
PHYSICAL REVIEW E 87, 033107 (2013)

Analyzing the liquid state of two-dimensional dust clusters: The instantaneous
normal mode approach
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The liquid state and the freezing transition of finite two-dimensional dust systems are studied using the
instantaneous normal mode (INM) analysis. This technique measures the instantaneous unstable modes of a
cluster configuration and relates them to the liquid properties of the system. Here, the INM analysis has been
applied to experiments on laser-heated dust clusters. From the experiments, diffusion constants and melting
temperatures for clusters of different size have been derived. The INM diffusion constants have been compared
to those derived from other standard approaches. The scatter of the diffusion constant retrieved by the INM is
smaller than that retrieved by other methods, allowing a more reliable determination of melting temperatures.
Moreover, the behavior of double-well and escape modes, which reflect certain topological properties of unstable
modes, correlates very well with the behavior of the diffusion constant. Further, the dynamic nature of the unstable
modes has been determined as mostly shearlike. Finally, the INM results on the experiments are checked against
those from Langevin simulations.
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I. INTRODUCTION

Dusty plasmas provide an ideal situation in which to study
the dynamical processes of charged-particle systems. Dust
particles can be followed on the kinetic level of individual
particles because the temporal and spatial scales in dust
systems can easily be resolved by video microscopy. Further,
the dynamical properties are only weakly damped by the
gaseous plasma environment. In a plasma, the particles
attain high negative charges of the order of a few thousand
elementary charges, resulting in a dominance of the mutual
electrostatic interaction over the thermal motion. Hence, these
systems are usually strongly coupled and arrange in an ordered,
crystalline state [1–3].

For melting, the particles in these dusty plasmas have to
be effectively heated. Focused laser beams can be used to
manipulate the dust particles by radiation pressure effects;
see, e.g., [4–8]. Random laser excitation can effectively mimic
a heating process from an ordered solidlike state to a fluid state
[9,10]. In recent experiments and simulations, a laser technique
was described that provides true equilibrium heating of a two-
dimensional (2D) dust system [11,12]. This now allows us
to address the influence of unstable mode dynamics during
solid-fluid phase transitions which otherwise might be masked
by the nonequilibrium nature of the heating process.

Finite systems (clusters) add an interesting feature to the
problem of phase transitions, namely the boundary effects
due to the confinement potential. Finite systems of confined
dust particles in dusty plasmas can be prepared in two
dimensions [13–17] or three dimensions [18–20]. In finite
systems, the melting is a two-step process, in which first
orientational order is lost and, in a second step at a higher
temperature, radial order is destroyed [21–23]. Furthermore,
due to the finite system size, the thermodynamic quantities do
not show a sharp transition [24,25]. Combining the aspects

of full dynamic information, weak damping, equilibrium laser
heating, and finite system size, finite two-dimensional dust
clusters represent interesting systems in which to study the
effects of phase transitions.

In a recent paper [26], we applied the instantaneous normal
mode (INM) technique [27–31] to derive the freezing tempera-
tures of experimental finite 2D dust clusters. The INM analysis
was originally developed to determine diffusion constants or
solvation properties in (simulated) extended liquids, especially
for the case of supercooled liquids or liquids near freezing
[27–31]. With our laser-heated dust clusters, we were then
able to demonstrate the usefulness of the INM technique for
our experimental finite dust systems. Here, we will show
that the INM analysis provides an interesting approach to
evaluate the fluid side of the phase transition for finite dust
clusters in the experiments. The dynamic nature of the unstable
instantaneous modes will be discussed, and comparisons to
standard measures of diffusion constants will be performed.
The unstable modes will be filtered according to topological
criteria, and their correlation with the diffusion constants
will be studied. The experiments will be complemented by
Langevin simulations of dust clusters.

