	x

)1/2

D1W(t). (9)

Here W is a vector of Nw independent white-noise processes
(formally, time derivatives of independent Wiener processes),
and D1 is a matrix representing the spatial discretization of the
divergence operator, such that D2 = −D1 D�

1 is a symmetric
negative-semidefinite discretization of the Laplacian operator.
This system of SODEs has as an invariant distribution
the Gibbs distribution (2) if S is an antisymmetric matrix
discretizing (6) that satisfies[

∂

∂u
· S (u)

]
k

=
∑

j

∂Sj,k

∂uj

= 0 for all k. (10)

We now construct specific finite-difference operators for D1

and S.
A particularly simple choice that also generalizes to higher

dimensions [41] is to associate fluxes with the half-grid points
(faces of the grid in higher dimensions), and to define

(D1W)j =
Wj+ 1

2
− Wj− 1

2

	x
,

giving (D�
1u)j+ 1

2
= −uj+1 − uj

	x
.
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This construction gives the familiar three-point discrete Lapla-
cian (2d + 1 points in dimension d),

(D2u)j = uj−1 − 2uj + uj+1

	x2
, (11)

and is therefore an attractive choice that satisfies the discrete
fluctuation-dissipation principle [41]. If periodic boundary
conditions are imposed, we set u0 = uN and uN+1 = u1

and W 1
2

= WN+ 1
2

(i.e., Nw = N ). For Dirichlet boundary
conditions we fix u0 and uN+1 at specified values and do
not need to impose any boundary conditions on W (i.e.,
Nw = N + 1).

A natural choice for S is formed by choosing a skew-adjoint
discretization D̃1 = − D̃

�

1 of ∂x , in general different from D1,
and discretizing (6) directly as

(Su)j = − c

3
[uj ( D̃1u)j − ( D̃

�

1u
2)j ]

= − c

3
[uj ( D̃1u)j + ( D̃1u

2)j ],

where u2 = {u2
1, . . . ,u

2
N }. We choose D̃1 to be the second-

order centered difference operator

( D̃1u)j = uj+1 − uj−1

2	x
,

leading to an explicit expression that makes it clear that Su is
a discretization of −cuux ,

(Su)j = − c

3

[
uj

(
uj+1 − uj−1

2	x

)
+ u2

j+1 − u2
j−1

2	x

]
= −c

(
uj−1 + uj + uj+1

3

)(
uj+1 − uj−1

2	x

)
.

The above discretization of the advective term has been
considered frequently in the literature, as discussed in detail
in Ref. [40]. It can be seen as a weighted combination of the
“convective” and the “conservative” forms of advection [42]
with weights 1/3 and 2/3, which is the unique choice of
weights that gives a conservative and skew-adjoint discretiza-
tion of advection. It is important to note that one can write the
nonlinear term in conservative form,

(Su)j = − c

2

(u2
j+ 1

2
− u2

j− 1
2

	x

)
,

where u2
j+ 1

2
= u2

j + ujuj+1 + u2
j+1

3
. (12)

Due to the skew symmetry, in the absence of viscosity the
total “energy” (8) is conserved for periodic systems. It can
also easily be shown that that the condition (7) is satisfied and
therefore this particular discretization of the advective term
preserves the Hamiltonian structure of the equations [40].

Putting the pieces together we can write the semidis-
crete fluctuating Burgers equation as a system of SODEs,

j = 1, . . . ,N ,

duj

dt
= − c

6	x
(uj−1 + uj + uj+1)(uj+1 − uj−1)

+ ν

	x2
(uj−1 − 2uj + uj+1)

+ (2ν)1/2

	x3/2

(
Wj+ 1

2
(t) − Wj− 1

2
(t)

)
. (13)

With periodic boundary conditions, this stochastic method of
lines [24] discretization strictly conserves the total energy (8)
and the total momentum,

m(u) =
N∑

j=1

	x uj .

The equilibrium distribution is the discrete Gibbs-Boltzmann
distribution

Peq(u) = Z−1 exp

⎡⎣−	x

2

N∑
j=1

u2
j

⎤⎦ δ

⎛⎝	x

N∑
j=1

uj − m0

⎞⎠ ,

where m0 is the initial value for the total momentum. In the
next section, we construct efficient temporal discretizations of
(13) that preserve these properties as well as possible.

III. WEAKLY ACCURATE TEMPORAL INTEGRATORS

In this section, we consider weak temporal integrators for
coupled systems of stochastic ordinary differential equations
(SODEs) that arise after spatial discretization of the equations
of fluctuating hydrodynamics, such as the system (13). To
make the discussion more general and applicable to a large
range of generic Langevin equations, we consider the system
of nonlinear additive-noise differential equations

dx
dt

= a(x) + KW(t) = [L(x)]x + g(x) + KW(t). (14)

There are Nv independent variables x(t), and W(t) denotes
a collection of Nw independent white-noise processes, for-
mally identified with the time derivative of a collection of
independent Brownian motions (Wiener processes). Here K
is a constant matrix, and we have used the more natural
differential notation since there is no difference between the
different stochastic interpretations (e.g., Ito and Stratonovich).
For fluctuating hydrodynamics applications, we split the drift
a(x) into a diffusive term [L(x)]x and an advective term
g(x). This becomes particularly important when considering
semi-implicit temporal discretizations since diffusion often
needs to be treated implicitly for stability reasons. In general,
L(x) may depend on x since the transport coefficients (e.g.,
viscosity) may depend on certain state variables (e.g., density).

Multiplicative noise poses well known difficulties with
constructing higher-order temporal integrators [43]. There
are many important fluctuating hydrodynamic equations with
additive noise, such as the fluctuating Navier-Stokes equation
(1), in which L(x) ≡ L = const is a multiple of the (dis-
crete) Laplacian and K (x) ≡ K = const is a multiple of the
(discrete) divergence. For generality in Appendix A we also
consider constructing first-order accurate schemes for the case
of multiplicative noise, where K (x) also depends on x, and
here we focus on second-order accuracy for additive noise.
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There is extensive literature on numerical methods for
finite-dimensional systems of SDEs. At the same time,
efficient numerical solution of the types of systems of SDEs
appearing in the stochastic method of lines [24] for fluctuating
hydrodynamic equations limits the choices of practicable
techniques. One of the most important characteristics of
systems such as (13) is the presence of a large number of length
scales and associated relaxation times (hydrodynamic modes).
This intrinsic stiffness is particularly prominent for diffusive
terms and makes the construction of stochastic integrators
particularly challenging. A powerful class of integrators for
systems with a broad spectrum of relevant time scales are
exponential integrators [44,45]. These integrators apply a local
linearization [46] and use the matrix exponential exp(L	t) to
capture the dynamics at a time step 	t that under-resolves
the stiffest modes. Unfortunately, the computation of the
matrix exponential is only practicable when it is simple to
diagonalize L, as is the case when a Fourier basis is used
for periodic systems [47]. Multistep schemes are widely
used in the deterministic context because of their favorable
stability properties and reduced computational effort per time
step [48,49]. Weak multistep schemes have not received
much attention in the literature, and their analysis requires
developing novel techniques that are outside the scope of this
work.

With these considerations in mind, we focus here on
one-step Runge-Kutta schemes. They have the advantage of
potentially attaining high order of accuracy without requiring
evaluation of derivatives of a(x). We will consider numerical
schemes that only require the generation of Nw = O(Nv)
Gaussian random variables and do not require the solution
of nonlinear systems of equations. While this limits the
robustness of the schemes in the nonlinear setting, it is the only
type of method that is practicable for the sort of large systems
of SODEs that arise when discretizing hydrodynamic SPDEs.
First we discuss the simpler case of explicit stochastic Runge-
Kutta integrators, and then we consider stochastic variants
of two-stage implicit-explicit Runge-Kutta (IMEX-RK) [50]
integrators.

A. Conditions for second-order weak accuracy

In this section we discuss second-order weakly accurate
one-step temporal discretizations with a constant time step 	t ,
and denote the numerical approximation xn ≈ x(n	t). The
most fundamental temporal integrator for (14) is the weakly
first-order accurate Euler-Maruyama scheme,

xn+1 = xn + 	t an + 	t
1
2 K nWn, (15)

where the superscript denotes the time level at which the
term is evaluated, for example, an ≡ a(xn). Here Wn is a
vector of m independent standard Gaussian variates (i.e.,
normally-distributed pseudorandom numbers with mean zero
and unit variance), generated independently at each time step.
The SDE (14) can, in fact, be defined through the limit 	t → 0
of the scheme (15). The stochastic term 	t

1
2 Wn represents the

(Wiener) increment of the underlying Brownian motions over
the time step. Alternatively, one can view (15) as an application
of the deterministic explicit Euler method to (14), with the
discrete white noise 	t−1/2Wn representing the rough forcing

W(t). This viewpoint is particularly useful when extending
higher-order standard deterministic schemes to the stochastic
context.

Let us consider one-step schemes for the general nonlinear
additive-noise system of SDEs (14). The general theory of
weak accuracy for stochastic integrators is well established
and reviewed, for example, in Sec. 2.2 of Ref. [51]. The key
result is that, under certain assumptions, second-order weak
accuracy is achieved if the first 2 × 2 + 1 = 5 moments of the
numerical increment 	xn = xn+1 − xn match the moments of
the increment x(n	t + 	t) − x(n	t) to order O(	t2). The
required moments can be obtained from the well known weak
expansion

xα(n	t + 	t) = xα(n	t) + 	t
1
2 KαβWn

β + 	t an
α

+ 1

2

(
	t2 an

γ + 	t
3
2 KγεW

n
ε

)(
∂γ an

α

)
+ 	t2

4
KγεKδε

(
∂γ ∂δa

n
α

) + O(	t5/2), (16)

where a repeated index implies summation and the shorthand
notation ∂γ ≡ ∂/∂xγ is employed. This expansion is not
directly useful for numerical approximations since it requires
evaluating derivatives of the drift function. Instead, we
employ Runge-Kutta schemes and then ensure second-order
weak accuracy by matching the moments of the numerical
increments to (16). The details of these calculations are given
in Appendix A.

A well known weakly second-order accurate predictor-
corrector scheme that is consistent with the conditions derived
in Appendix A is a two-stage explicit trapezoidal method
[36,43,52]. In this scheme the first stage is an Euler-Maruyama
predictor, and the corrector stage is an explicit trapezoidal rule,

x̃n+1 = xn + 	t an + 	t
1
2 K Wn,

(17)
xn+1 = xn + 	t

2
(ãn+1 + an) + 	t

1
2 K Wn.

