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Heat conductivity in relativistic systems investigated using a partonic cascade
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Motivated by the classical picture of heat flow, we construct a stationary temperature gradient in a relativistic
microscopic transport model. Employing the relativistic Navier-Stokes ansatz, we extract the heat conductivity κ

for a massless Boltzmann gas using only binary collisions with isotropic cross sections. We compare the numerical
results to analytical expressions from different theories and discuss the final results. The directly extracted value
for the heat conductivity can be referred to as a literature reference within the numerical uncertainties.
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I. INTRODUCTION

Ultrarelativistic heavy ion collisions (HIC) at the Relativis-
tic Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC) create a hot and dense system of strongly interacting
nuclear matter that only existed in nature a few microseconds
after the Big Bang [1–3]. At such energies, quarks and gluons
are deconfined and a new state of matter is formed, the
quark-gluon plasma (QGP). The main experimental discovery
made at RHIC and LHC is that this novel state of matter
behaves as a strongly coupled plasma, with the smallest
viscosity-to-entropy density ratio, η/s, ever observed [4–7].
Currently, relativistic dissipative fluid dynamics is the main
theory employed to describe the space-time evolution of the
QGP formed in HIC.

The inclusion of dissipative effects in the description of the
QGP started only a few years ago. To date the majority of
studies have focused on investigating the effects of the shear
viscosity in the time evolution of the QGP and in extracting
its magnitude from HIC measurements [8–21]. Nevertheless,
there are other sources of dissipation that might play a role in
the fluid-dynamical description of HIC, such as bulk viscous
pressure and heat flow. While bulk viscous pressure effects
have already been subject to some amount of investigation
[22–32], the effects of heat flow have been largely ignored.

The main reason for neglecting heat flow is that
most fluid-dynamical calculations in the field attempt
to describe the QGP only at midrapidity and very high energies,
where baryon number and its corresponding chemical potential
are approximately zero. However, when trying to describe the
QGP at forward rapidities or at smaller collision energies,
such as the ones probed in the RHIC low-energy scan, baryon
number can no longer be ignored and heat conduction or
baryon number diffusion might play a more decisive role. On
the other hand, before implementing heat flow in heavy ion
collision simulations, it is useful to study it with more detail in
simpler systems and check how well we are able to describe
it in such cases. Such types of studies were already started in
Ref. [33].

In order to describe heat flow, one must know at least the
heat conductivity coefficient. Currently, this is not known with
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the desired precision even for relativistic dilute gases. As a
matter of fact, there are several expressions in the literature
for this transport coefficient, e.g., from Israel-Stewart theory
[34], resummed transient relativistic fluid dynamics [35], or
Chapman-Enskog theory [36]. All of these methods give
slightly different results and it is useful to know which one
agrees best with the underlying microscopic theory in the
dilute gas limit. Recently, this task has been accomplished
for the case of the shear viscosity coefficient [37,38].

In this work, we investigate the heat flow of a stationary
relativistic dilute gas. Our main purpose is to obtain a precise
expression for the heat conduction coefficient in the kinetic
regime. In Ref. [38], this was done by imposing a stationary
velocity gradient as a boundary condition and then waiting
long enough for the system to achieve the Navier-Stokes limit.
Once the Navier-Stokes limit was obtained, the shear viscosity
coefficient was accurately extracted as the proportionality
coefficient relating the shear-stress tensor to the shear tensor.
Here, we apply the method used in Ref. [38], referred to as
stationary gradients method, to extract the heat conductivity of
a dilute gas described by the relativistic Boltzmann equation.
We solve the relativistic Boltzmann equation numerically
using the transport model BAMPS (Boltzmann approach for
multiparton scatterings) described in Ref. [39]. For the sake of
simplicity, we shall restrict our calculations to a classical gas
of massless particles, considering only elastic binary collisions
with a constant isotropic cross-section.

The paper is organized as follows: In Sec. II we introduce
the basic definitions of relativistic hydrodynamics. In Sec. III
we give an overview of stationary gradients. The numerical
transport model BAMPS we use in this work is introduced in
Sec. IV. Next, in Sec. V we derive an analytical expression
for the shape of the gradients. In Sec. VI, we show the
method to extract the heat conductivity using BAMPS. The
results obtained from the numerical calculations are shown
in Sec. VII, where we also discuss the comparison to the
analytical values. Finally, we give our conclusions in Sec. VIII

Our units are h̄ = c = k = 1; the space-time metric is given
by gμν = diag(1,−1,−1,−1).

