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Magnetic moment of a single metal nanoparticle determined from the Faraday effect
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Optical properties of a composite material made of ferromagnetic metal nanoparticles embedded in a dielectric
host are studied. We constructed an effective dielectric tensor of the composite material taking into account the
orientational distribution of nanoparticle magnetic moments in external magnetic field. A nonlinear dependence
of the optical rotation on magnetic field resulting from the reorientation of nanoparticles is demonstrated. The
theoretical findings were applied to the magneto-optical experimental data of cobalt ferromagnetic nanoparticles
embedded in a dielectric liquid host. The dependence of the Faraday rotation on Co-based ferromagnetic
nanoparticles was measured as a function of the external magnetic field, varying the size of nanoparticles
and the wavelength of light. The proposed approach enables quantitative determination of the magnetic moment
and the plasma frequency of a single nanoparticle, and from this the size of the nonmagnetic shell of magnetic
nanoparticles.
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I. INTRODUCTION

Compounds showing large magneto-optic effects are
searched for because of their possible application in optical
technology as fast shutters, switches, tunable phase retarders,
etc. [1,2]. Magnetic materials are ideal for such applications,
as due to the magnetic nature of compounds large optical linear
and circular anisotropy can be induced by applying a relatively
small external magnetic field. Among magnetic materials, a lot
of attention was devoted to ferrofluids, i.e., solution of mag-
netic nanoparticles in nonmagnetic host, which are extensively
studied experimentally since the 1970s; however, the origin of
the magneto-optic effect in these materials is still not fully
understood [3–9]. The most studied effect, the induced linear
birefringence, has often been related to the shape anisotropy
of nanoparticles or to the formation of anisotropic aggregates
under magnetic field [10–17], while the optical activity is
related to the Faraday effect [18,19]. Faraday rotation for
composite media made of small particles embedded in the
dielectric host was intensively studied, primarily by Stroud
et al. [18–21]. The model predicts a linear response to the
magnetic field and an anomalously large increase of the
Faraday constant close to the nanoparticle surface plasmon
frequency. The Stroud theory for ferrofluids has later been
extended to anisotropic inclusions with the application to
conducting polymers [22] . Increase of the Faraday rotation
close to the surface plasmon frequency was experimentally
confirmed for the magnetic Fe2O3 nanoparticles dispersed in
wax [23]. Here we present a study of magnetically induced
optical activity in ferrofluids made of spherical cobalt (Co)
nanoparticles of different sizes suspended in an organic
solvent. Similar systems have been studied before; however, in
this paper we show that the quantitave analysis of the Faraday
rotation enables the determination of important parameters
such as the magnetic moment of a single particle and the
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surface plasmon frequency of the particle, which are difficult
to obtain by other methods.

II. THEORETICAL CONSIDERATIONS

A. Dielectric tensor of the composite material

Optical properties of composite materials can be expressed
by the effective dielectric tensor εeff , which includes the
information about the optical properties of the host and
inclusion (nanoparticles):

εeff =

∣∣∣∣∣∣∣
εeff

1 iAeff 0

−iAeff εeff
1 0

0 0 εeff
2

∣∣∣∣∣∣∣ .
The host is optically isotropic in zero external field. If the

magnetic field is applied along the z axis, the dielectric tensor
of the host (εh) becomes anisotropic and optically active and
can be expressed as:

εeff =

∣∣∣∣∣∣∣
εh1 iAh 0

−iAh εh1 0

0 0 εh2

∣∣∣∣∣∣∣ .
The dielectric tensor of the inclusion is also anisotropic,

if particles are not spherical (shape anisotropy) or if they are
magnetized having internal magnetic field already built-in.
The dielectric tensor εi in the eigenframe of the nanoparticle
is, thus:

εeff =

∣∣∣∣∣∣∣
εi1 iAi 0

−iAi εi1 0

0 0 εi2

∣∣∣∣∣∣∣ .
To express the dielectric tensor of the inclusion

in the laboratory frame with the z axis along the direction
of the external magnetic field, one has to take into account that
the axes of the eigen coordinate system of the inclusion are
rotated by the angles (θ,ϕ) with respect to the dielectric tensor
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axes of the host εi , so the dielectric tensor of the inclusion
in the laboratory frame is εi(θ,ϕ) = RεiR

T , where R is the
rotation matrix:

R(θ,ϕ) =

∣∣∣∣∣∣∣
cos ϕ sin ϕ cos θ sin ϕ sin θ

− sin ϕ cos ϕ cos θ cos ϕ sin θ

0 − sin θ cos θ

∣∣∣∣∣∣∣ .
The exact form of the effective dielectric tensor can be

found knowing the dielectric tensors εh and εi . In the case
of the host material, the anisotropy induced by the external
magnetic field can be easily measured and taken into account in
the later analysis of the experimental data. For the inclusions,
the dependence of the dielectric tensor on the wavelength,
particle shape, size, etc. must be found theoretically, since it
is very difficult (or even impossible) to measure the dielectric
tensor of a single nanoparticle.