One can naively obtain this scheme from the classical
deterministic predictor-corrector algorithm by thinking of
Fn = 	t−1/2 K Wn as a constant applied forcing. The fully
explicit nature of this method severely restricts the time step
due to stability limits arising from the stiff diffusive terms
in fluctuating hydrodynamics. We will consider semi-implicit
RK schemes in more detail in Sec. III D.

B. Equilibrium fluctuation spectrum

An important property of Langevin-type equations,
including those of fluctuating hydrodynamics, is the existence
of a nontrivial stationary distribution (invariant measure). It
is important for numerical schemes to have an equilibrium
distribution that is in, some appropriate sense, close to that
of the stochastic differential equations.A recently proposed
approach [53] is to add a Metropolis-Hastings acceptance-
rejection rule to a classical integrator such as the Euler-
Maruyama scheme. This “Metropolization” ensures that the
equilibrium distribution of the numerical approximation is
controlled; however, this is done at the cost of reducing
the temporal accuracy because of rejections. It is therefore
important to ensure that the non-Metropolized numerical
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scheme produces a good approximation to the equilibrium
distribution, so that rejections are infrequent.

Mattingly et al. [54] show that in some appropriate metric
the invariant measure (which is assumed to exist) of the
numerical scheme has the same order of accuracy as the
weak order of accuracy over finite time intervals. This only
provides an asymptotic error bound, however, and does not
provide an estimate of the actual error. By focusing on the
linearized equations of fluctuating hydrodynamics one can
easily obtain explicit estimates for the invariant measure of
a given numerical scheme and thus understand the nature of
discretization errors in the long-time dynamics. This approach
was used by some of us in an earlier publication [41] to analyze
and improve explicit Runge-Kutta schemes for compressible
fluctuating hydrodynamics. Here we briefly review the main
results and discuss some generalizations.

We consider the linear system of additive-noise SDEs

dx
dt

= Lx + K W (t). (18)

A general linear one-step temporal scheme for this equation
has the form

xn+1 = Qxn + 	t
1
2 RWn,

where Q and R are some iteration matrices. Since this is a
linear equation forced by a Gaussian process, the solution is a
Gaussian process. The equilibrium or steady-state covariance
C	t = 〈xn(xn)�〉 of this linear iteration is the solution of the
linear system (see, for example, the derivation in Ref. [41])

QC	t Q� − C	t = −	t RR�. (19)

In the limit 	t → 0 any consistent and stable numerical
scheme should give the correct equilibrium covariance C =
〈x(t)x�(t)〉, which is the solution to [1,41,55]

LC + C L� = −K K �. (20)

Equation (18) can easily be solved explicitly to obtain an
exact exponential integrator for which Q = exp(L	t) follows
from the deterministic variation-of-constants formula. This
exponential scheme will be an exact integrator for (18) if and
only if

RR� = 	t−1[C − QC Q�]

= 	t−1[C − exp(L	t)C exp(L�	t)]. (21)

In general, one cannot write an explicit solution to this equation
unless one can explicitly diagonalize L and C in some basis.

1. Implicit midpoint rule

Runge-Kutta schemes approximate the matrix exponential
exp(L	t) with a polynomial (for fully explicit schemes) or
a rational (for semi-implicit schemes) approximation. An
important example is provided by the implicit midpoint
(equivalently, trapezoidal) method (Crank-Nicolson scheme)
applied to the linear problem (18),

xn+1 = xn + 	t

2
L(xn + xn+1) + 	t

1
2 K Wn. (22)

In this scheme the iteration matrix Q is a 1-1 Pade approxi-
mation of the matrix exponential,

Q =
(

I − L	t

2

)−1(
I + L	t

2

)
= exp(L	t) + O(	t3),

(23)

and R = (I − L	t/2)−1 K . It is not hard to show that the
implicit midpoint scheme leads to the correct equilibrium
covariance C for any time step size since

RR� = 	t−1[C − QCQ�],

as seen from a straightforward explicit calculation,

	t−1[C − QCQ�]

= 	t−1

(
I − L	t

2

)−1[(
I − L	t

2

)
C

(
I − L�	t

2

)
−

(
I + L	t

2

)
C

(
I + L�	t

2

)](
I − L�	t

2

)−1

=
(

I − L	t

2

)−1

(−LC − C L�)

(
I − L�	t

2

)−1

=
(

I − L	t

2

)−1

K K �

(
I − L�	t

2

)−1

= RR�.

An alternative derivation of the fact that (22) gives the
correct steady-state covariance for any time step size 	t can
be found in the Appendix of Ref. [25]. That derivation is based
on showing that the iteration (22) is a Metropolis-Hastings
Monte Carlo algorithm to sample the invariant distribution
of (18).

The implicit midpoint rule can easily be generalized to the
nonlinear system (14),

xn+1 = xn + 	t a
(

xn+1 + xn

2

)
+ 	t

1
2 K Wn,

which can be shown to be weakly second-order accurate.
This scheme is a particularly good candidate for solving
Langevin-type equations because it is a time-reversible and
quasisymplectic integrator [23] that exactly conserves all
quadratic invariants (e.g., a quadratic Hamiltonian). However,
it requires the solution of a nonlinear system of equations at
every time step. This nonlinear system of equations may not
have a unique solution and is in general too expensive to solve
for large-scale hydrodynamic calculations. In the special case
of the stochastic Burgers or Navier-Stokes equations, the only
nonlinearity in a(x) comes from the advective term, which has
the special form (to within irrelevant constants) [S(x)]x and
can be linearized as [S(xn+ 1

2 )]x, where xn+ 1
2 is a midpoint

estimate that has to be obtained via a predictor stage. Such an
approach gives a scheme that only requires solving a linear
systems in each time step, while still preserving quadratic
invariants (e.g., total kinetic energy). It is, however, not a time-
reversible scheme. Furthermore, solving the nonsymmetric
systems that arise when advection is discretized in a semi-
implicit manner poses a significant linear algebra challenge,
especially when constraints such as incompressibility are
included. For this reason, in the next section we consider
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implicit-explicit Runge-Kutta schemes in which only diffusive
terms are, potentially, discretized implicitly.

C. Fully explicit Runge-Kutta scheme

We now illustrate how the conditions derived in Appendix A
can be used in practice to construct a fully explicit three-stage
Runge-Kutta (RK3) integrator. In Ref. [33], an algorithm for
the solution of the compressible equations of fluctuating hydro-
dynamics was proposed, which is based on a well known three-
stage, low-storage total variation diminishing Runge-Kutta
(RK3) scheme [56]. The RK3 scheme is a simple discretization
for the deterministic compressible Navier-Stokes equations
that is stable in the inviscid limit, even when slope limiters are
omitted for the convective terms. A stochastic version of the
RK3 scheme was analyzed in Ref. [41] based on a linearized
analysis, and employed in Ref. [25] along with a staggered
spatial discretization. In Ref. [41], nonlinearities were not
considered and therefore the scheme presented there is not
second-order weakly accurate for nonlinear equations.

Each time step of the RK3 algorithm is composed of three
stages, the first one estimating x at time t = (n + 1)	t , the
second at t = (n + 1

2 )	t , and the final stage obtaining a third-
order accurate estimate at t = (n + 1)	t . Each stage consists
of an Euler-Maryama step followed by weighted averaging
with the value from the previous stage,

x̃n+1 = xn + 	t an + 	t
1
2 K

(
α1Wn

A + β1Wn
B

)
,

x̃n+ 1
2 = 3

4 xn + 1
4

[̃
xn+1 + 	t ãn+1

+	t
1
2 K

(
α2Wn

A + β2Wn
B

)]
,

xn+1 = 1
3 xn + 2

3

[̃
xn+ 1

2 + 	t ãn+ 1
2

+	t
1
2 K

(
α3Wn

A + β3Wn
B

)]
. (24)

Here Wn
A and Wn

B are two independent vectors of independent
and identically distributed (i.i.d.) normal random variates that
are generated independently at each RK3 step, and the weights
α and β are to be determined. In principle one could use a third
sample Wn

C ; however, this increases the cost of the method and
is insufficient to yield a weakly third-order accurate scheme.
Following Ref. [57], we can fix α3 and β3 by making the
arbitrary choice that after all the stages are combined the
stochastic increment in xn+1 be 	t

1
2 K Wn

A.
Runge-Kutta schemes of the above form have been analyzed

in Ref. [57] and the moment conditions for weak accuracy
of any order derived. Up to second order one can easily
obtain these conditions by explicit Taylor series expansion
and comparison of the moments of the numerical increment
to those in (16). This gives two quadratic equations for
the weights α and β. Two more equations can be obtained
by asking for third-order accuracy of the static covariance
C	t = C + 	t3	C + O(	t4) in the linear case. This simple
calculation consists of applying the RK3 scheme to the linear
equation (18) in order to extract an explicit expression for Q
and R, and then substituting these expressions in (19) and
using (20) to eliminate K K �. By equating the coefficients in
front of terms of lower order in 	t , we can ensure that the
error in the stationary covariance is of order 	t3. In particular,
equating the coefficients in front of the terms involving L3C

and L2C L� to zero gives two additional quadratic equations
for the weights α and β. The solution of the resulting system
of four equations for the weights α1, α2, β1, and β2 gives a
stochastic RK3 scheme that is of weak order 2 in the general
case and of order 3 in the linear case,

α1 = α2 = α3 = 1, β1 = (2
√

2 ± √
3)

5
,

β2 = (−4
√

2 ± 3
√

3)

5
, β3 = [

√
2 ∓ 2

√
3]

10
.

For fluctuating hydrodynamics applications, we recommend
the upper sign since it gives better discrete static structure
factors for a model one-dimensional stochastic advection-
diffusion equation (see Ref. [41] for an illustration of this
type of calculation).

The RK3 scheme (24) suffers from a severe time step
limitation due to the explicit handling of the diffusive terms.
We consider alternative semi-implicit methods next.

