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A weak wave turbulence theory is developed for two-dimensional (2D) magnetohydrodynamics. We derive
and analyze the kinetic equation describing the three-wave interactions of pseudo-Alfvén waves. Our analysis
is greatly helped by the fortunate fact that in 2D the wave kinetic equation is integrable. In contrast with the
three-dimensional case, in 2D the wave interactions are nonlocal. Another distinct feature is that strong derivatives
of spectra tend to appear in the region of small parallel (i.e., along the uniform magnetic field direction) wave
numbers leading to a breakdown of the weak-turbulence description in this region. We develop a qualitative
theory beyond weak turbulence describing subsequent evolution and formation of a steady state.
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I. INTRODUCTION

Magnetohydrodynamics (MHD) is of great interest for
modeling turbulence in magnetically confined and unconfined
plasmas. In astrophysics its applications range from solar
wind [1], to the Sun [2], the interstellar medium [3], and
beyond [4]. Additionally, MHD is also relevant for describing
the large-scale stability of fusion plasmas such as toka-
maks [5]. One of the pioneering results of incompressible
MHD turbulence has been obtained by Iroshnikov [6] and
Kraichnan [7] (hereafter IK) who proposed an extension
of the Kolmogorov phenomenology [8], originally derived
for hydrodynamics (HD). For simplicity the assumptions of
homogeneity and isotropy were made by Kolmogorov and the
energy cascade was supposed to be dominated by local (in
scale) interactions between eddies of similar size. Then, the
Kolmogorov phenomenology leads to the well-known one-
dimensional kinetic-energy spectrum, E(k) ∼ k−5/3, where
k is the wave number. The associated cascade properties
for its inviscid invariants differ for three-dimensional (3D)
and 2D turbulences: while in 3D the energy and the kinetic
helicity exhibit direct cascades, in 2D the energy cascades
inversely—still with a −5/3 scaling—whereas a direct cascade
is found for the enstrophy which leads to the spectrum,
E(k) ∼ k−3, at small scales.

IK modified the Kolmogorov phenomenology by taking
into account the magnetic field. They also assumed homogene-
ity, isotropy, and locality of interactions. However, there exist
fundamental differences between the Kolmogorov and the IK
theories. First of all, in MHD the energy cascade is supposed
to be dominated not by the interactions between eddies, but be-
tween Alfvén wave packets propagating in opposite directions;
this modification leads to the energy spectrum E(k) ∼ k−3/2.
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Furthermore, unlike hydrodynamics the cascades of the ideal
MHD invariants exhibit some similarities in their behavior
in 2D and 3D [9]: in both cases, the cascades have the same
direction with a direct cascade for the energy and cross helicity,
and an inverse cascade for the magnetic helicity in 3D, or the
mean-squared magnetic potential—called anastrophy—in 2D.
The differences between MHD and HD turbulences go beyond
these classical properties. In the IK theory the large-scale
magnetic field is supposed to play the role of external field
which is necessary for the existence of Alfvén waves but its
main effect, i.e., anisotropy, is not taken into account. The
importance of an external magnetic field has been discussed
many times during the last two decades [10–18] and the
anisotropic behavior has been shown in direct numerical
simulations for both 2D [11] and 3D [12].

Despite some similarities—like the cascade directions—the
question about the identification of differences between 2D and
3D MHD turbulences still represents an important issue. In
early numerical studies [11], mainly 2D simulations were per-
formed because of the limited numerical resources available
and the nonaccessibility of 3D calculations at high Reynolds
numbers. Nowadays, 3D MHD numerical simulations are
commonly achieved [19–25] but 2D simulations are still used
for the illustration of new numerical techniques [26]. There is
also an interest in the understanding of freely decaying MHD
turbulence because the Reynolds numbers can be higher in
2D than in 3D [27–29]. In the context of solar flares triggered
by a magnetic reconnection mechanism, 2D MHD is often
used to estimate the reconnection rate. The challenge is to
find a fast reconnection rate in order to explain the explosive
flares. With a laminar configuration [30,31] only slow rates
are found whereas the introduction of turbulence may lead to
fast rates [32,33]. When the magnetic field perturbations are
small compare to a uniform background magnetic field, the
2D MHD equations are sometimes used to model turbulence.
Such a situation is particularly relevant for solar coronal
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loops [34]. Strong statements were made by some authors
that 2D simulations can be safely used to model 3D situations
because the properties of the 2D and the 3D MHD turbulences
are essentially the same [27,35]. One of the motivations of the
present paper is to test the validity of this claim in a special
case when the external magnetic field is strong.

In this paper, we consider 2D MHD in the presence of a
strong background magnetic field which implies the realization
of the weak-turbulence regime. One of the main advantages
of this regime is the fact that it allows one to derive accurate
analytical results for the spectrum. An explicit comparison will
be made between the weak turbulence regimes in 2D and in
3D; the latter was analyzed rigorously in Ref. [36]. The weak
wave turbulence approach is widely familiar to the plasma
physics community [37–50]. It is a statistical description of
a large ensemble of weakly interacting dispersive waves. The
formalism leads to wave kinetic equations from which exact
power-law solutions can be found for the energy spectra.
There were several reasons which postponed development
of weak turbulence for Alfvén waves. The first one is their
semidispersive nature. Typically, the wave kinetic approach
cannot be used for nondispersive waves since such wave
packets propagate with the same group velocity even if their
wave numbers are different; the energy exchange between
such waves may not be considered small and may lead to
possible energy accumulation over a long time of interaction.
Alfvén waves represent a unique exception to this rule
because co-propagating wave packets do not interact and the
nonlinear interaction is present only for counter-propagating
wave packets: the latter pass through each other in some finite
time and no long-time cumulative effect occurs. That is why
the Alfvén waves represent a unique example of semidis-
persive waves for which the wave turbulence theory applies.
The second reason which renders the weak turbulence theory
for Alfvén waves very subtle is the fact that the domination
of three-wave interactions—as assumed by IK—might be
questionable. While in Ref. [51] the three-wave interactions
were declared absent, the IK argument has been reestablished
in Refs. [13,36,52]. The weak-turbulence theory for 3D
incompressible MHD was developed in Ref. [36] (see also
Refs. [53,54]) where the three-wave kinetic equations were
derived with their exact solutions via a systematic asymptotic
expansion in powers of small nonlinearities.