We search for the effective medium tensor εeff by assuming
that the polarizability of the effective medium results from
the polarizability of the inclusions in the host [24]. For a
small concentration of nanoparticles (denoted by the volume
fraction, also called the filling factor, f � 1), one can neglect
the interactions among nanoparticles, and for the spherical
inclusions the effective dielectric tensor is expressed as
[22,25,26]

εeff ≈ εh + 3εhf 〈M〉R, (1)

where

M = [εi(θ,ϕ) + 2εh]−1[εi(θ,ϕ) − εh]

and 〈. . .〉R denotes the average over all the possible orientations
of the inclusions. The components of the dielectric tensor
of the metallic inclusions [Eq. (1)] are acquired from the
Drude model, assuming weakly bounded electrons in a static
magnetic field and the harmonic electric field of the incident
light,

εi1 = 1 + i(1 − iωτ )(ωpτ )2

ωτ [(1 − iωτ )2 + (ωcτ )2]

εi2 = 1 + i(ωpτ )2

ωτ (1 − iωτ )

Ai = (ωpτ )2ωcτ

ωτ [(1 − iωτ )2 + (ωcτ )2]
,

where ωp is the plasma frequency ωp = Ne2/(ε0m
∗), m∗ is

the effective mass of the electron, e is its charge, N is the
electron number density, and τ is the characteristic lifetime
of momentum relaxation. For the cyclotron frequency ωc, we
assume the following dependence

ωc = e(Bm + Bext cos θ )/m∗, (2)

where Bm is the internal magnetic flux density due to the
ferromagnetic magnetization, Bext is the external magnetic flux
density, and θ is the angle between Bext and the nanoparticle
magnetic dipole μ that is parallel to Bm. The vector sum of
Bm and Bext gives the total internal magnetic flux density in
the nanoparticle. In the case of Bext being lower than Bm, the
magnitude of the interal magnetic flux density is approximately
Bm + Bext cos θ , which was used in the expression for the
cyclotron frequency [Eq. (2)].

In order to underline the importance of the magnetic field
on optical activity, we rewrite Ai in the form

Ai = Ai0

(
1 + Bext

Bm

cos θ

)
,

where

Ai0 = (ωpτ )2ωc0τ

ωτ [(1 − iωτ )2 + (ωc0τ )2]

and ωc0 = eBm/m∗.
The external magnetic field aligns magnetic moments of

ferromagnetic nanoparticles. In order to get the effective
dielectric tensor, one should sum up the contributions of the
nanoparticle dielectric tensors according to the thermodynam-
ical distribution of nanoparticle magnetic moment orientations
in the external magnetic field at finite temperature. Since
the calculation of average required by Eq. (1) is rather
comprehensive in a general case, we make a reasonable
simplification and assume that the dielectric tensors of the
host and the inclusion are not birefringent (εh1 = εh2 = εh

and εi1 = εi2 = εi). We calculate the orientational average of
the matrix M as

〈M〉R = 1

Z

1

4π

∫ 1

1
d cos θ

∫ 2π

0
dϕM exp

(
μBext cos θ

kBT

)
,

where Z = − sinh x/x is the statistical sum with x =
μBext/kBT , kB is the Boltzmann constant, T is temperature,
and μ is the magnetic moment of a single nanoparticle.
Performing the integration, one finds the following expressions
for the nonzero matrix elements:

M11 = M22 = M33 = εi − εh

εi + 2εh

M12 = −M21 = 3iAi0εh

(εi + 2εh)2

{
Bext

Bm

[
1 − 2

L(x)

x

]
+ L(x)

}
,

where L(x) = coth x − 1/x is the Langevin function. Having
the elements of the tensor 〈M〉R , the following elements of the
effective dielectric tensor are obtained from Eq. (1):

εeff
1 = εeff

2 = εh

(
1 + 3f

εi − εh

εi + 2εh

)
(3)

Aeff = Ah + 9f ε2
h

Ai0

(εi + 2εh)2

{
Bext

Bm

[
1 − 2

L(x)

x

]
+ L(x)

}
,

(4)

where in the expression for Aeff we have neglected the term
of the order f Ah. As expected, without the external magnetic
field, Aeff = 0 and the system is not optically active.