II. INSTANTANEOUS NORMAL MODE ANALYSIS

Dynamical processes of a finite ensemble of particles can
be addressed by an analysis of the normal modes [16,32–35].
The normal modes are derived from a harmonic approximation
to the potential energy surface around the equilibrium configu-
ration. They are computed as the eigenvalues and eigenvectors
of the dynamical matrix (Hessian) of the energy, i.e.,

A =
(

∂2E

∂riα∂rjβ

)
, (1)
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with α,β = {x,y} denoting riα as the x or y coordinate
of particle i. The eigenvalues ω2

� of A are the square
of the eigenfrequencies ω� and the eigenvector �e� describes
the oscillation pattern of the particles in mode number �.
The energy of dust clusters is usually described as a finite
charged-particle system trapped in a harmonic confinement,
i.e.,

E = 1

2
mω2

0

N∑
i

r2
i + Z2e2

4πε0

N∑
i<j

exp(−rij /λD)

rij

, (2)

where rij is the distance between particles i and j . The dust
mass is denoted by m and the dust charge number by Z. Further,
e is the elementary charge and ε0 is the vacuum permittivity.
The first term describes the potential energy in the confining
potential of strength ω0 and the second term is the Coulomb
repulsion between the particles, including shielding by the
ambient plasma with the Debye shielding length λD. Other
influences, such as ion-streaming-induced dynamics, do not
need to be considered for these single-layer systems [12,16].

In normalized energy units E0 = [Z4e4mω2
0/(32πε0)]1/3

and scale lengths r0 = [Z2e2/(2πε0mω2
0)]1/3, the energy is

simply written as

E =
N∑
i

r2
i +

N∑
i<j

exp(−κrij )

rij

(3)

with the screening strength κ = r0/λD [21,32,36,37].
The instantaneous normal mode (INM) analysis [27–31,38]

tries to connect the curvature of the energy landscape of
momentary configurations to the dynamic properties of a
liquid state such as the diffusion constant. For the calculation
of the INM, the dynamical matrix A is calculated for every
instantaneous configuration. In the liquid state, instantaneous
configurations close to equilibrium result in the expected
positive values for the eigenvalues ω2

� similar to those of
the solid state. However, when the liquid instantaneous
configuration deviates from equilibrium, negative eigenvalues
ω2

� of the dynamical matrix may be found. Hence, the normal
mode frequencies ω� are either purely real (reflecting the
stable, equilibrium modes) or purely imaginary (reflecting the
nonequilibrium, unstable modes), respectively.

The resulting density of states,

ρ(ω) =
〈∑

δ(ω − ω�)
〉
, (4)

is the averaged distribution of the normal mode frequencies
with the normalization

∫
dω ρ(ω) = 1. The total density of

states can be split into the stable part ρs(ω) with real ω� and
the unstable part ρu(ω) with imaginary ω�.

Real values of ω� correspond to potential wells in the
momentary energy landscape of the system, in which the
particles can oscillate around their current equilibrium in
the cage of the nearest neighbors. Imaginary values of ω�

correspond to the potential hills that separate the minima. It is
now argued [27–30,38] that especially the unstable part can be
related to the liquid properties, such as the diffusion constant
D, since the thermal energy drives configurational transitions
to take place over these potential hills associated with ρu(ω).
According to this reasoning, the diffusion constant is given

as [27–30,38]

D = kBT

m

∫
ρ(ω)

τh

1 + τ 2
hω2

dω, (5)

where τh is the average waiting time that is associated with
the transition across potential barriers to other local minima in
the momentary many-body potential surface of the liquid (see
also Ref. [39]). The waiting time is given by

τ−1
h =

∫
ω

2π

QB

Qm

sn(ω) exp[−βEB(ω)]dω, (6)

where β = 1/(kT ) with the temperature T and Boltzmann’s
constant k, EB(ω) is the characteristic barrier height for barrier
frequency ω, s is the number of saddles in the potential surface
connected to each potential well, n(ω) is the normalized
distribution of saddle frequencies, and, finally, QB,Qm are
the partition functions of stable modes in the barrier and the
well, respectively.

Following the method of Vijayadamodar and Nitzan [30],
the hopping frequency τ−1

h can be simplified as

τ−1
h = c

∫
ω

2π
ρ(ω) A exp

(
−B

ω2

kT

)
dω, (7)

where c ≈ 3 is associated with the different possibilities of
escape routes from a potential minimum. In their model, the
dependencies of EB(ω), n(ω), and QB/Qm can be summa-
rized into the exponential form A exp(−Bω2/kT ), where the
parameters A and B are obtained from fitting ρu(|ω|)/ρs(ω)
to this exponential function. This is the basic INM technique
taking into account all unstable modes.