The main goal of the present paper is to derive the weak
turbulence equation in 2D MHD, analyze it and make a
comparison with the 3D case. The crucial technical step which
allows a comprehensive theoretical analysis of the solutions
consists of transforming the wave kinetic equation into an
integrable form by Fourier transforming it and separating the
transverse and the parallel dynamics by using a self-similar
“effective time” variable.

This article is organized as follows: In Sec. II, we derive the
weak-turbulence kinetic equation through a general perturba-
tive procedure. In Secs. III and IV, we proceed with a detailed
investigation of its properties in the anisotropic limit. The main
goal of such a study is to verify whether or not turbulence is
local. First of all, we will consider the steady-state behavior by
looking for Kolmogorov-Zakharov type solutions and check
their locality. Next, we will proceed with investigation of
an unsteady spectrum evolution by considering two different

cases with a Gaussian-shaped source and different kinds of
dissipation: a uniform friction and a viscosity. Due to the
integrability in the first case of the weak wave kinetic equation
it is possible to find an exact solution. In the second case, a
qualitative analysis for the steady state is complemented by
a numerical simulation of the spectrum evolution. The goal
of Sec. V is to develop some qualitative reasoning about the
turbulent behavior of our system near the applicability margin
of the wave kinetic formalism and beyond. Formation of steady
state is also discussed. Finally, we present a summary of our
results in Sec. VI.

II. WAVE KINETIC DESCRIPTION

A. Alfvén waves

In 3D incompressible MHD there exists two different kinds
of Alfvén waves [15]: the first kind—called shear-Alfvén
waves (SAWs)—have fluctuations of velocity and magnetic
field transverse to the background magnetic field B0, whilst
the other kind—called pseudo-Alfvén waves (PAWs)—have
fluctuations along B0. Both waves propagate along B0 at the
same group velocity (the Alfvén velocity).

The weak-wave-turbulence formalism for incompressible
MHD applies for a small nonlinearity, ε ∼ b⊥k⊥/(B0k||) � 1,
where b⊥ is the perpendicular magnetic field perturbation and
k|| and k⊥ are, respectively, the wave numbers in the parallel
and perpendicular directions to B0. Additionally, a strong
anisotropy condition is often used, σ = k⊥/k|| � 1. In the
3D case, it was shown that at the leading order of the weak
nonlinearity (ε � 1) and strong anisotropy (σ � 1) the SAWs
interact only among themselves and evolve independently
from the PAWs. At the same time, the PAWs scatter from
the SAWs without amplification or damping, and they do not
interact with each other. Such behavior does not rule out a
possibility for the PAW to interact among themselves in the
next order of expansion in 1/σ . However, in the 3D case such a
process is subdominant to a stronger interaction with the SAW
and has not been considered yet.

In the 2D case, due to the geometrical restrictions, it is
only possible to have PAWs. In this paper, we will see that
three-wave interactions of PAWs do occur in 2D in the next
order of expansion in 1/σ and represent the dominant process
in the nonlinear evolution.

B. Interaction representation

The ideal incompressible MHD system in Elsässer variables
z = v + sb, with s = ±1, is given by [35]

(∂t − sB0 · ∇ + z−s · ∇)zs = −∇P∗, (1)

∇ · zs = 0, (2)

where v is the fluid velocity, b is the magnetic-field fluctuation
(in velocity units), B0 is a uniform background magnetic field
(also in velocity units, i.e., the Alfvén speed), and P∗ is the
total (thermal plus magnetic) pressure. In what follows we
suppose that the background magnetic field is directed along
the x̂ axis, B0 = B0̂x. In coordinate notation we have

(∂t − sB0∂x) zs
j = − z−s

n ∂nz
s
j − ∂jP∗, (3)

∂iz
s
i = 0. (4)
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The nonlinear terms in Eq. (3) include only the Elsässer
variables of the opposite signs. Therefore, the nonlinear
interactions take place only between counter-propagating wave
packets.

The first step in the general procedure of the wave kinetic
formalism is to identify the linear modes. Neglecting the
nonlinear terms in the right-hand side (r.h.s.) of Eq. (3) (which
includes the pressure term) and looking for solutions in the
form of a wave

zs
j ∼ ei(kxx+kyy)−iωs t , (5)

we obtain two linear modes

ωs = −sB0kx, s = ±1, (6)

which propagate parallel to the background magnetic field (in
both directions) with the group velocity, vs

g = −sB0. Let us
suppose that our system is periodic in the physical space (with
period L in both x and y directions) and let us introduce the
Fourier series

zs
j (x,t) =

∑
k

as
j (k,t)eik·x, (7)

where the wave vector k takes values on a 2D grid, k =
(kx,ky) = (2πmx/L, 2πmy/L) where mx,my ∈ Z. Then, by
applying the divergence operation on both sides of Eq. (3)
and by using Eq. (4), we find the expression for the Fourier
coefficients of the pressure P∗:

P̂∗(k) = −k−2
∑
k1,k2

(k2 · a−s(k1,t))

× (k · as(k2,t))δ(k1 + k2 − k), (8)

where δ(p) is the delta function [δ(p) = 1 for p = 0 and zero
otherwise]. Thus, Eq. (3) in Fourier space becomes

(i∂t − ωs)as(k,t)

=
∑
k1,k2

[k · a−s(k1,t)]

{
as(k2,t) − k

k2
[k · as(k2,t)]

}
× δ(k1 + k2 − k) . (9)

Using the incompressibility condition

as
y = −as

x

kx

ky

, (10)

we reduce the expression (9) to one scalar equation

(i∂t − ωs)as
x(k,t) =

∑
k1,k2

ky

(k × k1)z (k · k2)

k1yk2yk2
a−s

x (k1,t)

× as
x(k2,t)δ(k1 + k2 − k). (11)

Let us now introduce the notation

cs
k = i

k

εky

as
x(k,t)eiωs t , (12)

which represents the slowly varying wave amplitudes (the
factor eiωs t compensates for the fast-scale oscillations arising
due to the linear dynamics). Then, the MHD equations in the
interaction representation become

∂tc
±
k = ε

∑
k1,k2

V12kc
∓
k1

c±
k2

e2ik1x t δ(k1 + k2 − k), (13)

with the interaction coefficient

V12k = (k · k2) [k1 × k2]z
kk1k2

. (14)

Note that up to now we have not used the smallness of ε and
Eq. (13) is completely equivalent to the initial system (3), (4).

