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Effect of shear on Rayleigh-Taylor mixing at small Atwood number
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The effect of shear on the development of Rayleigh-Taylor instability (RTI) is studied at an Atwood number
of 0.035 using the gas tunnel at Texas A&M University. Two types of diagnostics, imaging and simultaneous hot
wire and cold wire anemometry, are used to measure mix widths, pointwise instantaneous velocities, and density.
Image analysis has shown that the superposition of shear on RTI development increases the mixing width and

growth rate at early times (τ = x

U

√
At g

H
� 1). In particular, the mixing region shows distinct characteristics of

shear (Kelvin-Helmholtz instability) and buoyancy (RTI). The Kelvin-Helmholtz (KHI) instability is observed
to be dominant at early times, and the RTI at late times (τ > 1). In the late-time self-similar regime (τ > 1),
the mix width growth rate coefficient obtained using digital image analysis converges to a value between 0.06
and 0.07 for the compound buoyancy and shear (KH + RT) driven flows. Vertical velocity fluctuation rms values
at the mixing layer centerline are measured using a hot-wire technique. These rms values are correlated to the
centerline mixing width growth rate, and this growth rate coefficient is found to lie between 0.06 and 0.07 at
τ > 1 for the KH + RT flows. The transition in flow dominance from shear instability to RTI is observed to
correspond with Richardson numbers (Ri = −2hg�ρ

ρ�U2 ) of − 1.5 to − 2.5. Molecular mixing between the fluids is
examined by looking at the probability density function distribution of the density fluctuations. A different type
of mixing behavior is observed over time for the compound cases compared with the transient development of
Rayleigh-Taylor driven mixing.
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I. INTRODUCTION

Coupled buoyancy and shear driven mixing occurs in
various natural and technological environments such as in the
atmosphere and oceans [1], mixing in combustion chambers,
chemical reactors [2], discharges into rivers [3], and inertial
confinement fusion (ICF) fuel capsules [4]. The problem
of shear with unstable stratification is not well studied
compared with the buoyancy stabilizing shear case, and limited
experimental data are available in the literature for the shear
with unstable stratification case. This paper presents results
from an experimental study on compound buoyancy and
shear flows. For the present compound buoyancy and shear
dominated flows, the mixing process starts through a shear
dominated phase with linear mix width growth, and ends with
buoyancy dominated mixing with quadratic mix width growth.

The Rayleigh-Taylor instability (RTI) occurs whenever
the interface between two fluids of different densities is
accelerated in a direction such that ∇p · ∇ρ < 0, where p

is pressure and ρ is fluid density [5]. One important parameter
that characterizes RTI is the Atwood number (At ) defined by
Eq. (1), where ρ1 is the heavier fluid density and ρ2 is the
lighter fluid density. The Atwood number is a nondimensional
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measure of the density difference between the two fluids.

At = ρ1 − ρ2

ρ1 + ρ2
. (1)

Mikaelian [6] studied combined Richtmyer-Meshkove in-
stability (RMI), RTI and Kelvin-Helmholtz instability (KHI)
analytically for incompressible fluids at early mix development
times. Mikaelian [6] and Hoffmann [7] also emphasized
the presence of this combined instability in an ICF fuel
capsule when the incidental shock wave is oblique to the
interface due to the asymmetry in the drive. Mikaelian [6]
noted that the effect of KHI is more pronounced in the
combined instability at the solid fuel-ablator interface where
the Atwood number (∼0.8) is less compared with the solid
fuel-Deuterium-Tritium gas interface (At∼1.0). It was shown
that in the linear regime (at early times), for typical ICF
parameters, the longer wavelength perturbations are stabilized
by constant acceleration behind the shock wave. Mikaelian [6]
also pointed out that the interplay between KHI, RTI, and
RMI is complicated as each have different wave number
dependencies. Recent simulations by Thomas and Kares
[8] have confirmed that the drive asymmetry can lead to
penetration of ablative material into the central hot spot, and
the turbulence generated by the instability of these penetrated
structures will cause fuel dilution and eventual ignition
failure.