B. Optical activity (Faraday effect)

In the Faraday configuration, the light propagates along the
direction of the external magnetic field. Setting this direction
as the z axis, the wave vector is �k = (0,0,k) (where k = 2π/λ),
polarization of the incident light (with the wave vector �k0 and
wavelength λ0) is in the xy plane [ �E = (Ex,Ey,0)], and the
external magnetic field is �Bext = (0,0,B). By solving the wave
equation for this configuration,

�k × (�k × �E) + k2
0εeff

�E = 0,
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one obtains two circularly polarized eigenmodes, Ey = ±iEx ,
with the wave vectors

k± = k0

√
εeff

1 ± Aeff .

The Faraday rotation angle per unit length is

θF = Re

[
1

2
(k+ − k−)

]
= Re

[
k0A

eff

2
√

εeff
1

]
, (5)

where the fact that the off-diagonal terms are very small was
used. Using Eqs. (3) and (4) in Eq. (5), assuming εeff

1 ≈ εh

and subtracting the Faraday rotation due to the host, the
Faraday rotation due to the inclusion of nanoparticles θ i

F can
be expressed as

θ i
F = ωc0

c
f K(ω)

{
Bext

Bm

[
1 − 2

L(x)

x

]
+ L(x)

}
, (6)

where the function K(ω), dependent on material parameters
of host and inclusions, is defined as

K(ω) = 1

2

9

1 + 2εh

ε
3/2
h (ω∗

pτ )2 1 − (
1 − ω∗2

p

ω2

)2
ω2τ 2[

1 + (
1 − ω∗2

p

ω2

)2
ω2τ 2

]2
, (7)

with a surface plasmon frequency of spherical particle ω∗
p =

ωp/
√

(1 + 2εh) [27,28].
The properties of the host (pure solvent) are known, as

they can be easily found in literature or measured. The linear
dependence of the elements of the effective dielectric tensor
on the properties of the host tensor allows the subtraction of
the results obtained for the pure host material from results
obtained for the composite material. The relaxation time τ

can be treated as a fitting parameter; however, in order to
restrict the number of free parameters in the model, one can
estimate it from the nanoparticle diameter d and the value
of the carrier velocity (vF ) at the Fermi energy (about
1.0 × 106 m/s [29]), so τ ∼ d/vF is of the order of 2 ×
10−14 s. The effective mass m∗ is assumed to be equal to
the electron mass. The internal magnetic flux density Bm was
estimated [30] from the bulk magnetization (M) of cobalt as
Bm = μ0(M − LM), where L = 1/3 is the depolarization
factor for spherical geometry. We calculate magnetization
as M = μ1ρNA/MCo, where μ1 = 1.751 μB is the magnetic
moment of a single cobalt atom in number of Bohr magnetons
μB , ρ = 8.9 g/cm3 is the density of cobalt, MCo = 59 g/mol
is its molar mass, and NA is the Avogadro number. We find
Bm = 1.23 T. The magnetic moment μ of a single nanoparticle
is considered as a fitting parameter, since due to the surface
effects the magnetic moment of a nanoparticle is expected to
be lower than the sum of magnetic moments of Co atoms in the
nanoparticle [31,32]. The plasma frequency is also taken as a
fitting parameter, since in the nanosized material it can differ
from the bulk value. The volume fraction f of the nanoparticles
and the particle diameter d were measured as described in
the next section. However, the measurements of the volume
fraction are unrealiable due to the rather fast evaporation of
the solvent. Because of that we decided to take the volume
fraction as a fitting parameter as well. Therefore, finally, we
have a set of three fitting parameters: ωp, μ, and f .

III. EXPERIMENTAL SETUP AND MEASUREMENTS

The Co nanoparticles were synthesized by the high-
temperature decomposition of an organometallic precursor—
octacarbonyldicobalt, Co2(CO)8, in the o-dichlorobenzene
solution under inert (Ar) atmosphere, in the presence of
organic surfactants: trioctylphosphane oxide (TOPO) and
oleic acid (OA), to prevent particles aggregation. After the
reaction, the Co particles were precipitated by the addition
of anhydrous acetone and redissolved in a nonpolar solvent
such as cyclohexane. The obtained particles were spherical,
their diameter could be controlled by the TOPO/OA ratio
used in the synthesis. The metal core diameter was estimated
by the small angle x-ray scattering (SAXS), from particles
dissolved in cyclohexane. The BrukerNanoStar x-ray system
and NanoFit software was used. The size of nanoparticles was
also checked by the transmission electron microscopy (TEM).
Nanoparticles with the metal core diameters from 3 to 11 nm
were studied. The size distribution was less than 10%.