C. Wave kinetic equation

The standard weak-turbulence approach [42,54] exploits
the smallness of the nonlinearity, the randomness of phases,
and the infinite-box limit. In Appendix A, we apply this
approach to Eq. (13) which gives the following kinetic equation
for the wave spectrum nk:

∂tn
±
k = π

∫
V 2

12kn
∓
k1

[
n±

k2
− n±

k

]
× δ (k1 + k2 − k) δ(2k1x)dk1dk2, (15)

where the interaction coefficient is given by expression (14).
In the following sections, we shall proceed with the detailed
analysis of this equation.

D. Anisotropic limit

One remarkable property of MHD turbulence—which
makes it very different from HD—is the development of
strong anisotropy in the presence of a strong background
magnetic field. This property was observed in direct numerical
simulations in both 2D [11] and 3D [12]. The wave kinetic
formalism confirms such an anisotropy through the form of
the kinetic equation. In fact, for Alfvén waves the resonant
three-wave interaction [11] is organized in such a way that one
member of each triad must have its wave vector perpendicular
to the external magnetic field B0 whereas the two other wave
vectors have the same parallel wave numbers (k‖ = k2‖).
Formally, this property appears in both 2D and 3D through
the delta function δ(2k1‖) in the kinetic equation as we see in
Eq. (15) for the 2D case and in Eq. (26) in Ref. [36] for the
3D case. Using this delta function and integrating over k1‖,
we see that the parallel component of the wave number enters
into the kinetic equation as an external parameter; then the
spectrum dynamics is decoupled at each level of k‖. In other
words, there is no energy transfer in the parallel (to the external
field B0) direction in the k space: the initial spectrum spreads
out only on the transverse wave numbers k⊥. Therefore, at
large time such a spectrum becomes flat (pancake like). This
two-dimensionalization means that at large times the energy
spectrum is supported on a volume of wave numbers such that,
for most of them, energy is in modes verifying k⊥ � k‖.

We shall consider the anisotropic limit of the kinetic
equation (15) which reads with our notation as ky � kx . Taking
into account the resonant interaction conditions for the parallel
wave numbers, we obtain a significant simplification of the
interaction coefficient, namely

Vk12 = −kx, (16)

which leads to the following kinetic equation:

∂tn
±(kx,ky) = πk2

x

∫
n∓(0,k1y)[n±(kx,k2y) − n±(kx,ky)]

× δ(k1y + k2y − ky)dk1ydk2y. (17)
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This equation describes the three-wave interactions of the
PAWs in the anisotropic limit of 2D MHD turbulence.

One can immediately see that the energy is conserved
separately in the “+” and “−” waves for each kx

∂t

∫
n∓(kx,ky,t)dky = 0. (18)

As we will see, the factor k2
x in the r.h.s. of relation (17)

is very important. In the 3D case, there exists a similar term
which corresponds to a subleading contribution. We remind the
reader that in 3D at the leading order of the perturbation theory,
the PAWs are scattered on SAWs and do not interact directly
with each other. In 2D, there are no SAWs and, therefore,
the r.h.s. of Eq. (17) becomes the leading-order contribution.
Additionally, in the 3D problem, at the leading order there is
no k2

x factor and the substitution n(k⊥,k‖,t) = n⊥(k⊥,t)n‖(k‖)
leads to an equation for n⊥(k⊥,t) which does not involve k‖. In
2D, one can also obtain an equation which does not involve kx

but, for this, one has to introduce an “effective time” variable
τ = πk2

xt :

∂τn
±(kx,ky ; τ )

=
∫

n∓(0,k1y ; 0)[n±(kx,k2y ; τ ) − n±(kx,ky ; τ )]

× δ(k1y + k2y − ky)dk1ydk2y. (19)

Now, we can seek a solution with the following form:

n(kx,ky,τ ) = μ(kx)η(ky,τ ), (20)

where μ(kx) represents the parallel (nonevolving) component
of the energy spectrum and η(ky,τ ) is the perpendicular one.
Without loss of generality we can assume μ(0) = 1. Substi-
tuting expression (20) into Eq. (20), we find the following
equation for η:

∂τη
±(ky,τ ) =

∫
η∓(k1y,0)[η±(k2y,τ ) − η±(ky,τ )]

× δ(k1y + k2y − ky)dk1ydk2y. (21)

Like in 3D, we have an evolution equation for the perpendicular
part of the spectrum which does not explicitly depend on the
parallel one. However, the qualitative difference with the 2D
case is that there is an implicit dependence on kx via the
effective time variable τ which leads to the fact that in the r.h.s.
of Eq. (21) one of the ηs is taken at τ = 0, making this equation
linear and—as we will see below—integrable. Another distinct
feature arising from such an implicit dependence on kx via τ

is the sharpening of the spectrum at small kx leading to the
breakdown of the wave kinetic description. This effect and its
consequences will be investigated in the next section.