D. Semi-implicit Runge-Kutta temporal integrators

In this section, we construct two-stage second-order
implicit-explicit Runge-Kutta schemes for solving a system
of SDEs,

dx
dt

= L(x)x + g(x) + KW(t),

where g(x) denotes all of the terms handled explicitly (e.g.,
advection or external forcing). We will consider schemes that
at time step n require solving only linear systems involving
the matrix Ln = L(xn), and are parametrized by a vector of
weights w (Butcher tableau). The first stage in any of these
schemes is a predictor step to estimate x̃ ≈ x(n	t + w2	t),
where w2 is some chosen weight (e.g., w2 = 1/2 for a midpoint
predictor). The corrector completes the step by estimating xn+1

at time (n + 1)	t ,

x̃ = xn + (w2 − w1)	t Lnxn + w1	t Ln x̃

+w2	t gn + (w2	t)
1
2 K Wn

1,

xn+1 = xn + (1 − w3 − w4)	t Lnxn

+w3	t Ln x̃ + w4	t Lnxn+1

+w5	t (L̃ − Ln)x̃ + w5	t g̃ + (1 − w5)	t gn

+ (w2	t)
1
2 K Wn

1 + ((1 − w2)	t)
1
2 K Wn

2. (25)

The intuition behind the handling of the stochastic increments
in the predictor/corrector stages is that (w2	t)1/2Wn

1 samples
the increment of the underlying Wiener processes over the
time interval w2	t , while [(1 − w2)	t]1/2Wn

2 represents the
independent increment over the remainder of the time step.

According to the calculations detailed in Appendix A, in
order to be second-order weakly accurate in the case of additive
noise, the weights w should satisfy the conditions

w2w5 = 1
2 , w2w3 + w4 = 1

2 . (26)

We now catalog some possible choices of these weights that
satisfy these conditions. We will test the performance of
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these schemes on the fluctuating Burgers and Navier-Stokes
equations in Sec. V.

1. Explicit midpoint predictor-corrector scheme

If w1 = 0 and w4 = 0 we obtain fully explicit schemes.
In this case w3 = w5 and therefore the splitting into implicit
and explicit parts does not matter, and the only function that
appears in the scheme is a(x) = L(x)x + g(x). The only
parameter of choice is w2. A well known method that fits
the above format is the explicit trapezoidal predictor-corrector
method, w2 = 1, and therefore w5 = w3 = 1

2 . This is exactly
the scheme (17). For linear equations, this scheme gives static
covariances accurate to second order, C	t = C + 	t2	C +
O(	t3). A notable advantage of this scheme is that it requires
generating only a single random increment per time step.

In order to choose the “best” w2, we can look at the accuracy
of the static covariance in the linear case, just as we did for the
RK3 scheme in Sec. III C. A simple calculation shows that, in
order to obtain third-order accuracy of the static covariance,
C	t = C + 	t3	C + O(	t4), we need to use a midpoint
predictor stage, w2 = 1/2, and therefore w5 = w3 = 1. This
gives the explicit midpoint predictor-corrector method

x̃n+ 1
2 = xn + 	t

2
an +

(
	t

2

) 1
2

K Wn
1,

(27)

xn+1 = xn + 	t ãn+ 1
2 +

(
	t

2

) 1
2

K
(
Wn

1 + Wn
2

)
,

which requires generating two random increments per time
step. It is important to point out that for advection-diffusion
problems the time step 	t needs to be substantially smaller
than the stability limit for the explicit midpoint scheme (27) to
realize its asymptotic order of accuracy and give substantially
more accurate static covariances than the explicit trapezoidal
scheme (17) [41].

2. Implicit trapezoidal predictor-corrector scheme

We now extend the implicit midpoint scheme (22) to
the case when some terms, such as diffusion, are handled
implicitly. In Ref. [25] the fluctuating Navier-Stokes equation
was solved using a scheme for which w1 = w4 = w5 = 1/2,
w2 = 1, and w3 = 0, giving the implicit trapezoidal predictor-
corrector method

x̃n+1 = xn + 	t

2
Ln(xn + x̃n+1) + 	t gn + 	t

1
2 K Wn,

xn+1 = xn + 	t

2
Ln(xn + xn+1) + 	t

2
(L̃

n+1 − Ln)x̃n+1

+ 	t

2
( g̃n+1 + gn) + 	t

1
2 K Wn. (28)

If g = 0 this scheme is stable for any time step, more
precisely, it is A stable (see Appendix B for L-stable schemes).
The scheme has the great advantage that for the linearized
equation (18) it gives the correct stationary covariance regard-
less of the time step, while only requiring a single random
increment per time step. We emphasize that the dynamics of
the fluctuations is not correctly reproduced for large time step
sizes, as we discuss further in Appendix B.

3. Implicit midpoint predictor-corrector scheme

In the scheme (28), a trapezoidal approximation is used
for the explicit fluxes, just as in (17). Another candidate is
to use a midpoint approximation for the explicit fluxes, as in
(27), obtained by using w2 = 1/2 and therefore w5 = 1. We
also choose a corrector stage where the implicit part is the
implicit midpoint rule (22), which requires choosing w3 = 0
and w4 = 1/2. We are left with a choice for w1 in the predictor
stage,

x̃n+ 1
2 = xn +

(
1

2
− w1

)
Lnxn	t + w1 Ln x̃n+ 1

2

+ 	t

2
gn +

(
	t

2

) 1
2

K Wn
1,

xn+1 = xn + 	t

2
Ln(xn + xn+1) + 	t

(
L̃

n+ 1
2 − Ln

)
x̃n+ 1

2

+	t g̃n+ 1
2 +

(
	t

2

) 1
2

K
(
Wn

1 + Wn
2

)
. (29)

Two obvious choices are w1 = 1/2, which for linear equations
makes the predictor stage a backward Euler step with time step
size 	t/2. An alternative is to use w1 = 1/4, which for linear
equations makes the predictor stage an implicit midpoint step
with time step size 	t/2. For the linearized equation (18)
the predictor stage does not actually matter since it is only
used in evaluating the nonlinear terms in the corrector stage.
Therefore, we will compare the implicit midpoint schemes
with w1 = 1/4 and w1 = 1/2 numerically in Sec. V.

IV. FLUCTUATING NAVIER-STOKES EQUATION

The implicit-explicit schemes discussed in Sec. III D are
general schemes suitable for unconstrained SDEs and cannot
directly be applied to the fluctuating Navier-Stokes equation
(1). Some care is required in handling the incompressibility
constraint in a computationally efficient manner without
compromising the stochastic accuracy. The spatio-temporal
discretization we analyze here was proposed and applied in
Ref. [25]; here we provide additional analysis and a discussion
of alternative approaches.

A. Continuum equations

In principle, the incompressibility constraint can be most
easily handled by using a projection operator formalism to
eliminate pressure from (1) and write the fluctuating Navier-
Stokes equation in the form

∂tv = P
[−v · ∇v + ν∇2v + (2νρ−1 kBT )

1
2 ∇ · Zv

]
. (30)

Here P is the orthogonal projection onto the space of
divergence-free velocity fields, P = I − G(DG)−1D in real
space, where D ≡ ∇· denotes the divergence operator and
G ≡ ∇ the gradient operator with the appropriate boundary
conditions taken into account. We only consider periodic,
no-slip, and free-slip boundaries. With periodic boundaries
we can express all operators in Fourier space and P̂ =
I − k−2(kk�), where k is the wave number. The application
of the projection to the right-hand side ensures that ∇ · v = 0
at all times if the initial condition is divergence free. The

033302-9



DELONG, GRIFFITH, VANDEN-EIJNDEN, AND DONEV PHYSICAL REVIEW E 87, 033302 (2013)

divergence-free constraint is a constant linear constraint and
the projection restricts the velocity dynamics to the constant
linear subspace of divergence-free vector fields. The projection
operator can be applied in more general settings, notably in
cases where the constraints are nonlinear and the noise is
multiplicative; however, the resulting expressions are rather
complex especially in the stochastic setting [58,59].

In practice, the fluctuating velocities modeled by (30)
advect other quantities, and it is this coupling between the
velocity and other equations that is of most interest. Perhaps
the simplest example is provided by a stochastic advection-
diffusion for the concentration or density c(r,t) of a large col-
lection of noninteracting passive tracers. For example, c(r,t)
might corresponds to the light intensity pattern of fluorescently
labeled molecules suspended in the fluid in a fluorescence
recovery after photobleaching (FRAP) experiment. In general,
the equation for the concentration has multiplicative noise [25].
This arises because the coarse-grained free energy functional
H [x(r,t)] = H (v, c) includes a contribution from the entropy
of the passive tracer which is, in general, a nonquadratic even
if local functional of c. For illustration purposes we can take
a separable quadratic Hamiltonian (i.e., independent Gaussian
fluctuations in velocity and concentration),

H (v, c) = Hv(v) + Hc(c) = ρ

2

∫
v2 d r + kBT

2ε

∫
c2 d r,

and write the the model additive-noise tracer equation

∂tc = −v · ∇c + χ∇2c + ∇ · [(2εχ )
1
2 Zc

]
. (31)

The multiplicative noise case is not considered herein. Phys-
ically, ε measures the degree of coarse graining, ε ∼ N−1

p ,
where Np is the number of tracer particles per coarse degree
of freedom. Note that (31) is a conservation law because
v · ∇c = ∇ · (cv) due to incompressibility.

The coupled velocity-concentration system (30) and (31)
can formally be written in the form (3). The chemical potential
μ(c) = ∂H/∂c ∼ c. The mobility operator can be written as a
sum of a skew-adjoint and a self-adjoint part,

N = M − S = −
[

ρ−1ν(P∇2P) 0

0 ε(kBT )−1(χ∇2)

]
− ρ−1

[
(PωP) P∇c

−(∇c)T P 0

]
, (32)

where ω is the antisymmetric vorticity tensor, ωjk =
∂vk/∂rj − ∂vj/∂rk , and we used the vector identity

ωv = −(∇ × v) × v = −v · ∇v + ∇
(

v2

2

)
.

Even though by skew symmetry the top right sub-block of S
is nonzero, there is no coupling of concentration back in the
velocity equation because(

∂H

∂c

)
∇c =

(
dHc

dc

)
∇c = ∇Hc

is a gradient of a scalar and is eliminated by the projection.
The velocity equation therefore remains of the form (30).