The modes in the unstable part ρu(ω) can be further
refined with respect to their topological properties (see, for
example, Ref. [40]). It has been shown that some of the
imaginary frequency modes are not connected to diffusion
[31]. This is because imaginary frequencies ω� can result either
from double-well potentials where the imaginary frequencies
correspond to the barrier between two stable wells or from
shoulder modes that result from a single well with a shoulder
of negative curvature. These latter modes do not describe
transition over an energy barrier, whereas the double wells
(DWs) are those which might be considered to contribute
primarily to diffusion. To extract only those INMs that are
connected to double wells, the energy E of Eq. (2) is calculated
along the eigenvectors �e� of each mode � with imaginary ω�.
By tracing the energy along the eigenvectors, double wells can
be separated from shoulder modes.

A further, more advanced filtering addresses the question
of whether the two minima of a DW mode really belong to
different configurations. For that purpose, the pair of one-
dimensional minima of the double well along �e� are traced to
the minima in the 2N -dimensional energy landscape. Then the
2N -dimensional distance between the minima is determined.
Modes that then correspond to two different 2N minima are
termed escape or true DW modes (see, e.g., [40]).

In the analysis below, we will discuss the influence of this
topological mode filtering, i.e., the use of all or of the refined
double well or of the escape modes.
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FIG. 1. Scheme of the experimental setup. Four heating laser
beams are swept by galvanometer mirrors randomly over the dust
cluster. The particle motion is recorded by a high-speed camera. See
also [11].

III. EXPERIMENT

The experiment to laser-heat the finite dust clusters is
described in detail in Ref. [11]. Here, only the main points
are repeated for clarity. The experiments have been performed
in a parallel plate radio-frequency (rf) discharge at 13.56 MHz.
The discharge was operated in argon at a gas pressure of
7 Pa and at an rf power of 3 W. Dust particles (plastic
melamine-formaldehyde microspheres) of 12.26 μm diameter
were trapped in the space-charge sheath above the lower
electrode. The electrode was equipped with a shallow spherical
depression to confine the particles horizontally; see also Fig. 1.
The particle motion was recorded via a top-view camera at a
frame rate of 60 frames per second (fps). In a typical run,
the particle motion was recorded for 250 s corresponding to
15 000 frames.

To heat the dust particles, a four-axis laser heating system
was used [11] in which two pairs of opposing beams run from
each of the two horizontal directions. The beams were swept
independently and randomly over the cluster area. A thermal
Brownian motion is realized in such a way that the time for
every sweep over the cluster is chosen randomly. This random
sweep time heating together with the excitation from all four
horizontal directions guarantees a true thermodynamic heating
of the cluster [11,12]. This means that the particle velocities are
truly Maxwellian and isotropic. The power spectra of particle
motion do not show any sign of preferred excitation of certain
frequencies.

Hence, this true equilibrium heating method is a pre-
requisite for the identification of unstable modes from the
particle trajectories which otherwise might be due to the
nonequilibrium nature of heating.

IV. RESULTS

Here, we present an INM analysis of 2D dust clusters heated
by our four-axis laser system. The INM analysis will be illus-
trated in the following mainly for a cluster of N = 26 particles.
The results are qualitatively identical for the other clusters with
N = 19 to 50 in the experiment; compare Ref. [26].

FIG. 2. (Color online) Density of states for a cluster with N = 26
at four different temperatures. The gray area indicates the unstable
branch ρu containing the imaginary values of ω�, where ρu(ω) is
plotted as ρu(|ω|) on the negative frequency axis (ω → −|ω|).