III. KOLMOGOROV-ZAKHAROV SPECTRA
AND LOCALITY

As a first step in our investigation of the wave kinetic
equation (21), we shall derive the exact stationary power-law
solutions, η(ky ; ∞)± ∝ kν±

y . As usual in weak turbulence, we
use the so-called Zakharov transformation

k′
1y = kyk1y

k2y

, k′
2y = k2

y

k2y

, (22)

to obtain the power-law exponent. In practice, we have to split
the integral into the r.h.s. of Eq. (21) in two and we perform
the Zakharov transformation in the integrand of one them. This
manipulation leads eventually to the following conditions on
the exponents:

ν+ + ν− = −2. (23)

The resulting power-law spectra represent relevant mathemat-
ical solutions if and only if the original (before the transforma-
tion) integral in the r.h.s. of Eq. (21) converges for these power-
law solutions. In Appendix B, we perform such a convergence
analysis and demonstrate that this integral never converges.
Therefore, the Kolmogorov-Zakharov solutions do not exist in
2D MHD. Note that the balanced-turbulence spectrum (for
which ν+ = ν− = −1) has a logarithmic divergence; thus,
one could anticipate that such a marginal nonlocality could
be “fixed” by a logarithmic corrections. We will demonstrate
later that this not possible.

IV. INTEGRATION OF KINETIC EQUATION

A remarkable property of the kinetic equation (20) is
its relative simplicity. In this section, we will show that in
some physical situations it can be solved analytically. Let us
introduce into Eq. (20) some sources and sinks for the waves:

∂τn
±(kx,ky,τ )

=
∫

n∓(0,k1y,0)[n±(kx,k2y,τ ) − n±(kx,ky,τ )]

× δ(k1y + k2y − ky)dk1ydk2y

+F(ky,kx) − σdn(kx,ky,τ ). (24)

The function F(kx,ky) may represent a forcing or a dissipation
(depending on the choice of the sign before it) and the
constant σd introduces a uniform friction. In order to use
the factorization (20) and eliminate μ(kx) in both sides of
the forced kinetic equation, we assume the following type
of force-dissipation function,F(ky,kx) = Fx(kx)Fy(ky). Then
the parallel component of (20) must be chosen as μ(kx) =
Fx(kx). Finally, we obtain the following forced-dissipated
kinetic equation for the perpendicular component of the energy
spectrum:

∂τη
±(ky,τ ) =

∫
η∓(k1y,0)[η±(k2y,τ ) − η±(ky,τ )]

× δ(k1y + k2y − ky)dk1ydk2y

+Fy(ky) − σdη(ky,τ ). (25)

A. Pseudophysical space

A considerable simplification of Eq. (26) may be obtained
when performing an inverse Fourier transform on the variable
η(ky,τ ):

E±(y,τ ) =
∫

η±(ky,τ )eikyydky. (26)

We call E±(y,τ ) the pseudophysical-space energy, keeping in
mind that what is transformed is the spectrum, not the original
wave variable. Then, we obtain the following representation
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of Eq. (26) in the pseudophysical space:

∂τE± (y,τ ) = E∓ (y,τ ) [E± (y,0) − E± (0,0) − σd ] + F̂(y).

(27)

B. General solutions

Let us consider the balanced-turbulence case for which
E+(y,τ ) = E−(y,τ ). Then, the general solution of equation
(27) can be written as

E(y,τ ) = C(y)e[E(y,0)−E(0,0)−σd ]τ − F̂(y)

E(y,0) − E(0,0) − σd

,

(28)

where the first term represents the general solution for the
homogeneous equation and the second term is a particular
(time independent) solution of the inhomogeneous equation.
Function C(y) has to be fixed by the initial condition

C(y) = E(y,0) + F̂(y)

E(y,0) − E(0,0) − σd

. (29)

Now let us consider two particular examples for the forcing
and the dissipation. In both cases, we will assume a Gaussian
shape forcing, F̂(y) = σf e−k2

f y2/2, where the constants σf

and kf represent, respectively, the forcing strength and its
characteristic wave vector (in ky space the forcing is also
Gaussian, centered at ky = 0 and with a width kf ). In the
first example, the dissipation will be represented by uniform
friction: we can find the analytical solutions of the kinetic
equation in the pseudophysical space. In the second case, we
will consider a viscous dissipation for which a qualitative
analysis of the stationary regime can be done; in order to
illustrate this spectrum evolution a numerical solution will be
used.

1. Uniform friction

For the uniform-friction case, we have

E (y,τ ) = C(y)e[E(y,0)−E(0,0)−σd ]τ − σf e−k2
f y2/2

E(y,0) − E(0,0) − σd

.

(30)

For simplicity, let us use the single-wave initial condition

E(y,0) = 2A cos (k0y) , A = const. > 0, (31)

which corresponds to two delta functions in ky space (at ky =
±k0). Then, we can find a function C(y) using Eq. (29) and
substitute it into our solution. It yields

E(y,τ ) =
[

2A cos(k0y) + σf e−k2
f y2/2

2A [cos(k0y) − 1] − σd

]

× e[2A(cos k0y−1)−σd ]τ − σf e−k2
f y2/2

2A [cos(k0y) − 1] − σd

.

(32)

Let us examine the steady state which corresponds to the
limit t → ∞ (and therefore τ → ∞). The time needed for the
formation of the steady state becomes longer as kx decreases,
and there always exist very small kx values where the spectrum

is evolving at any large time. In the limit τ → ∞, the solution
is given by the second term in the r.h.s. of Eq. (33). Far
from the initial and the forcing scales, at k � k0 and k � kf

which correspond to y � 1/k0 and y � 1/kf , we have
cos(k0y) = 1 − (k0y)2/2 + O((k0y)4) and exp(−k2

f y2/2) =
1 − O((kf y)2). Thus, for this range of scales we have the
following expression for the steady-state solution in the
pseudo-Fourier space:

E (y,∞) = σf

σd + λy2
, (33)

where λ = Ak2
0. Performing the Fourier transform of E(y,∞),

we get the steady spectrum

η(ky,∞) = 1

2π

∫ ∞

−∞
E (y,∞) e−ikyydy. (34)

For wave numbers in the inertial range (k0, kf � k � kd =√
λ/σd ), expression (33) becomes effectively a delta function

in the integrand of Eq. (34):
σf

σd + λy2
≈ πσf√

σdλ
δ(y), (35)

and we have

η(ky ; ∞) = 1

2

σf√
σdλ

= 1

2

σf√
σdAk2

0

. (36)

Therefore, we may conclude that in the equilibrium state the
energy spectrum of our system (in the inertial range) is flat.
Formally, it is a power law with the exponent ν = 0 which is
very different from the Kolmogorov-Zakharov exponent (ν =
−1) found in Sec. III. Recall that the Kolmogorov-Zakharov
spectrum in the balanced case was found to be marginally
nonlocal and the common wisdom would suggest that it could
be fixed by a logarithmic correction. As we see now this is not
true: our exact solution has a completely different exponent and
has no logarithmic factor. We also see that our exact solution
is nonlocal: it not only depends on the energy flux but also
contains information about both the sources and the sinks as
well as about the initial conditions.