For the magneto-optical measurements, mixtures with
different concentrations of nanoparticles in cyclohexene were
prepared. The concentration of nanoparticles was determined
assuming that UV absorption increases linearly with particle
concentration.

The setup for Faraday rotation measurements consisted of a
light source (He-Ne laser of 5 lines with λ = 543 nm, 594 nm,
604 nm, 612 nm, and 633 nm), optical chopper with a defined
frequency to modulate the beam (in order to measure total
light intensity ITot with lock-in amplifier), and a set of filters to
reduce the intensity of light at the detector (if needed). The light
propagated through the first polarizer P 1 and then through the
sample placed in the induction coil, generating homogenous
magnetic field up to 0.4 T. The light transmitted through
the sample was modulated by the photoelastic modulator
(PEM, working at a basic frequency 
 = 50 kHz and maximal
retardation λ/4). Finally, the light passed through the linear
polarizer P 2. The polarizer P 1 was parallel to the PEM axis
and P 2 was at 45 degrees to it. Transmitted light was detected
by the silicon diode and the output signal was analyzed by the
lock-in amplifier.

Quantitative information about optical properties of a
sample is given by the ratio of the signal intensities at 


(I
) and 2
 (second-harmonic, I2
). Optically active sample
is characterized by the second harmonic signal at frequency
2
. The Faraday rotation angle θF is determined as:

θF = arcsin

[
− I2


4J2
(

π
2

)
Tf Ts

]
,

where Jn(π
2 ) is the nth Bessel function of the first kind and

Tf =
√√√√1

2

[
ITot + 1

2
I2


J0
(

π
2

)
J2

(
π
2

) − I


1

2J1
(

π
2

)
]

Ts =
√√√√1

2

[
ITot + 1

2
I2


J0
(

π
2

)
J2

(
π
2

) + I


1

2J1
(

π
2

)
]

are the fast (Tf ) and slow (Ts) transmission coefficients for
circularly polarized light, i.e., eigen polarization modes of
the system. The lock-in detection enables the high-sensitivity
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measurements of optical activity; rotations as small as
10−2 degree/cm can be measured. According to Eq. (4) the
obtained results were corrected by the Faraday rotation of a
pure host (i.e., cyclohexane in all cases).

IV. RESULTS AND DISCUSSION

A. Plasma frequency

The plasma frequency was obtained from the measurements
of the Faraday rotation for nanoparticles with d = 11.0 nm
(measured by SAXS) at five different wavelengths (Fig. 1).
The fitting of the plasma frequency was performed at the
saturated value of the Faraday rotation angle (Fig. 2) at
Bext = 0.4 T. The steepness of the curve in Fig. 2 is defined by
parameter K(ω) [Eq. (7)], and it is very sensitive to the value
of the plasma frequency. The fit to the absolute value of the
saturated angle is obtained by fitting the product
f {Bext

Bm
[1 − 2L(x)

x
] + L(x)} [see Eq. (6)] after the plasma

frequency is found. The best fit was obtained for the plasma fre-
quency corresponding to the wavelength λp = (198 ± 7) nm,
which corresponds to (6.3 ± 0.2) eV. The value of the plasma
frequency is not significantly sensitive to the changes in the
relaxation time τ . We fitted it at τ = 2 × 10−14 s; however,
we have obtained the same fit for the plasma frequency at
the relaxation times greater than 8 × 10−15 s. Since we are in
the region of saturation [ L(x) ≈ 1 and L(x)/x ≈ 0], we find
that {Bext

Bm
[1 − 2L(x)

x
] + L(x)} ≈ 1.3; thus, the fitted value of

volume fraction is f ≈ 9 × 10−5. The volume fraction of the
Co-nanoparticles was estimated by absorption measurements
to be f ≈ 5 × 10−5. So the values are in reasonable agreement.

The fitted value of the plasma frequency is in a reasonable
agreement with the values of ωp presented in literature for
bulk materials ranging from 318 nm (3.9 eV) [33] to 162 nm
(7.66 eV) [34]. However, we note that the values in literature
are usually reported for the fcc Co, while nanoparticles usually
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FIG. 1. (Color online) Faraday rotation angle due to the inclusion
of nanoparticles (θ i

F ) vs. external magnetic field (Bext) at different
wavelengths of light. Experimental data are marked as points,
theoretical curves are solid lines.
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FIG. 2. (Color online) Saturated value of Faraday rotation angle
(θ i

F )sat vs. wavelength of light λ. Solid line represents fit with ωp =
198 nm, f = 9.2 × 10−5, dashed lines is for 188 nm (f = 1.4 ×
10−4) and dot-dashed line is for 202 nm (f = 7.8 × 10−5). Experi-
mental data are marked as points.

crystallize in ε-Co structure [34], which can, to some extent,
influence the value of ωp.