A. INM analysis

We start with an illustration of the INM method to determine
the liquid properties of the observed finite dust clusters. For
the analysis, video sequences of 15 000 frames at 60 fps were
recorded for each temperature value realized by the four-axis
laser heating system. For the N = 26 cluster, 12 different
temperatures of the cluster between room temperature and T =
22 190 K have been acquired. Since the laser-heating provides
Maxwellian velocity distributions [11], the kinetic temperature
(in two dimensions) is simply kT = m〈v2

x + v2
y〉/2.

Now, for each temperature setting, the dynamical matrix
A as well as its eigenvalues and eigenvectors are calculated
for each of the 15 000 time steps using the instantaneous
particle positions �ri(t) for the calculation of the energy E

according to Eq. (3). The number of instantaneous eigenvalues
(and eigenvectors) then is 2N × 15 000 = 780 000 in this case
(for each temperature). The value of the screening strength κ

in Eq. (3) is chosen between 0 and 3 as suggested by previous
experiments [15,16,41,42]. The results presented here are for
κ = 2. The particularly chosen value of κ barely influences
the results (see below for error ranges).

The corresponding density of states ρ according to Eq. (4)
is obtained and shown in Fig. 2 for four temperature values
[here, by convention, the unstable branch ρu(|ω|) is shown
on the negative frequency axis]. The lowest temperature
shown in this figure is already decisively larger than room
temperature, but ρ shows a very peaked structure indicating
that only certain modes at specific frequencies can occur
in this ordered state. For example, the peak at ω/ω0 ≈ 2
corresponds to the breathinglike mode at κ = 2, where all
particles oscillate (nearly) radially inward and outward (for
pure Coulomb interaction the breathing mode [43] is found
at ω = √

3ω0 [32], but the frequency increases with increased
screening [16,35]).

This state density very much resembles that found for the
solid ground state [32,44], except for the small unstable part.
Corresponding particle trajectories at different temperature are
indicated in Fig. 3. For higher temperatures, a more continuous
mode spectrum ρ(ω) is found, reflecting the disordered
arrangement. Nevertheless, breathing-mode-like oscillations
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FIG. 3. (Color online) Diffusion coefficient D derived from INM
analysis as a function of cluster temperature. A linear fit to the data
D(T ) is also indicated. The insets show the trajectories of the particles
in the cluster with N = 26 at different temperatures.

are still pronounced. As mentioned above, especially the
unstable part of the state density ρu reflects the liquid behavior.
The unstable part becomes much broader with increasing
temperature. Also, the fraction of unstable modes compared to
the total density increases from about 2% to about 6%. These
findings already qualitatively demonstrate the change from a
solidlike to a liquidlike cluster (see below or Ref. [40]). In
this section, all modes with imaginary ω� are counted and
no distinction into double-well or escape modes is made. The
behavior of DW and escape modes is discussed in Sec. IV D
in more detail.

The diffusion constant derived from the INM technique is
shown in Fig. 3. The diffusion constant is calculated from
Eq. (5) using the hopping rate from Eq. (7). For that purpose,
the ratio of the unstable and stable branch of the density
of states ρu(|ω|)/ρ(ω) is fitted to the exponential function
A exp(−Bω2/kT ) [30]. The quality of the fit can be judged
from Fig. 4, in which the ratio together with the best fits
are shown for different temperatures. It is seen that the
overall agreement with the exponential form is reasonable.
The exponential decay is strongest for the lower temperatures.
Correspondingly, this reflects the broader unstable part already
seen in the density of states in Fig. 2 at higher temperatures.
It should be noted that for the lowermost temperatures near
room temperature, fitting to an exponential decay was not
always possible. This might be taken as a hint that at these
temperatures the cluster is in a solid state.

The so-derived diffusion constants in Fig. 3 increase nearly
linearly when a threshold temperature is exceeded. Such a
behavior has also been reported from diffusion processes in
simulations of extended 3D Yukawa systems [45,46]. The
diffusion constant in our experiments takes values up to
D = 3 × 10−9 m2/s. For extended 2D systems under similar
conditions, values in the range D = 10−9–10−7 m2/s [47–49]
were reported.

FIG. 4. (Color online) The ratio ρu(|ω|)/ρs(ω) as a function of
ω2 for N = 26 together with the best exponential fit at four different
temperatures.