2. Viscous friction

Let us replace the uniform friction by a viscous dissipa-
tion keeping the same one-wave initial condition as before.
Equation (27) becomes

∂E(y; τ )

∂τ
= 2A [cos(k0y) − 1] E(y; τ )

+ σν

∂2E(y; τ )

∂y2
+ σf e− k2

f
y2

2 , (37)

where σν denotes the viscosity coefficient [we have also used
the initial conditions (31)]. To realize this estimation, we need
first to get the expression for the steady-state solution. Let us
examine the steady state in the uniform friction case for scales
less than the forcing and the initial scales which, in terms
of the pseudophysical space variables, means y � 1/k0 and
y � 1/kf . Performing the same type of expansion as before
in small y, we obtain

σν

d 2E(y; ∞)

dy2
− λy2E(y; ∞) + σf = 0. (38)
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FIG. 1. Stationary solution in pseudophysical space.

By performing the following rescaling

ỹ = y

(
λ

σν

) 1
4

, Ẽ =
√

λσν

σf

E, (39)

we obtain

d2Ẽ (̃y,∞)

dỹ2
− ỹ2 Ẽ (̃y,∞) + 1 = 0. (40)

The homogeneous part is the equation of the parabolic
cylinder: its solutions are the parabolic cylinder special
functions, whose properties and asymptotics can be found,
e.g., in Ref. [55]. Qualitatively, the behavior is similar to the
one we found in the previous (friction-dissipation) example:
it reaches a maximum at ỹ = 0 and it decays for ỹ → ∞
(faster than in the previous example). In Fig. 1, we present
such a solution in the pseudophysical space obtained using
MATLAB in the interval ỹ ∈ [−6.1,6.1]. In order to obtain the
decaying solution we need to take Ẽ(0) = 1.311 028 895 9 with
high accuracy (to eliminate the contribution of the growing
parabolic cylinder function).

In the ky space, we have a flat spectrum in the inertial range

η(ky ; ∞) = Cσf

(
σν

λ3

) 1
4

, (41)

for

k0, kf � k � kν = (λ/σν)
1
4 , (42)

where C is an order-one constant. Once again, we see that
the spectrum is nonlocal (i.e., it is dependent on the details of
the forcing and the sink parameters rather than just the energy
flux), and its exponent is zero (with no logarithmic correction
to the Kolmogorov-Zakharov spectrum).

In order to illustrate the dynamical evolution of the
spectrum in the viscous dissipation case, we perform numerical
simulations of the kinetic equation (26) in the ky space. In
these simulations, we take η+ = η−, σd = 0, and Fy(ky) =
Fforce − σνk

2
y with σν = 10−6. The result is presented in

Fig. 2: the black curve represents the initial spectrum with
a Gaussian shape and with a large-scale forcing Fforce =
3 × 10−4/k realized for k ∈ [3,9]. We see that the system
converges toward a steady state with a flat spectrum in the
inertial range.

FIG. 2. Time evolution (τ ∈ [0,100 00]) of energy spectrum for
viscous-dissipation case.

V. BEYOND WEAK TURBULENCE:
A QUALITATIVE DESCRIPTION

A. Breakdown and reemergence of weak turbulence

In this section, we provide a qualitative description of the
energy spectrum evolution at the late stage of the evolution
and beyond the weak-turbulence regime. The wave kinetic
equation is valid as long as the nonlinearity remains relatively
weak, i.e., the nonlinear time scale is much longer than the
linear wave period:

tlin

tnl
= byky

B0kx

� 1. (43)

Here, we have used the nonlinear time of hydrodynamics
and the equipartition hypothesis between the velocity and the
magnetic-field fluctuations. This applicability condition can
be rewritten as the following condition for the parallel wave
number

kx � k∗
x = byky

B0
. (44)

It means that for parallel wave numbers smaller than k∗
x

the kinetic equation becomes invalid. The question of the
applicability of the wave kinetic equation near k‖ = 0 has
been frequently discussed in the literature in the context of 3D
MHD turbulence; in particular, it was speculated in Ref. [36]
that a sufficient spectrum smoothness for wave numbers near
k‖ = 0 must be present. In the 2D case, the smoothness of
the spectrum near kx = 0 is asymptotically (in time) broken.
Indeed, as we have mentioned above, the wave kinetic equation
in 2D MHD is formulated in terms of a self-similar “time”
variable τ = k2

xt . Therefore, the dependence on the parallel
wave number is still present in the perpendicular part of the
energy spectrum η(ky,τ ) in an implicit way via τ . Such a
self-similar dependence on kx is manifested, at each fixed ky

in shrinking of the original kx profile along the kx axis as
time grows (see Fig. 3). The spectrum is narrowing and its
derivative is growing near small values of kx . When it is so
steep that a significant variation occurs over the range ∼k∗

x ,
the kinetic equation breaks down. The time estimate for such
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FIG. 3. Spectrum narrowing at large times.

a breakdown is t ∼ (k∗
x )−2. Therefore, the weak-turbulence

description will break down at the late evolution stage and
the wave kinetic equation will no longer apply. However,
it is possible to amend this description to take into account
the strongly nonlinear effects and develop a qualitative theory
of subsequent evolution leading to a steady state. Below, we
present a qualitative argument which allows us to obtain such
a theory.