B. Spatial discretization

For a detailed description of the spatial discretization of (30)
and (31) that we employ we refer the reader to Ref. [25]. The
discretization of the velocity equation is based on a staggered
or Marker and Cell (MAC) grid [60] in which the component
of velocity along a given dimension is discretized on a uniform
grid that is shifted by half a grid spacing along that dimension.
Following the stochastic methods of lines that we used for the
Burgers equation in Sec. II B, the spatial discretization of (1)
leads to a system of SODEs of the form

dv

dt
= P

[
Sv(v)v + νLvv +

(
2νkBT

ρ	V

) 1
2

DwWv(t)

]
, (33)

where Sv(v) denotes a discretization of the advective operator
−(v · ∇), 	V is the volume of a hydrodynamic cell, and
Wv(t) is a collection of white-noise processes [25]. Here
Dw a tensor divergence operator that applies the conservative
discrete vector divergence operator D independently for each
coordinate, Lv is a discrete (vector) Laplacian, and P =
I − G(DG)−1 D is a discrete projection operator, where G
is a discrete scalar gradient operator. The imposed periodic,
no-slip or free-slip boundary conditions are encoded in the
specific forms of the discrete difference operators near the
boundaries of the domain.

Let us first focus on creeping Stokes flow, where the
advective term v · ∇v is neglected. Following the same
procedure as we employed for the fluctuating Burgers equation
in Sec. II B, the spatial discretization is constructed to obey a
discrete fluctuation-dissipation balance principle. This relies
on several key properties of the staggered difference operators.
Importantly, the discrete gradient and divergence operators
obey the duality relation G = −D�, just as the continuum
operators. The resulting scalar Laplacian Ls = DG = −D D�

is the standard (2d + 1)-point discrete Laplacian, which is
also applied to each (staggered) component of the velocity
to form Lv = −Dw(Dw)� (see Ref. [25] for a discussion
of modifications near physical boundaries). Because of the
duality between D and G the MAC projection is self-adjoint,
P � = P , and idempotent, P 2 = P , just like the continuum
projection operator. From these properties and Eq. (20) it
follows (see Appendix in Ref. [25] for details) that the
equilibrium covariance of the fluctuating velocities is

〈vv�〉 = kBT

ρ	V
P (34)

This means that when an equilibrium snapshot of the velocity
is expressed in any orthonormal basis for the subspace of
discretely divergence-free vector fields, the coefficients are
i.i.d. Gaussian random variables with mean zero and variance
ρ−1kBT /	V . This is the expression of discrete fluctuation-
dissipation balance for the case of incompressible flow.

The addition of the nonlinear advective term does not affect
the discrete fluctuation-dissipation balance since the advective
term is skew adjoint, S�

v = −Sv , just like the discretization (12)
of the term uux for the one-dimensional case. Specifically, in
two dimensions, for a given u such that Du = 0, the spatial
discretization of the advective term described in Refs. [25,42]
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leads to

[Sv(u)v](x)
i+ 1

2 ,j
= −(4	x)−1

[(
u

(x)
i+ 3

2 ,j
+ u

(x)
i+ 1

2 ,j

)
v

(x)
i+ 3

2 ,j
−

(
u

(x)
i− 1

2 ,j
+ u

(x)
i+ 1

2 ,j

)
v

(x)
i− 1

2 ,j

]
− (4	y)−1

[(
u

(y)
i,j+ 1

2
+ u

(y)
i+1,j+ 1

2

)
v

(x)
i+ 1

2 ,j+1
−

(
u

(y)
i,j− 1

2
+ u

(y)
i+1,j− 1

2

)
v

(x)
i+ 1

2 ,j−1

]
.

This can easily be shown to be a skew-adjoint discretization,
[Sv(u)v] · w = −[Sv(u)w] · v, for either periodic, free-slip, or
no-slip conditions (or any combination thereof). Furthermore,
this discretization leads to Hamiltonian dynamics for inviscid
flow, i.e., the phase-space flow generated by the advective term
is incompressible,

∂

∂v
· Sv(v) = 0.

A good temporal integrator should preserve this special
structure of the equations and reproduce the correct velocity
fluctuations for reasonably large time step sizes.

Note that the addition of a passively advected scalar field
poses no additional difficulties if c is discretized on the regular
(nonstaggered) grid underlying the (staggered) velocity grid.
Specifically, the spatial discretization of (31) that we employ
is a scalar equivalent of (33),

dc
dt

= Sc(v)c + χ Lcc +
(

2εχ

	V

) 1
2

DWc(t), (35)

where Sc(v) is a cell-centered conservative and skew-adjoint
discretization of the advection operator −(v · ∇),

[Sc(u)c]i,j = −(2	x)−1
(
u

(x)
i+ 1

2 ,j
ci+1,j − u

(x)
i− 1

2 ,j
ci−1,j

)
− (2	y)−1

(
u

(y)
i,j+ 1

2
ci,j+1 − u

(y)
i,j− 1

2
ci,j−1

)
,

and Lc is equivalent to Ls = DG except near boundaries.
The semidiscrete equation (35) obeys a discrete fluctuation-
dissipation balance principle [25]. Specifically, at thermody-
namic equilibrium the fluctuations in the concentration are
Gaussian with covariance

〈cc�〉 = ε

	V
I, (36)

and also uncorrelated with the velocity fluctuations.
The coupled velocity-concentration equation system of

SODEs (33) and (35) can be written in the generic Langevin
form (3). Note that the concentration-dependent term in the
velocity equation that ought to be included to preserve the skew
symmetry of the nondiffusive terms can be written in the form
of a projected discrete gradient of a scalar, P G(c2/2), which
vanishes identically. This shows that in two dimensions the
system (33) and (35) is time reversible with respect to the
equilibrium Gibbs-Boltzmann distribution with the separable
discrete Hamiltonian

H (v,c) = ρ	V

2

∑
i,j

[(
v

(x)
i+ 1

2 ,j

)2
+

(
v

(y)
i,j+ 1

2

)2]
+ kBT 	V

2ε

∑
i,j

c2
i,j .

Note that the Gibbs-Boltzmann distribution is constrained to
the linear subspace of discretely divergence-free vector fields,

(Dv)i,j = 	x−1
(
v

(x)
i+ 1

2 ,j
− v

(x)
i− 1

2 ,j

)
+	y−1

(
v

(y)
i,j+ 1

2
− v

(y)
i,j− 1

2

)
= 0,

and with periodic boundaries both the average momentum and
average concentration are conserved by the dynamics.

C. Temporal discretization

In our initial discussion of temporal integration schemes for
(33) we will neglect the advective term and focus on creeping
Stokes flow, thus avoiding technical details while preserving
the essential features of the problem. There is a vast literature
on deterministic temporal integration of the incompressible
Navier-Stokes equations, and, in particular, the handling of
the ∇π term. One of the most popular class of methods are
splitting or projection methods, such as the prototype projected
Euler-Maruyama method,

vn+1 = vn + ν	t P Lvv
n + (2ν	t)

1
2 P DwWn

v, (37)

where we set ρ−1kBT /	V = 1 for simplicity and Wn
v are i.i.d.

standard normal random variates generated independently at
each time step. Note that in practice, due to roundoff errors and
the use of inexact Poisson solvers in the projection operation,
it is preferable to apply P to vn as well.

As explained in Appendix C (see also Appendix B in
Ref. [25]), the iteration (37) gives a steady-state covariance
that is a first-order accurate approximation to the continuum
result (34),

Cv = 〈vn(vn)�〉 = P + 	t 	Cv + O(	t2).

In Appendix C we consider approximate projection methods
[61,62] and find that they do not satisfy this requirement.
The scheme (37) can be seen as a direct application of the
Euler-Maruyama method to (33). Note that any purely explicit
scheme, including the RK3 scheme described in Sec. III C, can
be applied to (33) by simply performing a projection operation
after every stage of the scheme.

Semi-implicit schemes can also be applied to (33). As
a prototype example, let us consider the implicit midpoint
method (22),

vn+1 = vn + ν	t

2
P Lv(vn + vn+1) + (2ν	t)

1
2 P DwWn

v .

(38)

At first sight, it appears that solving (38) requires the
application of [I − (ν	t/2)P Lv]−1. However, it is not hard
to see that solving (38) is equivalent to solving the following
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linear system for the velocity vn+1 and the pressure πn+ 1
2 ,(

I − ν	t

2
Lv

)
vn+1 + 	t Gπn+ 1

2 =
(

I + ν	t

2
Lv

)
vn + (2ν	t)

1
2 DwWn

v,

(39)
Dvn+1 = 0.

This coupled velocity-pressure Stokes linear system can be solved efficiently even in the presence of nonperiodic boundaries
by using a preconditioned Krylov iterative solver, as described in detail in Ref. [63]. The scheme (38) reproduces the static
covariance of the velocity fluctuations exactly, Cv = P , for any time step. A more intuitive approach to analyzing the scheme
(39) based on computing the modes of the spatial discretization is described in Appendix D.

Having illustrated how the implicit midpoint rule (22) can be applied to the time-dependent Stokes equations, it is simple to
modify the implicit-explicit predictor-corrector schemes described in Sec. III D to account for incompressibility. In Ref. [25] the
implicit trapezoidal predictor-corrector scheme (28) was used to solve (30) and (31), but only tested in an essentially linearized
context. Here we also consider the implicit midpoint predictor-corrector scheme (29), for which the predictor stage consists of
solving the linear system for ṽn+ 1

2 , π̃n+ 1
2 and c̃n+ 1

2 ,

(I − w1ν	t Lv)ṽn+ 1
2 + 	t Gπ̃n+ 1

2 = 	t

2
Sv(vn)vn +

[
I +

(
1

2
− w1

)
ν	t Lv

]
vn + (ν	t)

1
2 Dw

(
Wn

v

)
1,

(I − w1χ	t Lc)c̃n+ 1
2 = 	t

2
Sc(vn)cn +

[
I +

(
1

2
− w1

)
χ	t Lc

]
cn + (εχ	t)

1
2 D

(
Wn

c

)
1,

Dṽn+ 1
2 = 0,

and similarly for the corrector stage. The concentration
equation is decoupled from the velocity equation and can
be solved using standard techniques, e.g., multigrid methods.
Note that in practice it is better to rewrite the linear systems
in terms of the increments ṽn+ 1

2 − vn and c̃n+ 1
2 − cn. This is

because for weak fluctuations the terms involving the identity
matrix may dominate the right-hand side and compromise the
accuracy of the linear solvers, unless special care is taken in
choosing the termination criteria for the iterative linear solvers.