Classically, small perturbations at the RTI interface grow in
size with time and begin interacting with one another, which
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leads to turbulent mixing between the two fluids. Youngs [9] di-
vided the growth of these perturbations into three regimes. The
first regime is a linear growth regime where perturbations grow
exponentially according to linear stability theory [10]. Linear
stability theory is valid for small times after the onset of the
instability, and predicts that smaller wavelength perturbations
grow exponentially faster than longer wavelengths for RTI.
The second regime describes the growth of small wavelength
perturbations becoming saturated when the amplitude of the
perturbations becomes close to half of their wavelength.
This saturation was demonstrated experimentally by Lewis
[11]. In this regime, the exponential growth of successively
longer wavelength perturbations persists and eventually the
flow is dominated by longer wavelengths; however, if longer
wavelengths are absent in the initial perturbations, then
nonlinear interactions between saturated smaller wavelength
structures (mode coupling) lead to larger structures. In the
third regime, memory of the initial conditions is lost and the
two-fluid mix will reach self-similar growth. The three regime
explanation is based on observations from experiments by
Read [12], Lewis [11], numerical simulations, and turbulent
plane mixing layer theory and experiments which have shown
a broad range of values for the growth rate coefficient, that vary
for different experimental setups based on the initial conditions
at the splitter plate [13,14]. The three regime phenomenology
has been challenged in recent years, with recognition that the
fully self-similar development may not occur in an experiment
due to the presence of initial long wavelengths that cause
an acceleration of the mix layer development [15] which, in
turn, causes “bubble competition” and a variable growth rate
coefficient.

In contrast to the RTI phenomenology, the KHI occurs when
two fluids of different velocities interact. In KHI, like RTI,
the mixing between the two streams also leads to turbulence.
KHI between two parallel streams is more usually referred
to as the plane mixing layer problem. Görtler [16] obtained
the first analytical solution to the mixing layer problem with
two streams. He assumed that eddy viscosity is constant
across the mixing layer and obtained a series solution for
the velocity distribution. A summation of the first two terms
in this solution, and neglecting all other terms, is considered
by many researchers to be accurate enough for all practical
purposes. Using a similar approach, Sabin [17] derived a first
order approximate solution with a pressure gradient for the
plane mixing layer problem that compared well with the zero
pressure gradient solution of Görtler [16] at lower velocity
ratios. He suggested the use of the same eddy viscosity for
all pressure gradients from his experimental work, and he
quantified the dependence of mixing layer spreading rate on
the velocity ratio (velocity of slow moving stream/velocity of
fast moving stream) between the two streams.

Leipmann and Laufer [18] made the first measurements
of the turbulence inside a mixing layer of an air stream
coming out of a nozzle into quiescent surroundings. They
estimated the spreading rate and asymmetry of the mixing
layer, and compared these estimates with available theories and
experiments. They showed that phenomenological theories,
such as the Prandtl mixing layer theory, are only reasonable
when predicting the mean velocity variations, and they fail to
predict higher order turbulent quantities. Yule [19] reviewed

plane mixing layer theory and the experimental data available
up to 1972. He conducted mixing layer experiments in a
two-stream wind tunnel at different velocity ratios. Yule
compared the two-stream mixing layer experiments with a free
mixing layer (absence of second stream), and observed that the
large eddy structure is affected by the presence of the second
stream. Yule also pointed out that Görtler’s solution did not
consider the asymmetry of the mixing layer, and suggested
a method to calculate this asymmetry. Bell and Mehta [13]
studied the effect of initial conditions in plane mixing layer
at a velocity ratio of 0.6. They observed a 20% difference in
mixing growth rate coefficient between tripped and untripped
initial conditions.