First of all, we note that the three-wave interaction is never
exactly resonant: it involves all the quasiresonant frequencies
within a certain small distance from the exact resonant
frequency—the so-called nonlinear resonance broadening
� ∼ t−1

nl . In other words, the delta function in the kinetic
equation, δ(2k1x) = δ(ω1k + ω2k − ω), should be substituted
by a peaked function f (k1x) with a small but finite width �.
For sufficiently smooth spectra the difference from the delta
function can be ignored but for sharp and narrow spectra the
integrand in the kinetic equation becomes peaked and the delta
function broadening becomes important. Its main effect is that
of a filter f (kx) in the kx variable which acts to smooth any
sharp changes over the range k ∼ k∗

x . Then, the energy is no
longer conserved separately at each fixed kx .

For large wave numbers kx � k∗
x (where the spectrum

remains slowly varying even when it is steep at kx ∼ k∗
x ),

the kinetic equation could be easily amended by replacing
n∓(0,ky,0) = ∫

n∓(k1x,k1y,τ )δ(k1x)dk1x with 〈n∓〉(ky,τ ) =∫
n∓(k1x,k1y,τ )f (k1x)dk1x . For small wave numbers, kx ∼ k∗

x ,
the effect of the resonance broadening is not reduced to such
a simple modification of just one function in the integral. It
is clear that the spectrum at kx = 0, which was fixed in the
wave kinetic approximation, will suffer changes caused by the
smoothing in the direction determined by the spectral slope
at small kx : if the gradient is positive (negative) the value
will increase (decrease) as illustrated in Fig. 4. The details
of the evolution at small wave numbers are not important
because the combined action of the self-similar shrinking and
smoothing will lead to a rapid wipe out of all the gradients
in kx and the formation of a steady state with η independent
of kx . Correspondingly, the values of η at kx = 0 will adjust
themselves to the values at kx = ∞. After this moment, when
the rapid dependencies on kx disappear, the kinetic equation in
its usual weak-turbulence form becomes valid once again and

FIG. 4. Gradient smoothing process. Four iterations of the spec-
trum value stabilizations are presented. At the first stage, the gradient
of the spectrum in the vicinity of kx = 0 (point 1) is positive; the
initial value of the spectrum η(ky,0) increases and reaches point 2;
after crossing the maximum, it moves to point 3, which corresponds
to a negative slope for the spectrum. Then, the initial value decreases
and arrives at the position 4. This process will continue until the
spectrum stabilizes at η(ky,0) = η(ky,∞).

can be used for finding the final steady-state spectrum. Since
η is now independent of kx , the steady state could be readily
obtained from the formal condition η(ky,0) = η(ky,∞) which
simply means that our solution is independent of τ (it has
nothing to do with the initial or final values of the spectrum in
time or kx).

The time evolution can be summarized as follows: At the
early stage, t � (k∗

x )−2, the evolution is described by the
three-wave kinetic equation. Then, at the advanced stage, with
characteristic times scales t ∼ (k∗

x )−2, the kinetic equation
is broken down by its own evolution. Smoothing of strong
gradients in kx occurs, which results in spectrum stabilization
and the reemergence of the kinetic equation description
at the large time scales t � (k∗

x )−2. This kinetic equation
describes the spectrum evolution within the steady-state
regime. We shall now consider the properties of such a steady
state.

B. Spectrum of steady state

Let us analyze the steady state. Based on what was said
above, we will look for a τ -independent solution of the pseudo-
Fourier space equation (27)

E2(y) − E(y) [E(0) + σd ] + F̂(y) = 0 (45)

formally coinciding with the condition E(y,0) = E(y,∞) =
E(y). Considering this equation at y = 0, we have E(0) =
F̂(0)/σd . Also, we have E(0) = ∫

η(ky)dky > 0 (because
η(ky) � 0). Solving the quadratic equation, we obtain

E(y) = 1
2 [σd + F̂(0)/σd ]

± 1
2 {[σd + F̂(0)/σd ]2 − 4F̂(y)}1/2. (46)

To satisfy the condition E(0) = F̂(0)/σd , we must choose “+”
if F̂(0) > σ 2

d and “−” otherwise.
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We suppose that the forcing decays at infinity,
limy→∞ F̂(y) → 0, which is the case, e.g., with the Gaussian
forcing. Then, we see that limy→∞ E(y) → 0 if F̂(0) < σ 2

d and
limy→∞ E(y) → σd + F̂(0)/σd if F̂(0) > σ 2

d . In the second
case we have a spectrum with a delta function at ky = 0.
Thus, we observe an interesting phenomenon of condensation
into the ky = 0 mode in the cases when the forcing prevails
over dissipation at small-scale y (corresponding to high ky).
In the first case, E(y) is a monotonically decreasing (to 0)
function of y whereas in the second case it is monotonically
increasing (to an asymptotic constant). The first situation is
physically more relevant because in most cases of interest,
dissipation dominates over forcing at small scales. In this case,
E(y) behaves qualitatively as in the two examples considered
in Sec. IV. Namely, if we take the same Gaussian forcing
as in these two examples, we find E(y) with a maximum
at y = 0 is smooth everywhere (including y = 0) and is
rapidly decaying to zero for y → ∞. However, there is an
important difference from the previous examples in that now
the characteristic width of the function E(y), and respectively
the width of the spectrum in the ky variable, is of the same
order as the width of the forcing function. Therefore, there
is no inertial range in the final steady state considered here.
This is an even stronger case of a nonlocal interaction than
in the two examples considered before. Both the forcing
and the dissipation parameters enter in the final answer but
not the parameters of the initial condition: the steady state
beyond the weak turbulence has already forgotten all the initial
data.

VI. SUMMARY

We have shown that the three-wave interactions for PAWs
in 2D MHD are nonempty and it is possible to obtain a three-
wave kinetic equation within the weak turbulence formalism.
These interactions take place at second order in the anisotropy
parameter.

We have found the Kolmogorov-Zakharov power-law spec-
tra for PAWs in 2D MHD and showed that they are not
realizable due to the divergence of the collision integrals of
the kinetic equation. In the balanced case this divergence
is marginal. This is an indirect indication that the 2D PAW
turbulence is nonlocal: it is dominated by the interaction of
waves with very different wavelengths. Our full analytical
solution of the kinetic equation confirms such a nonlocality. It
also dispels the myth that all marginally nonlocal spectra can
be “fixed” by a logarithmic correction.