II. BASIC DEFINITIONS

In relativistic kinetic theory a dilute gas of particles is
characterized by the invariant particle distribution function
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f (x,p). The macroscopic quantities are obtained from the
moments of this distribution function. The first two moments
of f (x,p) correspond to currents of conserved quantities: the
first moment of f (x,p) leads to the particle four-flow (here we
consider only binary collisions and, therefore, particle number
is conserved),

Nμ =
∫

gd3p

(2π )3E
pμf (p,x) , (1)

while the second moment corresponds to the energy-
momentum tensor,

T μν =
∫

gd3p

(2π )3E
pμpνf (p,x) . (2)

Above g is the degeneracy factor, and pμ = (E, �p) is the four-
momentum of the particle. Since we consider the massless
limit, E = | �p|.

The particle four-flow and energy-momentum tensor can be
decomposed with respect to an arbitrary normalized time-like
four-vector, uμ = γ (1,�v) , where uμuμ = 1. The most general
decomposition [36] reads

Nμ = nuμ + V μ, (3)

T μν = εuμuν − P�μν + Wμuν + Wνuμ + πμν, (4)

where �μν = gμν − uμuν is a projection operator onto the
three-space orthogonal to uμ, V μ is the particle diffusion
four-current, Wμ is the energy diffusion four-current, and πμν

is the shear-stress tensor. Since we are considering massless
particles, the bulk viscous pressure is zero and was omitted
from the decomposition above. Furthermore, we introduced
the local rest frame (LRF) particle number density

n ≡ Nμuμ, (5)

the LRF energy density

ε ≡ uμT μνuν , (6)

and the isotropic pressure

P = −�μνT
μν/3 . (7)

Notice that the particle diffusion four-current can be written
in terms of Nμ as

V μ = �μ
ν Nν, (8)

while the energy diffusion four-current can be expressed in
terms of T μν as

Wμ = �μαTαβuβ. (9)

The heat flow qμ is defined as the difference between energy
diffusion and enthalpy diffusion. For the system we are
considering, it reads

qμ = Wμ − h V μ, (10)

where h = (ε + P )/n is the enthalpy per particle.
Without loss of generality, we use Eckart’s definition of the

four-velocity [40]:

uμ ≡ Nμ√
NμNμ

. (11)

By construction, the Eckart definition of the velocity field
makes the particle diffusion current vanish, V μ = 0, and,
consequently, the heat flow in the Eckart frame is exactly
given by the energy diffusion, i.e,

qμ = Wμ. (12)

We remark that the definition of the velocity field will not
affect the value of the heat conduction coefficient.

For a gas of classical particles, the thermodynamic pressure
and particle number density are connected to the temperature,
T , as follows:

p = nT . (13)

Since we consider a massless Boltzmann gas, the thermody-
namic pressure p is equal to the the isotropic pressure P . The
fugacity, λ ≡ exp (μ/T ), is given by

λ = n

neq
, (14)

where neq = gT 3/π2 is the equilibrium particle number
density with vanishing chemical potential.

III. STATIONARY TEMPERATURE GRADIENTS

In Navier-Stokes theory [36], heat flow is proportional to
the gradient of the thermal potential, α = μ/T ,

qμ = −κ
nT 2

ε + p
�μ α = κ

(
�μT − T

ε + p
�μ p

)
, (15)

where κ is defined as the heat conduction coefficient, ∂μ

is the ordinary four-derivative, D = uμ∂μ is the comoving
derivative, and �μ ≡ �μν∂ν = ∂μ − uμD is the space-like
four-gradient. For the sake of simplicity, we assume the system
to be homogeneous in the y and z plane (here referred to as
the transverse direction) and resolve only the dynamics in
the x direction. We also wait long enough so that the system
achieves a stationary solution, i.e, ∂t = 0. In such stationary
limit and with the spatial symmetries described above, the
four-derivative simplifies to ∂μ = (0,∂x,0,0).