The diffusion constants acquired by INM are now extrap-
olated to D → 0 to identify the “freezing point”, thereby
assuming that in the solid regime the diffusion constant is
much smaller than in the liquid. The so-achieved “freezing”
temperature is the so-called mode-coupling temperature Tc

that, in extended systems, is associated with the solid-liquid
transition temperature Tm, where Tc � Tm [50]. Here, we
define the measured Tc as the freezing transition temperature
that is approached from the liquid phase of the cluster. For
the discussed cluster with N = 26, we derive from Fig. 3 a
freezing temperature of Tc = 2900 K.

To assess the errors connected with the INM analysis, we
have calculated the diffusion constants using different values
of the screening strength κ in Eq. (3) in the evaluation of the
energy. Figure 5 shows the diffusion constants for values of
κ = 0 to 3. It can be seen that the diffusion constants depend
only slightly on κ . Similarly, the freezing temperatures Tc

change by only 10% for the different screening strengths.
In conclusion, the INM diffusion analysis now allows us to

assign a freezing temperature, indicating a fluid-to-solid phase

FIG. 5. (Color online) Diffusion constants derived from INM as a
function of temperature for different values of the screening strength
κ in Eq. (3).
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transition, at the point where the liquid properties are lost.
In complementary approaches, e.g., the interparticle distance
fluctuations [25], one usually is interested in identifying the
loss of order to search for the solid-to-fluid transition. As
mentioned above, in the INM approach at each time step all
2N eigenfrequencies ω� enter the analysis, yielding a quite
high statistical quality.

B. Comparison to other techniques

It is now certainly of enormous interest to compare the
diffusion constants derived by INM to those using other
techniques. The standard way to derive diffusion constants
is via the mean-squared displacement (MSD) 〈|�ri(t) − �ri(0)|2〉
[51–54] as

D = lim
t→∞

1

4t
〈|�ri(t) − �ri(0)|2〉. (8)

Under normal diffusion, the MSD scales linearly with time t for
times t 	 ω−1

0 ; for short times t ballistic transport is expected
where MSD scales as t2. The diffusion constant D then is the
slope of the MSD in the linear regime. Clearly, this reasoning
holds in particular for extended systems. Alternatively (see,
e.g., Refs. [53,55]), the diffusion coefficient can be derived
from the velocity autocorrelation function (VACF) Z(t) =
N−1〈|�vi(t) · �vi(0)|2〉 via

D = 1

2

∫ ∞

0
Z(t) dt. (9)

Both Eqs. (8) and (9) are given here for two-dimensional
systems.

Figure 6(a) shows the behavior of the mean-squared
displacement over time for our finite dust cluster with N = 26
at a temperature well in the liquid regime at T = 9270 K.
For times up to t ≈ 0.1 s we find a ballistic regime. For
larger times, no clear dependence can be observed. The scaling
MSD ∝ tα is somewhere between linear (α = 1) and less than
linear (α < 1). This makes it difficult to assign a clear linear
regime and thus to determine a diffusion constant. Clearly, the
finite system size of the order of a few mm limits the diffusive
behavior of the particles to values of the MSD ≈ 10−5 m2,
resulting in the weak scaling and oscillatory behavior of the
MSD for large times t .

A further aspect that needs to be taken into account for our
experimental system is the fact the particle motion is hindered
by friction with the neutral gas in the discharge. Certainly,
friction also affects the particles’ diffusive behavior.

Vaulina et al. [55] have quantitatively addressed the
diffusion behavior of particles in a trap under the influence
of friction in terms of the time-dependent diffusion constant
D(t) = 〈|�ri(t) − �ri(0)|2〉/(4t). Figure 6(b) shows the measured
time-dependent diffusion constant D(t) in comparison to
the model [55] for the experimental parameters of friction
coefficient β ≈ 5 s−1 and trap frequency ω0/(2π ) ≈ 0.8 s−1.
In the model, D0 is the diffusion constant of a freely diffusing
system. The two curves are in quite nice agreement, indicating
the validity of the approach.