V. SIMULATIONS

In this section we numerically study the behavior of the
implicit-explicit trapezoidal (28) and midpoint (29) schemes
on the fluctuating Burgers and Navier-Stokes equations. We
focus here on the behavior of the equilibrium distribution of
the fluctuating fields for large fluctuations and large time step
sizes. The discrete spectrum of the equilibrium fluctuations is
one of the most important properties of a numerical scheme
for long-time simulations.

Our spatial discretizations were constructed to obey a dis-
crete fluctuation-dissipation balance principle, which means
that for sufficiently small time steps the numerical schemes
will produce the correct equilibrium fluctuations even when
the nonlinear terms are important. In the absence of advection,
the schemes (28) and (29) reduce to the implicit midpoint
rule, which was designed to produce the correct equilibrium
fluctuations for any time step. It is not a priori obvious
how increasing the time step size affects the long-time
behavior of schemes in the presence of the nonlinear advective
terms, which are treated explicitly. We study this question
numerically in this section.

In fluctuating hydrodynamics, the magnitude of the equi-
librium fluctuations is controlled by the degree of coarse
graining, more specifically, by the average number of particles
Np (microscopic degrees of freedom) per hydrodynamic cell

(macroscopic degree of freedom). In particular, the law of large
numbers suggests that the Gaussian fluctuations at equilibrium
have a variance inversely proportional to Np ∼ 	V . In
order to model the effect of the degree of coarse graining
we can introduce a parameter ε ∼ N−1

p that measures the
strength of the fluctuations, with ε ∼ 1 indicating very strong
fluctuations, i.e., minimal coarse graining. While we cannot
expect Markovian SPDE models to be a good approximation
to reality in the absence of coarse graining, from a numerical
analysis perspective it is important to understand how robust
the numerical schemes are to increased magnitude of the
fluctuations. We note that the types of schemes we use here may
have uses in other fields such as turbulence, where reproducing
the correct spectrum of fluctuations is also important.

A. Fluctuating Burgers equation

We first turn our attention to the fluctuating Burgers
equation. For simplicity, we take c = 1 and consider a periodic
system with zero total momentum (no macroscopic advection),

∂tu + u ∂xu = ν ∂2
xxu + (2εν)

1
2 ∂xZ.

When the spatial discretization (13) is used, the coarse-grained
velocities uj have Gaussian equilibrium fluctuations with
mean zero and covariance

〈uiuj 〉 = ε

	x
δij .

The equilibrium magnitude of the velocities is therefore |u| ≈√
ε/	x, which is a measure of the typical magnitude of the

advection speed.
1. Dimensionless numbers

In deterministic fluid dynamics, the dimensionless number
that describes how well advection is resolved by the time step
size is the advective CFL (Courant-Friedrichs-Levy) number

α = |u|	t

	x
≈ 	tε

1
2 	x− 3

2 .
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Traditional wisdom says that for schemes that handle advection
explicitly 	t should be chosen such that α � 1. The presence
of diffusion, however, stabilizes numerical schemes by adding
dissipation and introduces the viscous CFL number β and the
cell Reynolds number r ,

β = ν	t

	x2
, r = α

β
= |u|	x

ν
≈ ε

1
2 ν−1	x

1
2 .

Note that the cell Reynolds number measures the relative
importance of the nonlinear term (advection) versus the linear
term (diffusion), and is independent of 	t . In the deterministic
setting, standard von Neumann stability analysis for the Euler
scheme applied to the advection-diffusion equation suggests
that our centered discretization of advection is stable if α2/2 �
β � 1/2. This suggests that the dimensionless number

γ = α2

β
= r2β = |u|2	t

ν
≈ ε	t

ν	x

may be important in controlling the behavior of our spatio-
temporal discretizations.

For weak fluctuations (ε � 1) or strong dissipation (r �
1), both of which are typically true for realistic fluids at
small scales and sufficient levels of coarse graining (Np �
1), the accuracy is controlled by the viscous CFL number
β. In particular, if β � 1 we can be confident that the
numerical scheme resolves the dynamics of the fluctuations
accurately. However, running with small viscous CFL numbers
is often impractical. Our semi-implicit schemes are designed
to be stable and also to correctly reproduce the equilibrium
fluctuations even for large time steps, β � 1, at least as long
as α � 1. An important question, which is difficult to analyze
with existing analytical tools, is how large the time step can
be before the explicit handling of the nonlinear advective
terms introduces large errors. We study this question here by
examining the equilibrium fluctuations for strong fluctuations,
ε � 1, and large time steps, β � 1.

2. Static structure factors

In order to study the behavior of the equilibrium fluctuations
we follow the approach used in Ref. [41]. Instead of studying
the fluctuations in the actual (real space) variables uj , we study
the equilibrium discrete Fourier spectrum of the fluctuating
variables, defined as

Sκ = Nε−1	x 〈ûkû
�
k〉.

Here the discrete Fourier transform is defined as

ûk = N−1
N∑

j=0

uj+1e
−ij	k,

where 0 � κ � �N/2� is the wave index and 	k = 2πκ/N �
π is the dimensionless wave number. The quantity Sκ

is a dimensionless discrete version of what is called the
static structure factor S(k) in the physics literature, where
k = 	k/	x is the physical wave number. For fluctuating
hydrodynamics, at thermodynamic equilibrium

Sκ = 1 for all κ �= 0,

which is a restatement of the discrete fluctuation-dissipation
balance principle.

For periodic systems, due to translational invariance, the
quantity Sκ contains the same statistics about the equilibrium
fluctuations as the N × N covariance matrix Cj,j ′ = 〈ujuj ′ 〉.
The advantage of using the Fourier description is that it
illustrates the behavior at different physical length scales. It
is expected that any numerical scheme will produce some
artifacts at the largest wave numbers because of the strong
corrections due to the discretization; however, small wave
numbers, 	k � 1, ought to have much smaller errors because
they evolve over time scales and length scales much larger than
the discretization step sizes 	x and 	t . A scheme or choice of
time step size that produces a discrete structurefactor Sκ much
different from unity at small wave numbers must be rejected as
unphysical. It is important to emphasize, however, that getting
a good equilibrium static spectrum for the fluctuations is not
a guarantee that a scheme accurately models the dynamics of
the fluctuations.

3. Numerical results

In Fig. 1 we show numerical results for the equilibrium
structure factor Sκ for a periodic system with ν = 1 and
	x = 1 and zero total momentum, 〈uj 〉 = 0. To illustrate the
importance of using a Hamiltonian discretization of advection
in the nonlinear setting, we consider a scheme where the
advective term uux is handled using the conservative but
non-Hamiltonian discretization

(Su)j = − c

2

(u2
j+ 1

2
− u2

j− 1
2

	x

)
= − c

2

(
u2

j+1 − u2
j−1

2	x

)
,

where u2
j+ 1

2
= u2

j + u2
j+1

2
, (40)

instead of the conservative Hamiltonian discretization (12). We
recall that the correct answer is Sκ = 1 for all wave numbers.
The results in the left panel of Fig. 1 illustrate that, for weak
fluctuations (i.e., nearly linear equations), the correct spectrum
is obtained. However, for strong fluctuations (i.e., nonlinear
equations), ε = 4, the non-Hamiltonian scheme produces the
wrong static spectrum of fluctuations at small wave numbers,
and reducing 	t does not help.

On the other hand, the Hamiltonian discretization gives
small errors in the spectrum even for the larger time step
size. In the right panel of Fig. 1 we zoom in to show the
magnitude and form of the errors in the structure factors for the
implicit-explicit trapezoidal scheme (28) and for the midpoint
scheme (29) with w1 = 1/2 and with w1 = 1/4. We see that
all three schemes show similarly small errors in the spectrum.
Reducing 	t by a factor of 4 makes the error statistically
insignificant. We have verified that the errors are of second
order in the time step size 	t for all three schemes.

In Fig. 2 we show numerical results for the static structure
factor in the case of weaker fluctuations, ε = 0.1 and ε = 0.01,
but large time step size. This is a typical scenario for fluctuating
hydrodynamics in practice, since for reasonable degree of
coarse graining the fluctuations would be small and the be-
havior of the equations would be close to that of the linearized
equations. In the absence of the advective nonlinearity our
schemes are stable for arbitrary viscous CFL number β. Under
equilibrium conditions the semi-implicit predictor-corrector
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FIG. 1. (Color online) Static structure factor Sκ for a periodic system of 256 cells at thermodynamic equilibrium. Left panel: Midpoint
scheme (29) with w1 = 1/2 and non-Hamiltonian advection (40) for time step size β = 0.4 for weak fluctuations ε = 0.1 (α ≈ 0.13),
medium fluctuations ε = 1 (α = 0.4), and strong fluctuations ε = 4 (α = 0.8). For ε = 4, reducing the time step to β = 0.1 (α = 0.2) does
not significantly improve the accuracy and even if 	t → 0 the wrong spectrum of fluctuations is obtained. Switching to the Hamiltonian
discretization (12) significantly lowers the errors. Right panel: Comparison between the trapezoidal scheme (28) and the midpoint scheme (29)
with w1 = 1/2 and with w1 = 1/4, for ε = 4 and large time step size β = 0.5 (α = 1) and small time step β = 0.125 (α = 0.25). Advection
is discretized in a Hamiltonian manner.

schemes we consider are observed to be stable up to rather
large 	t as measured in the advective CFL α, and even the
dimensionless number γ = α2/β. However, for sufficiently
large 	t the nonlinearities are expected to play some role, and
one cannot expect to be able to increase the time step size up
to the stability limit and still maintain reasonable accuracy.
The results in Fig. 2 show that for large 	t there appear
significant artifacts in the static structure factor for the
trapezoidal scheme (28) and for the midpoint scheme (29)
with w1 = 1/4. While the magnitude of the errors is small,
the problematic observation is that the errors have a peak at
the smallest wave numbers, where we expect schemes to most
closely mimic the continuum equations.

The above observations lead us to select the midpoint
scheme (29) with w1 = 1/2 as the most robust temporal
integrator for the fluctuating Burgers equation. At the same

time, we should recognize that the best choice of scheme will
depend on the quantity of interest and the particular problem
under consideration. All schemes are observed to produce
equilibrium fluctuations that are rather robust under the
presence of strong nonlinearities if a Hamiltonian advection of
discretization is employed. In the next section we confirm that
this conclusion also holds for the fluctuating Navier-Stokes
equation.