In the stationary limit, conservation of momentum dictates
that the pressure gradient must vanish. Furthermore, for small
velocities, ux � 1, the operator �μ reduces to

�μ =

⎛
⎜⎝

u0ux∂x

−∂x

0
0

⎞
⎟⎠ . (16)

Then, the x component of the heat flow can be cast in the
following simple form

qx = κ(�xT ) = −κ∂xT (x). (17)

In this simplified scenario, the heat conduction coefficient can
be extracted as the proportionality coefficient between the heat
flow and the gradient of temperature.

IV. THE PARTONIC CASCADE BAMPS

In this work, the relativistic Boltzmann equation is solved
numerically using the BAMPS simulation, developed and

033019-2



HEAT CONDUCTIVITY IN RELATIVISTIC SYSTEMS . . . PHYSICAL REVIEW E 87, 033019 (2013)

FIG. 1. (Color online) A sketch of the setup in BAMPS. In the
left and right sides (x direction) of the static box we introduce thermal
reservoirs with fixed chemical potential and temperature.

previously employed in Refs. [38,39,41–44]. This partonic
cascade solves the Boltzmann equation,

pμ∂μf (x,p) = C [f ] , (18)

for on-shell particles using the stochastic interpretation of
transition rates. In this study we consider only binary collisions
with constant isotropic cross sections. In order to reduce
statistical fluctuations in simulations and to ensure an accurate
solution of the Boltzmann Eq. (18), a test-particle method [39]
is introduced: The particle number is artificially increased by
multiplying it by the number of test particles per real particle,
Ntest. The physical results are not affected by this step.

The simulation of the relativistic Boltzmann equation is
performed in a static box. The transverse plane (y-z plane) of
the system is assumed to be homogeneous. This is maintained
by realizing the collisions of particles against the boundaries of
the static box as elastic collisions off a wall. In the x direction,
the boundaries of the box are fixed to have a constant gradient
in temperature. In practice, this is implemented in BAMPS by
removing the particles colliding with the wall in the x direction.
Independent of the absorption, the reservoirs emit particles
with fixed temperature and chemical potential. The reservoirs
in the left and right boundaries of the box in the x direction, as
sketched in Fig. 1, are defined to have fixed temperatures, T res

L

and T res
R , and fixed fugacities, λres

L and λres
R , respectively. Their

values in our calculations are chosen to T res
L = 0.5 GeV, T res

R =
0.3 GeV. In order to maintain no pressure gradient, we set the
fugacities to λres

L = 1.0 and λres
R = 7.72. The chosen values in

the reservoirs imply that pres
L = pres

R = 13.25 GeV/fm3. The
collective velocity in both reservoirs is set to zero.

The set of boundary conditions will lead to a stationary tem-
perature gradient in the x direction. Then the heat conduction
coefficient can be extracted using Eq. (17). The required time
for the system to reach its stationary state depends on value
of the cross section, the temperature and chemical potential of
the thermal reservoirs, and the initial state of the system.

Similar to the work in Ref. [38], the time the profile needs to
reach the stationary profile is proportional to the inverse mean
free path. This implies that the more diffuse the system is,
the faster it reaches the final stationary profile and vice versa.
In order to save computational time, we always initialize the
system as close as possible to its stationary state.

The first step in computing the heat flow is extracting
the components of the particle four-flow Nμ and energy-
momentum tensor T μν . Space in BAMPS is discretized in
small volume elements, Vc. The distribution function f (x,p)
of this volume element is reconstructed from the momenta
distribution of the particles inside it. In this scheme, the Nμ

and T μν are computed via the discrete summation over all
particles within the specific volume element and divided by
the test-particle number:

Nμ(t,x) = 1

VcNtest

Nc∑
i=1

p
μ

i

p0
i

, (19)

T μν(t,x) = 1

VcNtest

Nc∑
i=1

p
μ

i pν
i

p0
i

, (20)

where Nc is the total number of particles inside the correspond-
ing volume, t is the time, and x is the space coordinate (defined
to be in the center of the volume element). Since we shall be
considering only stationary solutions, the t dependence of the
current will be omitted in the following sections. We also
mention here that we average Eqs. (19) and (20) over many
events in order to reduce statistical fluctuations.