In the case of KHI, small perturbations at the interface
grow in size with time and form into spanwise vortical rollups.
Winant and Browand [20] studied the process of vortex pairing
between two neighboring spanwise vortices using flow visu-
alization, and they observed that pairing does not always start
at the same spatial location due to small spatial and temporal
irregularities in vortical structures. They also proposed a model
for mixing width growth rate based on earlier noninteracting
vortex theories. Browand and Weidman [21] used a conditional
sampling technique to study different stages of vortex pairing
at small Reynolds numbers (defined based upon mixing width,
velocity difference, and kinematic viscosity). The first stage
was just after the pairing process, and the second stage was
during the pairing process. They measured higher values
of turbulent Reynolds stress production during the pairing
process. They noted a similar pairing mechanism as observed
by Brown and Roshko [22], and proposed that the pairing
mechanism at lower Reynolds numbers was universal and
can be extended to higher Reynolds numbers. At Reynolds
numbers around 2500 Koochesfahani and Dimotakis [23]
observed a large amount of high velocity stream fluid trapped
inside the rollup with very little or no mixing with the other
stream. As the Reynolds number increased above 23 000,
beyond the “mixing transition,” they observed improved
mixing between the streams due to the three dimensionality
of the flow, with a still higher amount of high velocity stream
fluid at the center of the mixing layer. Lasheras and Choi [24]
studied the formation of counter-rotating streamwise vortices
on the braids of two dimensional spanwise vortex tubes for
different types of perturbations at the splitter plate. Their
investigation centered on the growth of these streamwise
vortices and the coupling process with the two-dimensional
span wise vortices that make the flow three dimensional. They
observed the same coupling process for both the horizontal and
vertical initial perturbations. Brown and Roshko [22] studied
the effect of density difference (without any acceleration at
the interface, i.e., without any stable or unstable stratification)
on flow structure in plane mixing layers. They studied the
large-scale structure for density ratios (density of low velocity
stream/density of high velocity stream) of 0.14, 1.0, and 7.0.
They noticed similar structures at all density ratios and the
change in the value of spreading angle, which correlates to the
mixing width growth rate, was relatively small compared to
the change in the density ratios.

It is important to study the effect of KHI in a stratified
flow because it affects most of the mixing processes in the
atmosphere and ocean flows [1]. The relative strength of
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buoyancy to shear can be quantified using the Richardson
number (Ri), defined by Eq. (2) where g is gravity, �ρ and
�U are the density and velocity differences, respectively, and
ρ and 2h are the measured mean density and the mixing width.
The Richardson number, defined based on the initial mixing
width at the onset of the instability, is referred to here as
initial Richardson number. The Richardson number values are
positive for stably stratified flows and negative for unstably
stratified flows.

Ri = −g
(

∂ρ

∂z

)
ρ( ∂u

∂z )2 = −2hg�ρ

ρ(�U )2
= −4ghAt

(�U )2
. (2)

Thorpe [25] studied stably stratified shear flow by filling
a long rectangular tube with different fluids and then tilted
the tube before bringing it back to the horizontal position, in
order for the instability to develop. From different experiments,
by varying the parameters defining the Richardson number,
Thorpe [26,27] observed that at a Richardson number value of
0.33 striations started to appear, and the turbulence started to
decay. He observed that the ratio of the velocity interface thick-
ness to the density interface thickness (velocity and density
interface thicknesses are defined as the distance between the
points in the mixing layer where the velocity and density reach
their respective free stream values) increases with increased
values of the initial Richardson number. The final Richardson
number, defined at the center of the layer based on both
velocity and density interface thickness, remained constant
irrespective of the initial Richardson number after a fixed
nondimensional time from the onset of turbulence. Browand
and Winant [28] performed experiments in a stratified shear
layer and noticed that the mixing layer width collapsed onto a
single final curve irrespective of the initial density difference
between the streams. They concluded that turbulence due to
shear cannot be maintained in a stably stratified fluid. Koop
and Browand [29] studied the turbulence and flow structure at
different Richardson numbers in a stably stratified fluid with
shear. They observed that at low Richardson numbers <0.15,
the vortical structures similar to the plane mixing layer still
persist in their visualization experiments, which is similar to
Thorpe’s observation [26]. The flow induced by these vortical
structures moved the heavier fluid to the top and the lighter fluid
to the bottom. The vortical structures grew in size due to vortex
pairing, but they were unable to work against buoyancy and
broke down before relaminarizing into a nonturbulent flow. As
the initial Richardson number increased further, the formation
of the vortices was not observed and the flow structure was
replaced by interfacial waves. Koop and Browand showed
that the decay of turbulence in the relaminarizing region is
similar to grid turbulence decay. They compared the value
of the maximum Richardson number at which turbulence
started to decay with the noninteracting vortex model, and
found good agreement with Thorpe’s experiments [26]. They
also observed a decreased amount of molecular mixing with
increasing values of initial Richardson number at a point well
after the start of turbulence decay.