B. Fluctuating Navier-Stokes equation with passive tracer

We now turn our attention to the fluctuating Navier-Stokes
equations with a passively advected scalar, Eqs. (30) and (31).
Here we set ρ−1 kBT = ε so that ε controls the magnitude of
both the velocity and the concentration fluctuations.

The implementation of our spatio-temporal discretizations
and their accuracy in the linearized setting (weak fluctuations)
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FIG. 2. (Color online) Static structure factor Sκ at thermodynamic equilibrium in the case of weaker fluctuations and large time step sizes,
for the trapezoidal scheme (28) and for the midpoint scheme (29) with w1 = 1/2 and with w1 = 1/4. Left panel: Moderate fluctuations, ε = 0.1,
for time step size β = 10, α ≈ 3.2, γ = 1. Right panel: Weak fluctuations, ε = 0.01, and time time step size β = 100, α = 10, γ = 1.
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is discussed in more detail in Ref. [25]. Our implementation
is integrated into the the IBAMR software framework [64], an
open-source library for developing fluid-structure interaction
models that use the immersed boundary method. Based on our
experience with the fluctuating Burgers equation, we focus
our attention on the implicit-explicit trapezoidal scheme (28)
and the midpoint scheme (29) with w1 = 1/2. For simplicity,
here we focus on two spatial dimensions and periodic
boundary conditions, but we wish to emphasize that our
formulation, numerical schemes, and implementation apply to
three spatial dimensions and no-slip or free-slip boundaries as
well.

For simplicity, in our numerical tests we set 	x = 	y = 1.
The diffusion coefficients for momentum and concentration
are set to ν = 1 and χ = 0.25, and a grid of size 64 × 64 is
employed. The same dimensionless numbers as for the Burgers
equation apply, with the difference that there is a separate
diffusive CFL for the concentration, βc = χβ/ν, and therefore

the cell Peclet number rc = |u|	x/χ is four times larger than
the cell Reynolds number r .

1. Static structure factors

The equilibrium fluctuations in velocity and concentration
are characterized by the static structure factors, which are
the equilibrium average of the discrete Fourier spectrum of
the fluctuating velocities and concentrations. Concentration
fluctuations are characterized via

S(c)
κ = Ncε

−1	V 〈ĉκ ĉ
�
κ 〉,

where 	V = 	x 	y is the volume of the hydrodynamic cells,
Nc is the number of hydrodynamic cells, and κ = (κx,κy) is
the wave index. For the velocity fluctuations, we calculate the
spectrum of the fluctuations of a variable related to vorticity
[25],

S(�)
κ = Ncε

−1	V 〈�̂κ�̂
�
κ 〉,

FIG. 3. (Color online) Discrete structure factors S(�)
κ (top) and S(c)

κ (bottom) for the midpoint scheme (29) with w1 = 1/2 on the left and
for the trapezoidal scheme (28) on the right, for the case of large fluctuations ε = 4. Top row: Velocity spectra for a time step size β = 0.5,
α = 1. Bottom row: concentration spectra for βc = χβ/ν = 0.0625 and α = 0.5.
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FIG. 4. (Color online) Average error in the static spectra for several time step sizes for the trapezoidal scheme (28) and for the midpoint
scheme (29) with w1 = 1/2, for the case of large fluctuations ε = 4. First- and second-order error trends are indicated, showing the second-order
asymptotic accuracy. Error bars are comparable to the symbol size and not shown. Left panel: 〈S(�)

κ − 1〉. Right panel: 〈S(c)
κ − 1〉.

where �̂κ is obtained from the discrete Fourier spectrum of
the velocity components as

�̂κ = k−1(kxv̂y − kyv̂x),

and k =
√

k2
x + k2

y is the wave number. Note that S
(�)
κ fully

characterizes the covariance of the velocity fluctuations since
our scheme ensures the velocity is discretely divergence
free at all times and k−1(−ky, kx) spans the subspace of
divergence-free velocities in Fourier space. For staggered
variables the shift between the corresponding grids should
be taken into account as a phase shift in Fourier space, for
example, exp(kx	x/2) for vx . Additionally, the wave number
k = (kx,ky) should be replaced by the effective wave number
k̃ that takes into account the centered discretization of the
projection operator, for example,

k̃x = exp(ikx	x/2) − exp(−ikx	x/2)

i	x
= kx

sin(kx	x/2)

(kx	x/2)
.

(41)

One can additionally define and measure the cross-correlation
between concentration and velocity fluctuations via the cross-
correlation static structure factor

S(c,�)
κ = Ncε

−1	V 〈ĉκ�̂
�
κ 〉,

which is in general a complex number.
Discrete fluctuation-dissipation balance in the coupled

velocity-concentration equations requires that S
(c)
κ = S

(�)
κ = 1

and S
(c,v)
κ = 0 for all nonzero wave numbers. Deviations

from these values indicate a violation of discrete fluctuation-
dissipation balance and can be used to numerically assess the
behavior of the schemes in the nonlinear setting, as we do next.

2. Numerical results

In Fig. 3 we show numerical results for the spectrum
of the fluctuations in the solenoidal modes of velocity and
concentration for strong fluctuations, ε = 4. We see that, just
as for the fluctuating Burgers equation, both the trapezoidal and
the midpoint scheme show artifacts in the spectra, especially

for concentration and for the trapezoidal scheme. The cross-
correlation S

(c,�)
κ is found to be small and difficult to measure

due to large statistical errors.
We have verified that as the time step is reduced, both

schemes give the correct spectrum even for strong fluctuations
(i.e., strong nonlinearities). In Fig. 4 we show the average
error in the equilibrium spectrum 〈|Sκ − 1|〉 for vorticity and
concentration. The second-order weak accuracy of the error is
clearly seen in Fig. 2 for both velocity and concentration and
for both the midpoint and the trapezoidal scheme.

In Fig. 5 we show the spectrum of concentration fluctuations
S

(c)
κ for the case of weak fluctuations, ε = 0.01, and large time

step size, viscous CFL β = 50 and diffusive CFL βc = 12.5,
and advective CFL α = 5. We see a large error for small wave
numbers for the trapezoidal scheme. A similar but weaker
artifact is seen for the velocity spectrum S

(�)
κ as well, indicating

that the trapezoidal scheme violates fluctuation-dissipation
balance at small wave numbers for large 	t . The midpoint
scheme is seen to be much more accurate for both S

(c)
κ and

S
(�)
κ . These investigations confirm that the midpoint scheme

(29) with w1 = 1/2 is the more robust temporal integrator for
fluctuating hydrodynamics.

VI. CONCLUSIONS

Discrete and continuum Langevin models are often used
as coarse-grained models for the behavior of materials at
mesoscopic scales. These models include the effects of thermal
fluctuations via white-noise stochastic forcing terms chosen
in a way that ensures fluctuation-dissipation balance. This
means that at thermodynamic equilibrium the dynamics is
time reversible (i.e., in detailed balance) with respect to the
Gibbs-Boltzmann distribution. For continuum models this is
usually only true formally and a more precise interpretation of
the equations requires introducing a spatial discretization and
truncating the continuum models at a scale well separated
from the molecular scale. Here we focused on fluctuating
hydrodynamics; specifically, we considered numerical meth-
ods for solving the fluctuating Burgers equation in one
dimension and the fluctuating Navier-Stokes equations in two
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FIG. 5. (Color online) Discrete structure factor for concentration S(c)
κ for the midpoint scheme (29) with w1 = 1/2 on the left and for the

trapezoidal scheme (28) on the right, for the case of weak fluctuations, ε = 0.01, and large time step size β = 50, βc = 12.5, α = 5.

dimensions. In these equations, fluctuation-dissipation balance
is obtained from the balance of the dissipative (self-adjoint)
diffusive terms and the stochastic forcing. The advection
terms are nondissipative (skew-adjoint) and do not affect the
equilibrium distribution.

Spatio-temporal discretizations do not necessarily preserve
the properties of the continuum equations; notably, they may
not obey a discrete fluctuation-dissipation principle. This
means that their equilibrium distribution is not a discrete form
of the Gibbs-Boltzmann distribution. This sort of unphysical
behavior can be avoided by carefully constructing the spatial
discretization to obey a discrete-fluctuation principle with
respect to a target discrete Gibbs-Boltzmann distribution. In
this way, a coarse-grained semidiscrete model is obtained that
obeys the principles of statistical mechanics, namely, obeys
detailed balance at thermodynamic equilibrium. We showed
explicitly how one can construct such spatial discretiza-
tions by first understanding the properties of the continuum
model (even if only at a formal level) and then maintaining
those properties in the spatial discretization. For fluctuating
hydrodynamics, this means that certain relations between
the discrete divergence, gradient, and Laplacian operators
must be preserved, such as the fact that the divergence
and gradient operators are negative adjoints of each other.
We showed how to construct spatial discretizations that
obey a discrete fluctuation-dissipation principle for both the
fluctuating Burgers and the fluctuating Navier-Stokes with the
addition of a passively advected scalar. These results were
mostly a summary of discretizations previously constructed in
somewhat disjoint bodies of literature, and are a stochastic
equivalent of a method-of-lines approach for deterministic
fluid dynamics [24].

The novel challenge that we tackled here is the construction
of temporal integrators that are weakly second-order accurate
for additive noise, and preserve the fluctuation-dissipation bal-
ance reasonably accurately. It is possible to construct temporal
integrators that strictly preserve the Gibbs-Boltzmann distri-
bution at equilibrium by combining a Metropolis-Hastings

rejection procedure with a more classical temporal integrator.
However, effective use of such Metropolization [53] requires
first constructing a classical weak integrator that produces a
good approximation to the equilibrium distribution for time
step sizes that are only limited by the deterministic dynamics.
For separable Langevin equations, it is well known how
to construct symplectic integrators that preserve dynamical
invariants, including the equilibrium distribution, very robustly
[23]. One of the simplest second-order methods of this
type suitable for fluctuating hydrodynamics is the implicit
midpoint rule. However, an implicit discretization of the
nonlinear advective terms is arguably impractical in three
dimensions. Many existing deterministic schemes in fluid
dynamics use a mixed implicit-explicit approach in which
the diffusive terms are handled implicitly and the advective
terms are handled explicitly. We showed how to construct
predictor-corrector second-order Runge-Kutta schemes based
on the implicit midpoint rule (Crank-Nicolson method) for the
diffusive terms, and either an explicit midpoint or an explicit
trapezoidal rule for the advective terms. These schemes have
the remarkable property that in the linearized setting (weak
fluctuations) they exactly preserve the Gaussian approxima-
tion to the Gibbs-Boltzmann distribution. We obtained the
conditions for second-order weak accuracy of a rather general
class of two-stage Runge-Kutta methods, and proposed several
specific schemes. Through numerical investigations, we found
the scheme (29), which combines the implicit and explicit
midpoint rules, was very robust in reproducing the correct
spectrum of fluctuations, even for strong fluctuations (strong
nonlinearities) and for large time step sizes.