Using Eqs. (19) and (20) we can determine all necessary
macroscopic quantities. Then, using Eqs. (19) and (11), we
compute the four-velocity in the Eckart frame and extract
the particle number density, n, and the projection operator
�μν . Finally, we compute the heat flow current using Eqs. (9)
and (12).

V. ANALYTICAL EXPRESSION FOR THE GRADIENTS

In this work we aim to extract the gradient of a macroscopic
quantity, such as the temperature T or the particle density
n. The gradients are usually computed using finite-difference
methods, which demands a large amount of statistics in order
to obtain a sufficiently smooth profile. Therefore, if one is able
to obtain the general form of the solution that such gradients
must satisfy in the stationary regime, it would save a huge
amount of computational runtime.

As already shown in Ref. [38], quantities that are conserved
in collisions show a linear behavior between the thermal
reservoirs. For the boundary conditions implemented in this
work, this is realized for the particle density.

For the type of boundary condition considered in this work,
the particle number density satisfies the following solution in
the stationary regime

n(x) = nres
R − nres

L

L + 2λmfp
x + nres

R + nres
L

2
, (21)

where nres
L and nres

R are the particle number density in the left
and right reservoirs, respectively, and L is the size of the static
box in the x direction. We remark that this solution might be
modified when inelastic collisions are included.

In general, the above solution does not hold near the
boundaries (in the x direction) of the static box, where the
particle number density is discontinuous (see Ref. [38] for
details). If the mean free path, λmfp, of the particles is large
compared to the size of the box, L, such discontinuity will
lead to deviations from the above solution. Here we tackle
this problem by making sure that L � λmfp. This will reduce
such finite-size effects to the minimum amount possible and
guarantees that the solution in Eq. (21) provides a very good
description of the particle number density in most parts of the
system. Using Eq. (21) and the fact that the thermodynamic
pressure is constant inside the box, it is straightforward to
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FIG. 2. (Color online) The numerical solutions extracted from
BAMPS for particle density n, pressure P , and temperature T . The
cross section is set to σ22 = 10 mb. The solutions are shown at very
late times, t = 50 fm/c, where the profiles are almost static. The
reservoir values are chosen on the left (right) to T res

L = 0.5 GeV and
λres

L = 1.0 (T res
R = 0.3 GeV and λres

R = 7.72). We compare each profile
with the analytical results derived from Eq. (21). The results are
averaged over 500 events.

obtain the temperature profile,

T (x) = p

(
nres

R − nres
L

L + 2λmfp
x + nres

R + nres
L

2

)−1

. (22)

In Fig. 2, we show the particle number density [Fig. 2(a)], ther-
modynamic pressure [Fig. 2(b)], and temperature [Fig. 2(c)]
profiles computed with BAMPS (dots) at t = 50 fm and
σ22 = 10 mb, with the boundary conditions specified in the
previous section. The blue curves correspond to the analytical
solution described above. It is clear that Eq. (21) does in fact
reproduce the solutions obtained numerically with BAMPS
and that finite-size effects are negligible. Also, we confirm
that the thermodynamic pressure is constant, as it should be.

VI. EXTRACTION OF THE HEAT CONDUCTIVITY

Since the gradients of the particle number density and
temperature can be computed analytically from Eqs. (21)

FIG. 3. (Color online) Heat conductivity coefficient extracted
from BAMPS shown at every point in space. The mean value with
error bar is also displayed. The results are shown at t = 5 fm/c for
σ22 = 43 mb. 500 events were averaged.

and (22), and the pressure p is by construction constant, the
extraction of the heat conductivity from BAMPS simulations
becomes straightforward. Using n(x) ≡ ax + b for the particle
density and the relation Eq. (13), we can simplify Eq. (17) to

qx = κp
a

(ax + b)2
. (23)

Finally, the heat conductivity can be calculated using

κ = qx (ax + b)2

ap
, (24)

where the heat flow qx is directly extracted from BAMPS and
the constants a and b as well as the constant pressure p are
analytically known.