To compare now with the diffusion from INM, we derived
on the one hand the diffusion constant from the VACF, and

FIG. 6. (Color online) (a) Mean-squared displacement MSD over
time for N = 26 at a temperature of T = 9270 K. (b) Corresponding
time-dependent diffusion constant D(t) derived from the experiment
(solid line). A model calculation according to Ref. [55] is shown for
comparison.

on the other hand from the maximum of the time-dependent
MSD diffusion constant. The so-derived diffusion constants
are compared to those from INM in Fig. 7. There is a
gross agreement between the diffusion constants from INM,
MSD, and VACF. Both the VACF and time-dependent MSD
diffusion values exceed those from INM. Since the MSD
values are the maximum of the time-dependent diffusion
constant, it is not surprising that they are generally larger
than the INM values. Further, the VACF values show a
much stronger scatter than the INM values, especially at low
temperatures, and seem to be shifted upward on the ordinate
compared to the INM and MSD values. One reason for that
behavior might be that the particle velocities entering the
calculation of the VACF are derived from the difference in
particle position of successive frames, and any small errors in
position result in larger errors for the velocities. Neither VACF
nor time-dependent MSD indicate a threshold behavior with
temperature. Instead, a more or less continuous increase of the
diffusion constant with temperature is seen. Hence, a melting
temperature cannot be derived from VACF and MSD diffusion
coefficients.
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FIG. 7. (Color online) Diffusion constants derived from MSD,
VACF, and INM (symbols) as a function of temperature, respectively.
The lines indicate best linear fits to the diffusion constants where the
dashed, dash-dotted, and dotted lines are the fit to VACF, MSD, and
INM values, respectively.

C. Comparison to simulations

We have performed Langevin molecular-dynamics sim-
ulations of 2D dust clusters at different temperatures. The
Langevin technique accounts for velocity-dependent damp-
ing and random kicks to mimic the neutral-gas friction
of the particles and the heating by random laser forces.
The particles were modeled according to Eq. (3) to be
trapped in a harmonic 2D confinement interaction with a
screened Coulomb potential with κ = 2. Then a time series
for particle motion in the simulation corresponding to 15 000
“frames” has been determined for various temperatures of
the cluster. Then, as in the experiment, the INM analysis
has been performed and the freezing temperatures (i.e., the
mode-coupling temperatures Tc) have been derived from the
extrapolation of the diffusion constants D → 0, as described
above.

In the experiment, the corresponding freezing temperatures
have been derived for a number of different dust cluster with
particle numbers between N = 19 and 50. These freezing
temperatures are shown in Fig. 8 as a function of particle
number N . The error bars take into account the uncertainty due
to the chosen values of κ and c in Eqs. (3) and (7). Similarly,
simulations have been performed for the same clusters as in
the experiment, and the derived freezing temperatures are also
given in Fig. 8.

One finds a close agreement of the temperatures with the
simulated and the experimental clusters, especially for the
smaller clusters. The discrepancies for larger clusters are due
to the fact that the exact cluster configurations in experiment
and simulation generally are different. This is because with a
larger particle number many more metastable configurations
exist that have only slightly larger energy than the ground state.
We found that some of the experimental configurations indeed
correspond to metastable configurations. Since the mode-
coupling (freezing) temperature is sensitive to the cluster
configuration, the observed differences in melting temperature
may well arise.

FIG. 8. (Color online) Freezing temperature of dust clusters with
different particle number N . Shown are temperatures from the
experiment and from simulated dust clusters. The upper panel shows
the frequency of the least stable mode from Ref. [32].

For comparison, we also have plotted the frequency of
the least stable mode as determined from the ground-state
configuration by Schweigert et al. [32]. The least stable
mode, i.e., the mode of lowest eigenfrequency ω�, reflects
the symmetry and the configurational stability of these 2D
clusters [32,56]. A paradigm in this context are the clusters
with N = 19 and 20. The 19-cluster has a configuration
(1,6,12) where 1 particle is in the center, 6 particles are in the
inner ring, and 12 particles in the outer ring. This configuration
is of high symmetry due to the commensurate number of
particles in the inner and outer rings. Moreover, it has the
hexagonal arrangement expected for infinite 2D systems. The
20-cluster is of (1,7,12) configuration with correspondingly
low symmetry. Consequently, from the experimental INM
analysis the freezing temperature is derived for N = 19 as
very high (Tc = 7600 K), whereas for N = 20 it is found very
low (Tc = 1360 K). For almost all investigated clusters, the
least stable mode frequency is very well correlated with the
freezing temperature [26].