Shifting our attention to unstably stratified (KH + RT)
flows, Shumlak and Roderick [30] observed stabilization of
RT instability with shear in Z-pinch implosions from their
analytical and numerical work, including the effect of magnetic
forces. Lawrence et al. [26] performed a stability analysis, with

and without a finite interface thickness, for KH + RT flows.
They also performed experiments in an unstable configuration
in a water channel and noticed the transformation from
shear instability dominated flow to RTI dominated flow. They
presented the flow structure evolution in the channel for a
compound shear and buoyancy case. Snider and Andrews
[31,32] studied the effect of shear on RTI experimentally at
small Atwood number (<0.005). They did not notice any
change in mixing width compared with RTI at late times
in their compound shear and buoyancy experiments. They
also observed a similar flow structure evolution as Lawrence
et al. [33]. Due to experimental setup limitations Snider and
Andrews [31,32] could not achieve a higher velocity difference
between the two streams. Snider and Andrews [34] simulated
the compound case using a k − ε model, and found that the
addition of shear to RTI decreased the mixing width growth
rate, countering the perception that the addition of instabilities
would increase the growth rate. Snider and Andrews [31,32,34]
concluded that the addition of shear to unstable buoyancy
would not increase the mixing width growth rate, and more
experiments were needed to check their simulations. More
recently, Olson et al. [35] studied the effect of shear on RT
instability numerically in the nonlinear regime, immediately
after the linear regime, and found that the peak mixing
width growth rate (highest mixing growth rate observed in
time) changed nonmonotonically with the increased amount
of shear. They found an optimum value of shear for fixed RTI
parameters at which the peak mixing width growth rate is
minimum. The flow structure resembled pure KH instability at
the point of lowest growth rate. They observed that the addition
of a small amount of shear decreased the amount of vertical
turbulent kinetic energy, channeled from the available energy,
and caused smaller mixing width growth rate.

Here we study the effect of shear on RTI mixing widths
and flow structures. Linear stability theory indicates that any
addition of shear will increase the growth rates at earlier
times [10], and it would be useful to know whether the same
effect is observed at later times. In the present scenario, RTI
combined with KHI is studied using the Texas A&M gas
tunnel facility at an Atwood number of 0.035. Flow structures
observed due to RTI, KHI, and KH + RT are compared with
each other at this Atwood number. Different KH + RT cases
are compared with each other in terms of mixing width, and
their mixing width growth rate, at the same Atwood number,
by changing the convective velocity of one of the streams. The
experimental setup used for this study is described in Sec. II.
Section III describes the flow visualization technique used for
measuring mixing width, as well as the simultaneous three
wire and cold wire anemometry technique used for measuring
instantaneous velocity and density. The results obtained from
both diagnostics are discussed in Sec. IV.

II. EXPERIMENTAL SETUP

A wind-tunnel-type facility was built at Texas A&M
University to study buoyancy driven mixing. The facility is
capable of producing the RTI at Atwood numbers up to 0.75
with and without shear. A schematic of the facility is shown in
Fig. 1. This is a statistically steady system capable of collecting
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FIG. 1. Schematic of the experimental setup of the gas tunnel facility at Texas A&M.

data for long periods of time. The facility consists of two
0.6 m × 0.6 m flow sections separated by a splitter plate
(Fig. 1, side view). Each section is fitted with flow straighteners
and wire mesh screens to make the flow uniform throughout
the cross section and reduce its turbulence level. Air, supplied
from one of the air blowers, flows into the top section. The
bottom section is supplied with an air and helium mixture.
Helium is introduced (at a rate of approximately 0.003 kg/s
to give an Atwood number of 0.035) into the connection
between the bottom stream air blower and the channel. The
mixture passes through a series of baffles to ensure uniform
mixing between both gas streams. The 2-m-long test section
starts after the splitter plate where the mixing between the
two streams starts. Further details about the components and
detailed design considerations for the facility are given by
Banerjee and Andrews [36].

This facility is a convective-type RTI system as opposed
to the classic closed-box-type system (where two fluids are
placed in an unstable configuration without any mean velocity)
used by earlier RTI researchers [10–12]. The facility is similar
to the water tunnel facility at Texas A&M, where very small
Atwood number (less than 0.001) RTIs have been studied
using both warm and cold water as working fluids [32,37].
In the current facility, the time t after the onset of instability is
calculated using Taylor’s hypothesis [38], t = x/U , where x

is the distance from the splitter plate and U is the average
of the convective velocities of both the streams. For RTI
experiments, U is kept the same for both streams to eliminate
the effect of shear on the instability. In the present work, shear

is superimposed intentionally on the density difference across
the streams to study the effect of shear on RTI.