The crucial technique for our analysis is passing to
pseudophysical space via Fourier transformation of the kinetic
equation and by using a self-similar effective time variable.
This has allowed us to dramatically simplify the kinetic
equation, solve it analytically in some important cases,
and fully analyze it in the other important cases. The two
main examples we analyze have a Gaussian-shaped forcing
localized at small wave numbers and a dissipation represented
by either a uniform friction or a viscosity. The first case is
solvable analytically and the second one is shown to possess a
similar behavior; namely, the spectrum evolves independently
at each kx and it tends to a flat steady-state spectrum in the

inertial range (which is not a logarithmic correction to the
Kolmogorov-Zakharov spectrum).

At each fixed ky , the spectrum develops sharp gradients
at small kx which eventually leads to the breakdown of
the weak-turbulence description. We present a qualitative
argument about what follows after this moment. We argue
that the effect of strong turbulence is to smooth the sharp
gradients via the nonlinear resonance broadening effect. This
leads to a steady state with no gradient in kx for which
the weak-turbulence kinetic equation formally works once
again, and we present an analytical solution for such a steady
state.

As an example of a practical implication of our results, let
us consider an estimate for the two-particle diffusion caused
by weak 2D MHD turbulence presented in Ref. [56] [see their
formula (68)]. First of all, the authors of that paper correctly
stated that the characteristic time in the 2D case will be longer
than the one in 3D by a factor k2

⊥/k2
||. This corresponds to

the presence of the factor k2
x in our kinetic equation (17). It

was also correctly assumed that the wave-wave interaction is
a three-wave process. However, their estimate (68) assumes
local-scale interactions and the presence of an inertial range
with constant energy flux, where as we have established in the
present paper that the interaction is nonlocal, and that there is
no inertial range. In fact, our conclusion in the end of Sec. V
is that the steady-state spectrum does not extend far beyond
the forcing scales, i.e., the smaller scales are suppressed in
the nonlocal 2D MHD turbulence. Assuming that only scales
much smaller than the forcing scales contribute to the turbulent
diffusion, we are led to conclude that there can be no turbulent
diffusion in weak 2D MHD turbulence. In other words, we
could also say that the magnetic reconnection process cannot
be facilitated.

Overall, one should derive from our work a warning that
2D and 3D MHD turbulence are dramatically different, and
one should be careful when extrapolating the 2D results, e.g.,
numerical ones, to the 3D case. Indeed, in contrast to 2D,
in 3D there is no gradient sharpening at small parallel wave
numbers, and the Kolmogorov-Zakharov spectrum is a local
and well-behaved solution.
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APPENDIX A: DERIVATION OF WAVE
KINETIC EQUATION

In Sec. II A, we wrote the 2D MHD equations in the
interaction representation (13) which is a starting point for
the derivation of the wave kinetic equation. Let us define the
wave spectrum as

n±
k = L2ε2〈|c±

k |2〉,
where the average is taken over the random initial conditions
and L2 is the area of the periodic box. With this normalization
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nk tends to a finite limit ∼ε2 as L → ∞ provided that
the wave density is finite and uniform in the 2D physical
space.

The next step consists of making use of the time-scale
separation. We are introducing an intermediate time scale
T which should be much smaller than the typical nonlinear
time, tnl = 2π/(ε2ω) and much greater than the linear wave
period, tlin = 2π/ω. Taking T = 2π/(εω) will satisfy these
conditions, tlin � T � tnl. Then, we are looking for solutions
at time t = T in the form of series in small ε

c±
k (T ) = c

(±,0)
k + εc

(±,1)
k + ε2c

(±,2)
k + · · · , (A1)

where we suppose that the lowest-order amplitudes c
±,(0)
k =

c±
k (0) correspond to the linear regime. For the spectrum we

have

[n±
k (T ) − n±

k (0)]

(ε4L2)

= 〈∣∣c(±,1)
k

∣∣2〉 + 〈
c

(±,0)∗
k c

(±,2)
k

〉 + 〈
c

(±,0)
k c

(±,2)∗
k

〉
. (A2)

After substituting expansion (A1) into Eq. (13) at first order,
we obtain

c
(±,1)
k (T ) =

∑
1,2

V12kT (±2k1x) c
(∓,0)
1 c

(±,0)
2 δ(k1 + k2 − k),

(A3)

where

T (±2k1x) =
∫ T

0
e±2ik1x t dt = e±i2k1xT − 1

±2ik1x

. (A4)

For the second order we can write

c
(±,2)
k =

∑
1,2,3,4

V12kδ(k1 + k2 − k)

× [
V342δ(k3 + k4 − k2)c(∓,0)

1 c
(∓,0)
3 c

(±,0)
4

×E(±2k1x, ± 2k3x) + V341 δ(k3 + k4 − k1)

× c
(±,0)
2 c

(±,0)
3 c

(∓,0)
4 E(±2k1x, ∓ 2k3x)

]
, (A5)

with

E(x,y) =
∫ T

0
eixtt (y) dt. (A6)

Next, we are going to assume that the initial amplitudes
c

(±,0)
k are Gaussian random variables which are statistically

independent at each k and use Wick’s rule:〈
c

(±,0)
1 c

(±,0)
2 c

(∓,0)
3 c

(∓,0)
4

〉
= δ(k1 + k2)δ(k3 + k4)

〈∣∣c(±,0)
1

∣∣2〉 〈∣∣c(∓,0)
3

∣∣2〉
. (A7)

We also remember that because the physical-space amplitudes
are real functions, we have (c(±,0)(k))∗ = c(±,0)(−k). We

obtain〈∣∣c(±,1)
k

∣∣2〉 =
∑

1,2,3,4

V12kV34kT (±2k1x)∗
T (±2k3x)

× 〈
c

(∓,0)
1 c

(±,0)
2

(
c

(∓,0)
3

)∗(
c

(±,0)
4

)∗〉
× δ(k1 + k2 − k)δ(k3 + k4 − k)