D. Double-well and escape modes

We have seen in Fig. 2 that the fraction of unstable modes
grows with temperature. This is quantified in Fig. 9(a) where
the fraction of unstable modes fu = ∫ ∞

0 ρu(|ω|)dω in relation
to the fraction of stable modes fs = ∫ ∞

0 ρs(ω)dω is shown
as a function of temperature. In Fig. 9(a), all modes with
imaginary mode frequency have been used to measure fu. At
low temperatures, this fraction fu/fs is about 2% and increases
to about 6.5% at T = 20 000 K.

To further characterize the unstable branch ρu, we have
calculated the double-well and the escape INM modes as
described above. The respective fractions fu/fs as a function of
temperature are shown in Figs. 9(b) and 9(c), where only DW
modes and escape modes, respectively, are used to determine
fu. It is seen that the fraction of DW modes is smaller by about
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FIG. 9. (Color online) Ratio of the density of states fu/fs for a
cluster with N = 26 at different temperatures. In (a) all INM modes
are used, in (b) only DW modes, and in (c) only escape modes.

a factor of 4 compared to Fig. 9(a), indicating that only every
fourth unstable mode is a DW mode. The others are single-well
modes with a shoulder of negative curvature. The escape mode
fraction, in turn, is only slightly smaller than the DW mode
fraction. This indicates that the two wells of the DW modes
indeed belong to different configurations. Such a behavior has
been previously revealed for simulations of extended liquids
(water) [57].

It has also been shown that the DW and escape mode
fraction closely follows the behavior of the diffusion constant
[57]. Indeed, the mode fraction shows a kink at a certain
temperature: while for smaller temperatures fu/fs is nearly
constant, a linear increase is seen for higher temperatures. We
have therefore applied a linear fit to the mode fraction ratio
for higher temperatures and tried to identify the point where it
bends over to the constant part (see dashed lines in Fig. 9). It is
seen that the transition temperature Tt is about 3000 K and thus
very close to the freezing, i.e., mode-coupling, temperature Tc

derived from the extrapolation of the diffusion constant. The
comparison of derived temperatures is shown quantitatively in
Table I.

TABLE I. Comparison of freezing temperature Tc derived from
the extrapolation of the diffusion constant and the temperature Tt at
which the mode ratio fu/fs bends over to a constant value. The errors
for the temperatures are about 20%.

Considered modes Tc (K) Tt (K)

all INM modes 2900 600
DW modes only 2970 3230
escape modes only 2940 2730

Clearly, the freezing temperatures Tc and transition tem-
peratures Tt agree within about 10% when DW modes
or escape modes are considered. Taking all unstable INM
modes, a reliable temperature Tc is still derived from the
extrapolation of the diffusion constant, but the fu/fs ratio is
not a good indicator. This is again in agreement with findings
for simulated extended liquids [57]. Our investigations extend
this finding and show the usefulness of this approach also for
finite systems under experimental conditions.

E. Characterization of modes

Finally, we will characterize the nature of the modes to
elucidate whether the above measured freezing temperatures
are connected to radial or angular loss of order. Because
normal modes in finite systems cannot be separated into purely
compressional or shear motion, the respective compressional
and shear contribution to each mode is calculated. This is done
via the local divergence for the compressional contribution ψc

and the local rotor for the shear contribution ψs according
to [32,56]

ψc = 1

N

N∑
i=1

ψ2
c,i ,

(10)

ψs = 1

N

N∑
i=1

ψ2
s,i ,

with

ψc,i =
M∑

j=1

(�ri − �rj ) · (�ei,� − �ej,�)/|�ri − �rj |2,
(11)

ψs,i =
M∑

j=1

|(�ri − �rj ) × (�ei,� − �ej,�)|/|�ri − �rj |2,

where �rj are the positions of the neighbors of particle i, and
M is the number of neighbors.