Helium is introduced into the bottom stream of the channel
from a helium metering system. For a particular experiment,
a constant mass flow rate of helium is maintained by choking
helium from pressurized gas cylinders (at 2100 psi) with a
small orifice plate and pressure regulators. Varying the orifice
size of the orifice plate changes the mass flow rate of the
helium. Gas cylinders are replaced once the pressure drops
below 500 psi, as the orifice plate does not choke the helium
below this pressure. Details about the calibration procedure for
the orifice plate and related theoretical background are given
by Banerjee and Andrews [36]. In order to study the effect
of shear on RTI at a particular Atwood number only the top
stream velocity is varied in the experimental facility. Bottom
stream velocity and density are related by Eq. (3), in which A

is the cross section area of the bottom stream; ρair and ρHe are
density of air and helium, respectively. Adjusting the bottom
stream velocity Ub changes the bottom stream density ρmix

bottom
(thus Atwood number) for a fixed helium flow rate ṁHe. To
maintain the same Atwood number ṁHe needs to be adjusted in
accordance with Ub, if the bottom stream velocity is changed.
As only certain sizes of orifice plates are available, the choice
of Ub becomes less flexible. Thus only top stream velocity is
changed for the present work and Ub is kept constant for all
the cases.

ρmix
bottom = ρair + ṁHe

UbA

[
1 − ρair

ρHe

]
. (3)
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III. DIAGNOSTICS

Two types of diagnostics are used in this study to
obtain qualitative and quantitative information about the
developing flow fields, namely visualization and hot wire
anemometry. Visualization results are discussed thoroughly
in this paper, as well as a sample of the results obtained
from hot wire anemometry. Both of these techniques were
used by previous researchers working with this facility
to study the RTI at different Atwood numbers [38,39].
These techniques are briefly explained here; however, readers
are encouraged to examine references [36,38,40], which
provide an in-depth analysis of these techniques. The re-
sults presented here correspond to an Atwood number of
0.035 ± 0.0015.

For flow visualization, the channel is backlit using 35
fluorescent lights behind diffusive acetate paper sheets. Fog
particles, composed of condensed ethylene glycol droplets
(Atmospheres fog fluid, High End Systems), are injected
into one of the streams. The addition of fog to the stream
changes the Atwood number by 2%–2.5% of the Atwood
number studied in this paper. After injecting the fog particles,
images are taken at a rate of 60 images per minute, for up to
4 min.

Images are taken using a Nikon D-90 DSLR camera at a
35-mm focal length, 100 ISO, F11 aperture, and 1/160 shutter
speed. Beer-Lambert’s law, given by Eq. (4), indicates the
relationship between the intensity of light I0 from a source
and Im, the intensity of the same light after traveling through
a medium of optical thickness λ. Optical thickness λ is the
product of the light extinction coefficient of the medium (κ),
thickness of the medium (s), and the density of the medium
(ρ). For a medium with constant light extinction coefficient, λ

is only dependent upon ρs. For an optically thin medium (λ �
1), the ratio Im/I0 is directly proportional to λ and the measured
intensity Im can be used to estimate ρs through a linear
relationship [41]. Calibration is performed inside the tunnel
using a wedge shaped block filled with fog particles and air
(constant ρ) with the same camera settings as the experiment.
The wedge’s cross section decreases along the edge, and
consequently so does the thickness of the light extinction
medium (s), increasing the measured intensity Im. When Im/I0

ratio values are plotted against the distance along the edge, the
ratio varies linearly on the brighter side of the wedge [36].
This calibration determines the fog concentration to be used
for the experiments so that the light intensity ratio Im/I0

values obtained from the images are directly proportional to
the fluid volume fraction satisfying the optically thin medium
approximation.

Im = I0e
−κρs = I0e

−λ ≈ I0(1 − λ). (4)

The images taken during the experiment are ensemble
averaged, and the ensemble averaged intensities obtained
are corrected for nonuniform background using the formula
presented in Eq. (5), where Icorr[= I uniform

0 (1 − λ)] is the
corrected intensity, I uniform

0 is the uniform background intensity
value to which the intensities have to be corrected, Im is
the measured intensities from the ensemble averaged image,
and I0 is the actual background intensity value. See Banerjee
and Andrews [36] for further details about wedge calibration

and background correction. Volume fraction contours are
obtained from these corrected intensity values.