Figure 3 shows the heat conductivity as function of x, at t =
5 fm. We use for the cross section σ22 = 43 mb. It is clear that
κ is constant over space, which confirms that we reached the
asymptotic solution. In Fig. 4 we show the heat conductivity as
function of time t . The system relaxes locally on a very short
time scale to its stationary solution, and the heat conductivity
is afterwards basically constant over time. We remark that the
relaxation time is proportional to the mean free path, λmfp (see
Ref. [35]).

FIG. 4. (Color online) Heat conductivity coefficient extracted
from BAMPS shown at different times averaged over the all positions
in space. The results are shown for σ22 = 43 mb. 500 events were
averaged.
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In order to extract a precise value for heat conductivity
κ , we take an average over the values obtained in the whole
system and at all time steps that had reached the asymptotic
state.

VII. RESULTS

In kinetic theory, there are several different methods to
compute the transport coefficients appearing in the fluid-
dynamical equations of motion, e.g., Chapman-Enskog theory
and the many variations of the method of moments. The
problem is that each method predicts different expressions
for the transport coefficients. Even though these differences
are not so large for the shear viscosity coefficient, which
has been discussed in details in Refs. [37,38], they can be
significantly large for heat conductivity, as will be discussed
in the following. The results from BAMPS can help to
clarify which method reflects more reliably the underlying
microscopic theory.

The method of moments, initially developed by H. Grad
for nonrelativistic systems [45] and further extended to
describe relativistic systems by several authors, is one of the
most commonly employed methods in heavy ion collisions.
Traditionally, this method is employed in the relativistic
regime together with the so-called 14-moment approximation,
originally proposed by Israel and Stewart [34]. In this scheme,
the momentum distribution function, f (x,p), is expanded
in momentum space around its local equilibrium value in
terms of a series of Lorentz tensors formed of particle
four-momentum kμ, i.e., 1, kμ, kμkν, . . .. The 14-moment
approximation consists in truncating the expansion at second
order in momentum, i.e., keeping only the tensors 1, kμ,
and kμkν in the expansion, leaving 14 unknown expansion
coefficients. The coefficients of the truncated expansion are
then uniquely matched to the 14 components of Nμ and T μν .

Israel and Stewart obtained the equations of motion of
fluid dynamics and, consequently, the microscopic expressions
of the transport coefficients appearing in such equations, by
substituting the momentum distribution function truncated
according to the 14-moment approximation into the second
moment of the Boltzmann equation,

∫
d3k

k0
kμkνkλ∂μf =

∫
d3k

k0
kνkλC [f ] .

By projecting this equation with �α
ν uλ, Israel and Stewart

obtained an equation of motion for the heat flow and a
microscopic formula for κ [34,46]. For a massless and classical
gas of hard spheres, one obtains the following expression for
the heat conductivity [36,46],

κ = 2

σ22
. (25)

Note that Israel-Stewart’s 14-moment approximation leads
to ambiguous results since it can be substituted in any moment
of the Boltzmann equation [46]. By changing the moment in
which the 14-moment approximation is replaced, the equations
of motion remain with the same general form, but the transport
coefficients become different. For example, using the choice
of moment applied in Ref. [47], one obtains a quantitatively

different result for κ ,

κ = 3

σ22
. (26)

Naturally, other choices of moment will lead to even more
different results, but we shall not list them all here.

Recently, the derivation of fluid dynamics from the method
of moments was extended in order to remove the ambiguities
of the 14-moment approximation [35]. The main difference
between the 14-moment approximation and the theory derived
in Ref. [35], namely resummed transient relativistic fluid
dynamics (RTRFD), is that the latter does not truncate the
moment expansion of the momentum distribution function.
Instead, dynamical equations for all its moments are con-
sidered and solved by separating the slowest microscopic
time scale from the faster ones. The resulting fluid-dynamical
equations are truncated according to a systematic power-
counting scheme using the inverse Reynolds and the Knud-
sen numbers. The values of the transport coefficients of
fluid dynamics are obtained by resumming the contributions
from all moments of the momentum distribution function,
similar to what happens in Chapman-Enskog theory [48].
In practice, the transport coefficients are given by a summation
of terms, each term originating from a specific moment
of f (x,p). Once the transport coefficients have converged,
the summation can be truncated and the moments that are
irrelevant can be dropped out. For the case of a massless
and classical gas of hard spheres, the first three moments are
enough to obtain a convergent value for κ , and one obtains [35]

κ = 2.5536

σ22
. (27)

Including the next moment would only lead to ∼1% correc-
tions to this expression.