A remaining challenge is how to control not just the static
distribution of the equilibrium fluctuations but also to control
the accuracy of the dynamics of the fluctuating fields. This is
particularly challenging for the case in which there are several
physical processes with large separation of time scales, such as,
for example, the diffusion of momentum and of mass. Notably,
for many realistic fluids the Schmidt number Sc = ν/χ is
on the order of 102–103, making the sort of integrators
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we discussed impractical because the time step would be
severely limited by the viscosity ν and not by the diffusion
coefficient χ . Temporal integrators for this sort of multiscale,
or more appropriately, manyscale system of SPDEs, will be
the subject of future investigations. Future work should also
explore Metropolization [53] strategies for predictor-corrector
schemes for fluctuating hydrodynamics, particularly for the
case of multiplicative noise.

We focused here on constructing temporal integrators with
weak accuracy of order 2 for additive equations. This choice is
guided in part by physical intuition that has yet to be justified
more rigorously. Specifically, fluctuating hydrodynamics is
typically applied at length and time scales where fluctuations
are weak and the dynamics is in a nearly linearized regime.
Notably, in many cases of interest the noise is essentially
additive or can be well approximated as additive. Weak
accuracy is emphasized because it is more relevant in the types
of Monte Carlo applications we are interested in. While the
classical definition of strong order of accuracy is likely too
strong for Monte Carlo simulation, some notion of pathwise
convergence is important in reproducing the statistics of typical
paths, such as, for example, rare transition statistics. Recently,
error metrics other than weak and strong error have also been
considered. Notably, Ref. [65] defines the numerical error
as the difference between the joint probability distribution
function (PDF) of the computed values at all time steps and
the joint PDF of the exact process at the same times, and
constructs Runge-Kutta integrators accurate in that metric.
Such approaches may be fruitfully applied in fluctuating
hydrodynamics in the future, especially in the context of
modeling rare events.
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APPENDIX A: WEAK SEMI-IMPLICIT
PREDICTOR-CORRECTOR SCHEMES

We consider implicit-explicit stochastic Runge-Kutta
schemes to solve the system of Ito SODEs

dx = L(x)x dt + g(x) dt

+α ∂x · [K (x)K �(x)]dt + K (x) dB(t),

where L(x) is a linear operator that represents the implicitly
treated part of the dynamics. Here B is a collection of
independent Brownian motions (Wiener processes), with
W ≡ dB/dt denoting a collection of white-noise processes.
For increased generality we allow for multiplicative noise and
include a divergence term proportional to some constant α, as
may be required to ensure fluctuation-dissipation balance in the
case of multiplicative noise. For example, α = 1/2 gives the
spurious or thermal drift term in the generic Langevin equation
(3) if the nondissipative part of the dynamics is Hamiltonian.
We develop a method that is weakly second-order accurate for
additive noise and first-order accurate for multiplicative noise,
requires solving only linear systems involving the matrix
Ln = L(xn), and does not require evaluating the divergence
of the mobility matrix M = K K �.

We employ a two-stage (predictor-corrector) Runge-
Kutta method, where at time step n the predictor esti-
mates a first-order accurate solution at an intermediate
time n	t + w2	t ,

x̃ = xn + (w2 − w1)	t Lnxn + w1	t Ln x̃

+w2	t gn + (w2	t)
1
2 K nWn

1, (A1)

and the corrector evaluates the solution at time (n + 1)	t ,

xn+1 = xn + (1 − w3 − w4)	t Lnxn + w3	t Ln x̃ + w4	t Lnxn+1 + w5	t(L̃ − Ln)x̃ + w5	t g̃

+ (1 − w5)	t gn + 	t
1
2 [(1 − w6)I + w6 M̃(Mn)−1]K n

[
w

1
2
2 Wn

1 + (1 − w2)
1
2 Wn

2

]
. (A2)

The handling of the multiplicative noise term is inspired by
the so-called kinetic interpretation of the stochastic integral
[36] and the well known Fixman method for Brownian
dynamics [66]. In the above discretization, the standard
normal variates Wn

1 correspond to the increment of the
underlying Wiener processes over the time interval w2	t ,
B(n	t + w2	t) − B(n	t) = (w2	t)

1
2 Wn

1, while the normal
variates Wn

2 correspond to the independent increment over
the remainder of the time step, B((n + 1)	t) − B(n	t +
w2	t) = [(1 − w2)	t]

1
2 Wn

2.

1. Additive noise

For additive noise, K (x) ≡ K , we would like to achieve
second-order weak accuracy. A second-order integrator that
uses derivatives is provided by the weak Taylor series (16), in
indicial notation with the implied summation notation

xα(t + 	t) = xα(t) + 	tLn
αβxn

β + 	tgn
α + Kαβ	Bβ

+
(

	t2

2
Ln

γεxε + 	t2

2
gn

γ + 	t

2
Kγε	Bε

)
× (

xβ∂γ Ln
αβ + Ln

αγ + ∂γ gn
α

)
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+	t2

4
KγεKδε

(
xβ∂γ ∂δL

n
αβ + 2∂γ Ln

αδ + ∂γ ∂δg
n
α

)
+O

(
	t

5
2
)
, (A3)

where 	B = B((n + 1)	t) − B(n	t) is the Wiener incre-
ment, in law, 	B = (	t)1/2W where W is a collection of
i.i.d. standard normal random variables.

To prove second-order order weak accuracy for the
derivative-free Runge-Kutta scheme, we need to match the
first five moments of the numerical increment 	n

α = xn+1
α − xn

α

to the moments of the true increment 	α(n	t) = xα((n +
1)	t) − xα(n	t), up to order 	t2 [51]. The increment of the
RK method (A1) and (A2) is (after recursively substituting in
for xn+1, and Taylor expanding certain terms)

xn+1
α = xn

α + 	tLn
αβxn

β + 	tgn
α + 	t

1
2 Kαβ

[
w

1
2
2

(
Wn

1

)
β

+ (1 − w2)
1
2
(
Wn

2

)
β

]
+ (

	t2Ln
γεx

n
ε + 	t2gn

γ

)[
w2w5x

n
β∂γ Ln

αβ + (w2w3 + w4)Ln
αγ + w2w5∂γ gn

α

]
+	t3/2Kγε

[
w5w

1
2
2 xβ

(
∂γ Ln

αβ

)(
Wn

1

)
ε
+

(
(w3 + w4)w

1
2
2

(
Wn

1

)
ε
+ w4(1 − w2)

1
2
(
Wn

2

)
ε

)
Ln

αγ + w5w
1
2
2

(
∂γ gn

α

)(
Wn

1

)
ε

]
+ w2w5

2
	t2KγεKδε

(
xβ∂γ ∂δL

n
αβ + 2∂γ Ln

αδ + ∂γ ∂δg
n
α

) + O(	t5/2).

Comparing the first moments of the increments, E(	n
α) −

E(	α(n	t)) = O(	t3) if w2w5 = 1
2 and w2w3 + w4 = 1

2 .
The difference in the second moments is also O(	t3) under
the same conditions, as is the difference in the third and fourth
moments. The fifth moments are already of O(	t3).

2. Multiplicative noise

For multiplicative noise, we only aim to achieve first-order
weak accuracy. For this, we need to match the first three
moments of the increment up to first order in 	t [51]. With
a variable K (x), the difference in the first moments obtains
additional terms

(α − w2w6)	t ∂γ

(
KαβKn

γβ

) + O(	t2)

Therefore, if we have w2w6 = α, then our method will be
consistent with the Ito SDE and reproduce the correct thermal
drift without explicitly evaluating ∂x · M(x). Note, however,
that this type of “Fixman” approach requires solving one more
linear system per time step because of the appearance of
(Mn)−1 in (A2).

Despite recent progress in mathematical understanding
[67], multiplicative noise has unclear physical relevance.
Fluctuating hydrodynamics is a coarse-grained model in which
the variables are averages over many microscopic degrees of
freedom and therefore the fluctuations are weak [48,49,68].
To leading order in the magnitude of the fluctuations, the
equations are linear and the noise can be considered additive
(though potentially time dependent). We speculate that multi-
plicative noise is a very weak perturbation and its effects on the
larger scales of the flow, if any, can be sufficiently accurately
captured by low-order temporal integrators such as (A1) and
(A2) with the condition w2w6 = α.

APPENDIX B: L-STABLE SCHEME

In typical fluctuating hydrodynamics applications, for
explicit schemes the time step is severely limited not by
advection but by momentum or heat diffusion, notably, by
viscous dissipation. For purely dissipative linear equations,

implicit handling of momentum diffusion can yield A-stable
schemes such as the implicit midpoint scheme (22). This
allows the use of much larger time step size 	t , at least in
principle. If one is interested in steady-state fluctuations, the
implicit midpoint scheme (22) gives the correct spectrum of
fluctuations for any 	t (see the Appendix in Ref. [25] for a
discussion of how to choose a suitable 	t).

However, for time-dependent linear problems, only an
exponential integrator can reproduce the correct dynamics
for all modes (wave numbers) for all time step sizes. The
implicit midpoint rule provides a notably bad approximation
to the exponential decay of correlations for large 	t , since
the Pade (1,1) rational approximation to the exponential
(23), exp(−x) ≈ (1 − x/2)/(1 + x/2) tends to −1 for x � 1
instead of decaying to zero. This leads to oscillatory dynamics
for the modes that are under-resolved by the large time step
size, i.e., for the thermal fluctuations at large wave numbers.
A much better approximation to exp(−x) is provided by
rational approximations that decay to zero as x → ∞. In
numerical analysis jargon this means handling the diffusive
fluxes using an L-stable numerical method.