Icorr = I uniform
0

I0
Im. (5)

Simultaneous three wire and cold wire anemometry
(S3WCA) is used to simultaneously measure pointwise veloc-
ities and density. This technique was developed by Kraft et al.
[40] based on earlier work on simultaneous measurements
of temperature and velocities by Hishida et al. [42] and
Vukoslavčević et al. [43]. Temperature is used as a marker for
density by gently heating one of the streams. The difference
between the temperature measured in the mixing layer and
the free stream temperature of the streams can be directly
correlated to the volume fraction of the streams as the Lewis
number is close to 1 [38]. The stream is typically heated by 2 ◦C
at low Atwood numbers as a higher amount of heating causes
larger uncertainties in Atwood number. A three wire probe
from Dantec Dynamics (model 55P91) is used to measure the
velocities at a point, and a cold wire probe is used to measure
the temperatures. Both probes are placed side by side to
measure temperature (density) and velocities simultaneously
with a probe spatial resolution of 6 mm.

Calibration of the three wire probe is performed at different
volume fractions of air and helium before the experiment. For
example, for an Atwood number of 0.1, the maximum volume
fraction of helium present in the channel would be 0.23. For
this case, the calibration of the 3 wire probe is performed at
helium volume fractions of 0.05, 0.1, 0.15, 0.2, and 0.25. A
King’s law [stated in Eq. (6), where E is the recorded voltage,
A and B are King’s law fit coefficients, Ueff is the velocity
perpendicular to each wire, and n is the power law coefficient
taken as 0.5 for the present experiments] fit is made between
the wire effective velocities (velocities converted into wire
coordinates) and voltages from each wire. The coefficients for
the King’s law fit are calculated for each wire at each volume
fraction.

E2 = A + BUn
eff . (6)

During the experiment, the temperature and wire voltages
were recorded simultaneously at a frequency of 1000 Hz from
the cold wire and the three wire probes, respectively. The
temperature value recorded by the cold wire probe is converted
into a volume fraction using Eqs. (7) and (8), which were
developed from an energy balance [40]. In these equations,
subscript 1 refers to the top stream, subscript 2 refers to the
bottom stream, fm,i is the mass fraction of stream i, fv,i is
the volume fraction of stream i, cp is the specific heat, T is
the temperature, and ρ is the density.

fm,2(t) =
[

1 + cp,2

cp,1

T2(t) − Tmix(t)

Tmix(t) − T1(t)

]−1

, (7)

fv,2(t) = ρ1

ρ1 − ρ2 + ρ2

fm,2(t)

. (8)

Further aspects of the technique, and the procedure to obtain
velocities, is explained in detail by Kraft et al. [40].
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TABLE I. Experimental cases considered for image analysis with uncertainties indicated in parentheses.

Bottom stream Top stream
Case name velocity, m/s (U2) velocity, m/s (U1) Uaverage, m/s ρ1U1+ρ2U2

ρ1+ρ2
, m/s Atwood number Max. Ri number U1

U2

RT case 0.63 0.63 (0.02) 0.63 0.63 0.035 (0.003) 1.0
KH + RT 1 0.63 0.86 (0.02) 0.75 0.75 0.035 (0.003) –6.9 (2.1) 1.4
KH + RT 2 0.63 1.03 (0.02) 0.83 0.84 0.035 (0.003) –1.8 (0.4) 1.6
KH + RT 3 0.63 1.25 (0.02) 0.94 0.95 0.035 (0.003) –0.8 (0.1) 1.9
KH 0.6 1.25 (0.02) 0.93 0.93 0 0.0 2.1
KH 1 0.6 0.85 (0.02) 0.73 0.73 0 0.0 1.4

IV. RESULTS

The effect of shear on RTI is studied using the diagnostics
described in the previous section to obtain the mixing width
(defined as the distance between the 5% and 95% volume
fraction contour at a particular streamwise location), and the
instantaneous velocity and density data inside the mixing
region. Experiments are performed at an Atwood number
of approximately 0.035, with and without shear. The cases
considered here are shown in Table I with uncertainties
indicated in parentheses.