Finally, heat conductivity can also be computed using
Chapman-Enskog theory, as was done in Ref. [36] for a gas of
classical and massless hard spheres,

κ = 2.44

σ22
. (28)

Note that the convergence of the above value was not
investigated in Ref. [36] and, consequently, it is not possible
to infer how precise this result is.

FIG. 5. (Color online) The dimensionless quantity κσ derived
from different fluid dynamical theories (lines) compared to the results
extracted directly from BAMPS (dots).
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TABLE I. Numerical results for the heat conductivity coefficient
κ for various elastic cross sections over several orders of magnitude.

σ22 κ[1/fm2]

0.043 mb 609.695698 ± 8.4513
0.43 mb 59.588731 ± 0.4694
4.3 mb 5.943535 ± 0.2041
43 mb 0.607672 ± 0.0411
430 mb 0.060449 ± 0.0013

We found excellent agreement to the result of Ref. [35],
i.e., Eq. (27).

This can be seen in Fig. 5, where results obtained using
BAMPS are compared to Eqs. (25)–(28). The original Israel-
Stewart theory [Eq. (25)] yields values roughly ∼22% too
low, while the 14-moment approximation with the choice
of moment described in Ref. [47] leads to a result that
is ∼17% too high. The transport coefficient computed via
Chapman-Enskog theory is close to the value obtained from
microscopic theory, being ∼4% below it. However, it is not
clear whether this can be considered as a failure of the
Chapman-Enskog theory since the precision of that result
was not clearly stated and it may be possible that it can be
improved to match what was extracted from the Boltzmann
equation. Finally, the heat conductivity coefficient computed
in Ref. [35] was basically the same as the one computed by
BAMPS, within the errors of both the theoretical calculation
(originating from the truncation of the moment expansion
in the expression for κ) and the numerical one (originating
from the finite statistics of the calculation). Nevertheless, all
theoretical calculations predicted a 1/σ22 dependence of the
heat conductivity coefficient on the cross section; a fact also
confirmed by BAMPS; see Table I and Fig. 5.

VIII. CONCLUSION AND OUTLOOK

In this work we extracted the heat conductivity coefficient
for a dilute gas of massless and classical particles described
by the relativistic Boltzmann equation. For this purpose we
employed the microscopic transport model BAMPS in a static
system using only binary collisions and a constant isotropic
cross section. For this setup, we established a stationary
temperature gradient using thermal reservoirs. In order to
simplify the calculations we derived an analytical expression of
the expected profile to obtain the gradients of the temperature,
meanwhile the heat flow was extracted directly from BAMPS

by the general decomposition of the particle four-flow and
energy momentum tensor. Using the relativistic Navier-Stokes
theory, which is valid for a stationary system and small
gradients, we extracted the heat conductivity to a very high
precision. We then compared this result with several theoretical
predictions for this transport coefficient, each originating from
a different derivation of fluid dynamics from the underlying
microscopic theory.

The numerical simulations of the Boltzmann equation,
realized in this paper with BAMPS, were able to distinguish
between all these different theoretical results and clearly point
out which one was in better agreement with the underlying
microscopic theory. While Israel-Stewart theory, i.e., the
14-moment approximation, performed rather poorly in the
description of heat flow, new extensions of the method of
moments, i.e., RTRFD, were able to provide an improved
description of this transport coefficient, showing a very good
agreement with the coefficient extracted from BAMPS. The
heat conductivity computed using Chapman-Enskog theory
was not able to precisely describe the simulation from BAMPS,
although it was not as far off as the predictions using the
14-moment approximation. Nevertheless, this disagreement
might be originating from a poor implementation of the
Chapman-Enskog theory, which was not properly checked for
the convergence of the transport coefficient.

The extracted value for the heat conductivity,

κBAMPS = 2.59 ± 0.07

σ22
, (29)

can be referred to as a literature value, within the numerical
uncertainties, for the simple case of binary collisions with an
isotropic cross section. It remains as a future task to extend this
work to include inelastic scatterings, where particle production
and annihilation have to be taken into account.
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