Let us consider the choice of weights in the general scheme
(25) that yield a scheme that is weakly second-order accurate
and L stable in the implicit part of the dynamics. From the
conditions for second-order accuracy (26) we obtain

w3 =
1
2 − w4

w2
, w5 = 1

2w2
,

and from the condition of L stability we obtain

w1 =
1
2 − w4

1 − w4
,

which gives the following rational approximation to the
exponential decay of the dynamics:

exp(−x) ≈
(
1 − 2 w4 + 2 w2

4

)
x − 2(1 − w4)

(w4 x + 1)[(2 w4 − 1)x − 2(1 − w4)]
. (B1)

A reasonable choice of w4 can be taken to be the one that
minimizes the mismatch between the coefficient in front of
x3 in the Taylor series expansion of the left- and right-hand
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FIG. 6. (Color online) Comparison of exp(−x) with three rational
approximations. The approximation in the Crank-Nicolson scheme
(23) does not decay to zero for large x. The approximation (B1)
decays to zero for w4 = 1 ± √

2/2; however, only the positive sign
gives a strictly positive approximation.

sides [69], giving w4 = 1 ± √
2/2. In Fig. 6 we compare the

two rational approximations by choosing the plus or minus
sign. In the deterministic literature the choice of the minus
sign has been favored [50,69]; however, we recommend the
plus sign,

w4 = 1 +
√

2

2
,

because this gives a strictly positive approximation to the ex-
ponential decay of correlations instead of oscillatory behavior
for the under-resolved modes (large x).

We are still left with the choice of w2, where the two
common choices for w2 would be a midpoint, w2 = 1/2, or
an endpoint, w2 = 1, predictor stage. From the discussion in
Sec. III D1 we know that when all terms are handled explicitly
(L = 0), the choice w2 = 1/2 gives third-order accuracy for
the static covariance for linear problems. It can also be shown
that this choice leads to third-order accuracy of the static
covariances in the linearized setting if all terms are discretized
implicitly [g(x) = 0]. This suggests that a better, even if not
unique, choice, is to take w2 = 1/2, giving our preferred
choice of weights for an L-stable predictor-corrector scheme,

w1 = w4 = 1 +
√

2

2
, w2 = 1

2
,

(B2)
w3 = −(1 +

√
2), w5 = 1.

In the linearized setting, this L-stable scheme gives second-
order accurate covariances for small time step sizes; however,
it does not produce the correct spectrum for the fluctuations for
large time step sizes, unlike the implicit midpoint scheme (22).
In particular, for large 	t the L-stable scheme strongly damps
the magnitude of the fluctuations of the fast (small wavelength
or large wave number) modes. Therefore, if static covariances
are the quantity of interest, the implicit midpoint rule should
be used instead.

APPENDIX C: APPROXIMATE PROJECTION METHODS

Here we consider a generalization of the projected Euler-
Maruyama scheme (37),

vn+1 = P̃
[
vn + ν	t Lvv

n + (2ν	t)
1
2 DwWn

v

]
, (C1)

where P̃ an approximation to the discrete projection P , for
example, P = I − GL−1

p D. Here Lp is a discrete pressure
Laplacian operator that may, in general, be different from
Ls = DG. For example, with spatial discretizations of the in-
compressible (Navier-)Stokes equations that use cell-centered
velocities, Ls possesses a nontrivial nullspace and the corre-
sponding exact projection methods (in which P̃ = P ) suffer
from the so-called checkerboard instability. Approximate
projection methods have been developed to overcome these
difficulties of exact cell-centered projection methods [61]. One
of the simplest approximate projection methods is (C1) with
Lp being the standard second-order Laplacian stencil [62]. For
the staggered-grid spatial discretization we employ, however,
it is straightforward to invert Ls , and approximate projection
methods are not used in practice.

The steady-state covariance of the iteration (C1) should
be a consistent approximation to the continuum result (34).
Specifically, we ask that to leading order in the time step size

Cv = 〈vn+1(vn+1)�〉 = 〈vn(vn)�〉 = P + 	t 	Cv + O(	t2).

Substituting (C1) in this condition and equating the leading-
order terms we obtain the condition

P̃P P̃
� = P .

This condition is satisfied for exact projection methods,
P̃ = P , but not for approximate projection methods, P̃ �= P .
Assuming the initial condition is discretely divergence free,
for exact projection (C1) is equivalent to (37).

APPENDIX D: MODE ANALYSIS

It is instructive to describe a framework for analyzing
schemes such as (39), following the mode analysis used to
study splitting errors in projection methods in the deterministic
context [70,71]. This analysis can in principle produce explicit
expressions for the spectrum of velocity fluctuations for the
types of schemes we consider here. It also illustrates clearly
the role of the pressure and, in particular, the difficulties with
applying semi-implicit projection (splitting) methods in the
context of the fluctuating Navier-Stokes equations.

A mode of the spatially discretized unforced time-
dependent (creeping) Stokes flow equation

∂tv + Gπ = νLvv, such that Dv = 0, (D1)

is an exponentially decaying solution of the form

v(t) = ve−σ t and π (t) = νπ0e
−σ t .

Here σ � 0 is the decay rate associated with the spatial mode
{v0,π0}, which is a normalized solution to the eigen-problem

(Lv + ν−1σ I)v0 + Gπ0 = 0 and Dv0 = 0. (D2)

These modes diagonalize the creeping Stokes flow dynamics
and form a complete orthonormal basis for the space of
divergence-free velocity fields. This can be seen by eliminating
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the pressure to obtain the classical eigenvalue problem in the
subspace of discretely divergence-free velocity fields[

Lv − L−1
v G

(
DL−1

v G
)−1

DL−1
v

]
v0 = −ν−1σv0.

In the presence of a stochastic forcing, we can express any
solution in a basis formed by the modes {v1

0,v
2
0, . . . },

v(t) =
∑

k

υk(t) vk
0,

where the mode amplitudes υk(t) are scalar stochastic pro-
cesses. The stochastic forcing (2ν)

1
2 DwWv(t) in the momen-

tum equation can be projected onto vk
0 to obtain the amplitude

of the stochastic forcing for mode k,

wk(t) = (2ν)
1
2
(
vk

0

)�
[DwWv(t)],

which is a scalar white-noise process with covariance

〈wk(t)w�
k(t ′)〉 = 2ν

(
vk

0

)�
[Dw〈Wv(t)W�

v(t ′)〉D�
w]

(
vk

0

)
= −2ν

(
vk

0

)�
Lv

(
vk

0

)
δ(t − t ′),

where we made use of the discrete fluctuation-dissipation
balance between the viscous dissipation and the stochastic
forcing, Lv = −Dw(Dw)�. From (D2) we can express

−2ν
(
vk

0

)�
Lv

(
vk

0

) = −2ν
(
vk

0

)�(
Gπ0 − ν−1σkv

k
0

)
= 2ν

(
Dvk

0

)�
π0 + 2σk

∥∥vk
0

∥∥2 = 2σk,

where we again made use of the duality relation G = −D�.
This simple calculation shows that in the mode representation
the linearized fluctuating Navier-Stokes equation becomes a
collection of decoupled scalar Langevin equations driven by
standard Wiener processes,

dυk

dt
= −σkυk + (2σk)

1
2 Wυ(t). (D3)

The fluctuation-dissipation balance is most clearly revealed in
this representation.

Temporal discretizations can be analyzed by projecting the
numerical solution onto a set of discrete modes. For the implicit
midpoint discretization (39), the modes are decaying solutions
of the form

vn+1
k = vn

ke
−σ̃k	t and π

n+ 1
2

k = νπn
ke

−σ̃k	t/2,

where σ̃k ≈ σk is the numerical decay rate. The spatial
structure of the mode {vn

k ,π
n
k} is the solution to the discrete

eigen-problem[
Lv + ν−1

(
2

e−σ̃k	t + 1

)(
1 − e−σ̃k	t

	t

)
I
]
vn

k

+
(

2

e−σ̃k	t + 1

)
e−σ̃k	t/2 Gπn

k = vn
k .

Comparison to (D2) shows that the spatial modes are the same
as for the semicontinuum (D1), and the temporal decay rate is
second-order accurate in the time step,

σk =
(

2

e−σ̃k	t + 1

)(
1 − e−σ̃k	t

	t

)
= σ̃k

(
1 − σ̃ 2

k 	t2

12

)
+ O(	t3).

When the stochastic forcing is included, the discrete velocity
can be represented in the basis formed by the discrete modes
just as we did above for the time-continuous equations. In the
mode representation the scheme (39) is seen to be nothing
more than the implicit midpoint method (22) applied to the
system of decoupled SDEs (D3).

The mode analysis reveals that semi-implicit projection
(splitting) methods have a significant shortcoming not seen
for explicit methods. A Crank-Nicolson projection method for
(D1) consists of first solving the following linear system for
the velocity vn+1 with a time-lagged pressure [72],(

I − ν	t

2

)
ṽn+1 + 	t Gπn− 1

2 =
(

I + ν	t

2

)
vn,

and then projecting the intermediate velocity ṽn+1 to enforce
the divergence-free constraint, vn+1 = P ṽn+1, by solving a
linear system for the pressure correction

vn+1 = ṽn+1 − 	t G	πn, such that Dvn+1 = 0.

Repeating the discrete mode calculation reveals that the spatial
modes for the above temporal discretization are not the same
as for the semicontinuum (D1); specifically, the gradient of
pressure term in (D2) is modified by a term involving the
Laplacian Lv . For periodic systems the discrete gradient and
vector Laplacian commute, Lv G = GLs , and modes have the
correct spatial structure. However, for nonperiodic systems
the splitting of the pressure and velocity equations introduces
a commutator error that leads to the appearance of “spurious”
or “parasitic” modes [71]. For deterministic solutions and
moderate time step sizes, spatio-temporal smoothness of the
solution usually makes these commutator errors acceptably
small. In the stochastic context, however, all modes are
stochastically forced and have a non-negligible amplitude,
including the parasitic modes. For this reason, we chose to
use (39) and solve a coupled Stokes linear system for both
pressure and velocity, and only use the projection method
as a preconditioner for the required Krylov solver [63].
We emphasize again that for purely explicit time stepping
scheme the spatial structure of the modes is preserved and
projection methods can be used in the stochastic setting as
well.
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