= 1

L4ε4

∑
12

|V12k|2|T (±2k1x)|2n∓
1 n±

2

× δ(k1 + k2 − k), (A8)

and〈(
c

(±,0)
k

)∗
c

(±,2)
k

〉 =
∑
1234

V12kδ(k1 + k2 − k)

×[
V342δ(k3 + k4 − k2)E(±2k1x, ± 2k3x)

× 〈(
c

(±,0)
k

)∗
c
∓,0
1 c

∓,0
3 c

±,0
4

〉]
= − 1

L4ε4

∑
12

|V12k|2E(±2k1x, ∓ 2k1x)

× n∓
1 n±

k δ(k1 + k2 − k), (A9)

where we have used abbreviations n∓
1 = n∓(k1,t), n∓

2 =
n∓(k2,t). Next we note that

ImE(±2k1x, ∓ 2k1x) = −ImE(∓2k1x, ± 2k1x), (A10)

and

ReE(±2k1x, ∓ 2k1x) = ReE(∓2k1x, ± 2k1x)

= sin2 (k1xT )

2 k2
1x

. (A11)

Let substitute expressions (A8) and (A9) into Eq. (A2):

n±
k (T ) − n±

k (0) = 1

L2

∑
1,2

|V12k|2n∓
1 (n±

2 − n±
k )

× δ(k1 + k2 − k)
sin2 (k1xT )

k2
1x

, (A12)

where we have used that |T (2k1x)|2 = sin2(k1xT )/k2
1x . Now,

we take the infinite-box limit, L → ∞, and pass to the
continuous description in the k space using the rule

1

L2

∑
1,2

δ(k1 + k2 − k) →
∫

δ(k1 + k2 − k)dk1dk2,

where δ in the integrand means the delta function (recall that
it is Kronecker delta in the sum).

At the next stage of the wave kinetic procedure we need to
use the weakness of the nonlinearity in our system by taking
the limit ε → 0, which is equivalent to T → ∞. For the r.h.s.
of Eq. (A12), we obtain

lim
T →∞

sin2(k1xT )

k2
1x

= πT δ (k1x) . (A13)

Then, after multiplying both parts of Eq. (A12) by 1/T , its
left-hand side (l.h.s.) becomes

n(T ) − n(0)

T
→ ∂tn(T ), (A14)

where we take into account that T is much less than the
nonlinear time at which the spectrum evolves. After these

033103-9



N. TRONKO, S. V. NAZARENKO, AND S. GALTIER PHYSICAL REVIEW E 87, 033103 (2013)

steps, we can finally write down the kinetic equation

∂tn
±
k = π

∫
V 2

12kn
∓
1 [n±

2 − n±
k ]δ (k1 + k2 − k)

× δ(2 k1x)dk1dk2. (A15)

APPENDIX B: LOCALITY OF
KOLMOGOROV-ZAKHAROV SPECTRA

In order to explore the realizability of the Kolmogorov-
Zakharov spectra, η(ky ; ∞)± ∝ kν±

y , we need to proceed with
a convergence study of the collisional integrals∫ ∞

−∞
δ(k1y + k2y − ky)|k1y |α± (|k2y |α∓ − |ky |α∓ )dk1ydk2y.

Let us consider the first one, choosing α+ at the exponent of
|k1y |. There are three singular points:

(1) k1y,k2y → ∞,
(2) k1y → 0,k2y → ky ,
(3) k2y → 0,k1y → ky .

At the first point, we should use the fact that the integral∫ ∞
1 |x|νdx converges when ν < −1. After substituting k2y =

ky − k1y , we have∫ ∞

1
|k1y |α+(|ky − k1y |α− − |ky |α− )dk1y.

Then two cases are possible:
(i) When α− > 0, the main contribution is made by∫ ∞

1
|k1y |α++α−dk1y,

which is convergent for α+ + α− < −1.
(ii) When α− < 0 the expression for the main contribution

is made by ∫ ∞

1
|k1y |α+|ky |α−dk1y,

and is convergent for α+ < −1.
At the second singular point, after integration over k2y using
the delta function in Eq. (B1), we have∫ ε

0
|k1y |α+(|ky − k1y |α− − |ky |α− )dk1y ∼

∫ ε

0
k

α++1
1y dk1y,

and we get the convergence condition α+ > −2. To get this
condition, we performed the series expansion |ky − k1y |α− =
|ky |α−(1 + α−k1y/ky) + · · · , and we have used the fact that
the integral

∫ ε

0 xνdx is convergent for ν > −1. To obtain the

FIG. 5. (Color online) Locality study for Kolmogorov-Zakharov
spectrum.

convergence condition for the last singular point, we integrate
over k1y using the delta function∫ ε

0
|ky − k2y |α+(|k2y |α− − |ky |α−)dk2y

∼
∫ ε

0
|ky |α+|k2y |α−dk2y −

∫ ε

0
|ky |α++α−dk2y .

The second integral is always convergent, and the first one is
convergent for α− > −1. Finally, the convergence region for
the first collisional integral (B1) in the space of indices is

{{(α+ + α− < −1) ∩ (α− > 0)} ∪ {(α+ < −1)

∩ (α− < −0)}} ∩ (α+ > −2) ∩ (α− > −1). (B1)

It is represented by the gray trapezoid in Fig. 5. To find the
convergence zone for the second integral of Eq. (B1) (with
α− in the exponent of k1y) we just take the reflection of the
convergence zone for the first integral with respect to the line
α− = α+. Finally, to get the convergence conditions for both
collisional integrals one should take the intersection of both
zones. As we can see in Fig. 5, such an intersection produces
a zero set. There are no power-law exponents α− and α+ for
which both collision integrals would be convergent and there
is a single point which corresponds to marginal (logarithmic)
divergence, α− = α+ = −1. This point corresponds to the
Kolmogorov-Zakharov spectrum in the balanced-turbulence
case. Common wisdom [57] is that such marginally nonlocal
spectra can be fixed by a logarithmic correction. However, in
the main text of this paper we show that this is not the case for
this problem.
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