B. Magnetic moment of a single nanoparticle

Knowing the plasma frequency ωp, one can find the
magnetic moment μ of a single nanoparticle by fitting θ i

F

[Eq. (6)], which is a function of x = μBext/kBT to the Faraday
rotation angle versus external field Bext. For nanoparticles with
d = 11.0 nm, we find μ = 60 × 103 μB . Since the plasma
frequency does not depend significantly on the relaxation time,
one can assume that for the particles with d = 3.6 and 6.3 nm
(determined also by SAXS) it is the same as for the 11-nm
particles. Then we can fit also the magnetic moments for
the 3.6- and 6.3-nm particles and find μ = 9.8 × 103 μB and
μ = 3.5 × 103 μB , respectively (Fig. 3).

From the nanoparticle magnetic moment one can calculate
the magnetic moment of a single atom or estimate the effective
magnetic diameter and the thickness of the nonmagnetic shell
as discussed below.

C. Effective magnetic diameter and thickness of the
nonmagnetic shell

If we want to estimate the size of the effective magnetic
diameter of a single nanoparticle, we write the magnetic
moment of a nanoparticle as

μ = μ1N (dm),

where N (dm) is the number of atoms with the magnetic
moment μ1 = 1.751 μB equal to the bulk value for Co
[35,36]. We find the effective magnetic diameter dm such
that the magnetic moment equals the experimentally obtained
value. The obtained value presents the diameter of the
magnetic core of the nanoparticle inside which the atoms in the
nanoparticle behave as in the bulk, while on the surface they
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FIG. 3. (Color online) The normalized Faraday rotation angle
(θ i

F )norm vs. magnetic field (Bext) for three solutions of particles
with different diameters of the magnetic core. The diameter was
calculated assuming the bulk value of the magnetic moment of an
atom (1.751 μB ). The experiment was performed with the He-Ne
laser 633 nm line.

are treated as nonmagnetic [31,32]. This provides the insight
into the magnetic properties of nanoferromagnets. We obtain
the effective magnetic diameters equal to 3.1, 4.9, and 9.0 nm
for the particles for which the SAXS measurements give
3.6, 6.3, and 11 nm, respectively. The nonmagnetic Co shell
around the magnetic core is formed because the spin-exchange
interaction of the atoms at the surface of nanoparticle is weaker
than inside, because of the lack of neighbors and rearrangement
of chemical bonds [37]. We see that the nonmagnetic shell of
the nanoparticle is 0.5 to 1.0 nm thick, which amounts to the
thickness of 2 to 4 Co atom diameters.

V. CONCLUSIONS

The Faraday rotation in the mixtures of Co-nanoparticle
inclusions in the cyclohexene host was studied experimen-
tally and theoretically. By calculating the effective dielectric

tensor, taking into account the orientational distribution of
nanoparticle magnetic moments in external magnetic field we
were able to find the value of the plasma frequency in the
Co nanoparticles, their effective magnetic diameter, and the
average value of the magnetic moment of one nanoparticle.

The obtained plasma frequency corresponding to the
wavelength λp = (198 ± 7) nm is close to the bulk value,
showing that the free electron concentration in metal is only
weakly affected by the size of the nanoparticle.

The procedure presented in this paper enables estimation of
the magnetic moment of a single nanoparticle, which is hard
to obtain by other methods. From the magnetic moment of a
nanoparticle one can find the magnetic moment of a single
atom if the size of the particle is known from some other
experimental method. By assuming the bulk value of the atom
magnetic moment, one can estimate the effective magnetic
diameter of nanoparticles. We find that the nonmagnetic shell
of the nanoparticle is 0.5 to 1.0 nm thick, which amounts to
the thickness of few Co atoms (2 to 4).

Knowing the effective magnetic diameter and comparing
with the real diameter obtained from electron microscopy,
one can model important internal properties of magnetic
nanoparticle like internal stress, anisotropy, surface versus
bulk properties, etc. Therefore, the presented experimental
method of measuring the effective magnetic diameter of
nanoparticles suspended in a solution provides a tool for both
experimental and theoretical (numerical, see, e.g., Ref. [38])
investigations of ferromagnetic nanoparticles of different
metals and in principle can give insight into internal properties
of nanoferromagnets.
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