The compressional and shear contributions of all INM
modes have been determined accordingly. The relative abun-
dance of modes at frequency ω with the compressional
contribution ψc or the shear contribution ψs is given in Fig. 10
for the highest temperature (T = 22 190 K) realized in the
N = 26 cluster. First, it is seen that for each mode frequency,
the compressional and shear contributions are concentrated
in a narrow band. This shows that each frequency contains
very similar mode patterns. Second, the shear contribution
is large for low-frequency modes with |ω/ω0| < 2 whereas
the high-frequency modes (ω/ω0 > 3) are dominated by more
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FIG. 10. (Color online) Plane of mode frequency ω and com-
pressional part ψc and shear part ψs , respectively, for the N = 26
cluster at T = 22 190 K. Darker colors indicate a higher abundance
of modes. To guide the eye, the lines indicate the mean values of ψc

(dash-dotted) and ψs (dashed).

compressional modes. Similar findings have been made for
equilibrium normal mode analysis of dust clusters [16]. Such
a behavior is expected since compressional modes lead to
changes in interparticle distances and thus to stronger restoring
forces and thus to higher-frequency oscillations.

Interestingly, the unstable branch (on the negative fre-
quency axis) supports practically only pure shear modes with
essentially no compressional contribution. Hence, especially
those shearlike modes are connected with the liquid behavior of
the cluster. This is plausible since the melting of finite clusters
happens in two steps, whereby angular melting precedes the
radial melting [20,21,32,56,58]. Naturally, angular motion is
preferably shearlike and radial motion preferably compres-
sional. Hence, the dominance of the shear contribution in the
unstable branch suggests the priority of angular melting here.

V. CONCLUSION AND SUMMARY

We have analyzed the solid-to-liquid transition in finite two-
dimensional dust clusters using the method of instantaneous
normal modes. This technique was originally developed to
address the fluid state of (simulated) liquids [28,29]. Here,
we have applied it to long-term observations of experimental
finite dust systems that were laser-heated from a solid to a
liquid state.

First, from the INMs we retrieved liquid state properties
such as the diffusion constant, which was found to increase
nearly linearly above a temperature threshold. This tempera-
ture threshold Tc can then be taken as a freezing temperature
of the cluster. This has been substantiated by Langevin
simulations of dust ensembles with the same particle number.

We then analyzed the unstable modes and the role of
topological mode filtering (all unstable modes, double-well
modes, and escape modes). We found that the behavior of
the DW modes and the escape modes reflects very well the
behavior of the diffusion constant and the freezing tempera-
tures. Hence, the mode-coupling temperature Tc derived from
the zero-crossing of the diffusion constant and the transition
temperature Tt from the bending-over of the fu/fs ratio
both qualify as a “freezing” temperature. Further, the shear
and compressional contributions of the stable and unstable
modes were analyzed, revealing that the unstable modes are
preferably shearlike modes, which corresponds very well to
the orientational melting of finite clusters.

Finally, the diffusion constants derived from INM have been
checked against those that are usually determined from an
evaluation of the mean-squared displacement or the velocity
autocorrelation function. Here, however, the mean-squared
displacement is not a good indicator of the diffusion constant
since the diffusive regime is not really entered because of
the finite system size. The diffusive motion is hindered by
the confinement. The same applies to the analysis using the
velocity autocorrelation function.

In contrast, the INM technique looks at the momentary con-
figuration and its small-scale motion to derive the properties of
the system and hence allows us to extract valuable information
even from a finite system. Moreover, the INM technique, in
contrast to other measures such as the Lindemann criterion,
focuses on the liquid side of the phase transition, and the phase
change is attributed to the point where the liquid properties are
lost.

In summary, the INM provides additional insight into the
phase behavior of finite dust systems.
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[39] Z. Donkó, G. J. Kalman, and K. I. Golden, Phys. Rev. Lett. 88,

225001 (2002).
[40] R. Schulz, M. Krishnan, I. Daidone, and J. C. Smith, Biophys.

J. 96, 476 (2009).
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