In the definition of Richardson number given by Eq. (2)
all the parameters are constant except the mixing width h;
thus the variation of Ri along the tunnel is similar to the
variation of mixing width. The Ri number becomes minimum
(highest absolute value) at the end of the tunnel for the present
experiments as shown in Table I.

A. Image analysis results

Flow visualization experiments are performed to evaluate
the mixing width and its growth rate. An ensemble average
of images is taken to evaluate the mixture fraction contours
and mixing width. Figure 2 shows a sample bottom stream
volume fraction contour set from an ensemble averaged image
for the RT case from Table I. The volume fraction contours
are discontinuous at various locations due to the method by
which they are calculated, and nonuniformities present in the
fog concentration far away from the mixing region. These
discontinuities do not have any physical significance and are
removed during image analysis by using a filter to remove all
the points whose height difference is more than 5 cm (roughly
100 times the pixel resolution) compared to their adjacent
points.

Figure 3 shows a comparison between the images taken
with buoyancy only, with shear only, and with compound
shear and buoyancy (top to bottom). Figure 3 also shows
the associated volume fraction contours of the bottom fluid
from ensemble averaged images for the same cases. The
ensemble average uses over 200 images, taken at the rate of
60 images per minute. According to Banerjee and Andrews
[36], this number of images is sufficient to obtain statistical
convergence in density and mixing width measurements. For
the buoyancy only case, vertical plumes characterize the flow.
The buoyancy force at the interface causes shear between the
rising lighter fluid and the falling heavier fluid, that forms
the mushroomlike structures in these vertical plumes. For
the shear only case of Fig. 3(b), spanwise vortical structures
are the main characteristic of the flow. These structures are
large in number when closer to the splitter plate in the
streamwise direction. The structures merge with each other
to form larger structures with increased spacing downstream.
Larger structures also dominate the late-time RTI mixing,
through bubble competition, where larger structures tend to
grow faster than smaller structures, which gives less space
for smaller structures to grow and, in turn, shrinks them and
inhibits the small structure growth [44]. For the compound
shear and buoyancy case of Fig. 3(c), the flow is initially
dominated by spanwise vortical structures formed due to the
shear between the streams. Inspection of Fig. 3(c) reveals that
these vortical structures are stretched by buoyancy within the
structures. Stretching of these vortical structures weakens the
structures and the flow is eventually governed by buoyancy
only [see Fig. 3(c)]. This transition into buoyancy dominated
flow structure is clearly observed for KH + RT 1, KH + RT 2
cases, but cannot be observed in the compound case KH + RT
3 as the shear between the streams is large enough to dominate
buoyancy for a longer time. The KH + RT 3 case requires a
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FIG. 2. (Color online) Comparison of actual volume fraction contours to contours with discontinuities removed for RT case from Table I.
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FIG. 3. (Color online) Sample images taken for the flow with (a) only buoyancy, (b) only shear, and (c) combined buoyancy and shear at
Atwood ∼0.032 and corresponding volume fraction contours of bottom stream fluid fv,2 = 0.05 and fv,2 = 0.95 (ensemble average of 200
images taken over 200 s).

longer test section beyond the length of the current test section
for the flow to be governed by buoyancy only.

Volume fraction contours obtained with flow visualization
for the cases of Table I are shown in Fig. 4. The case name
is indicated on the top left corner for each plot. For each case
the bottom stream volume fraction contours of 0.05 and 0.95
are plotted. The pure RT (top left) case shows a symmetric
mixing layer with the highest mixing width at the end of the
tunnel compared with the other cases (note the change of the
vertical axis). The RT volume fraction contours are parabolic
in shape indicating a Atg( x

U
)2 development of the self-similar

RTI mixing layers [9]. With an increase in shear (KH + RT
1–3), the mixing layer shifts toward the slower moving stream
(bottom stream). This shift is higher for larger velocity dif-
ferences, such as KH + RT 3, which shows larger asymmetry
about the geometric centerline compared with other cases (see
Fig. 4). This attribute is a typical characteristic of planar mixing
layers [14].

Mixing width is defined as the distance between the 5%
and 95% volume fraction contours of Fig. 4, and is plotted
in Fig. 5 for all the cases of Table I. Visualization (Fig. 3)

shows that shear is predominant closer to the plate, and the
flow is dominated by RT structures far away from the splitter
plate for a compound case. Mixing width plots for compound
cases KH + RT 1 and KH + RT 2 shown in Fig. 5 also support
this statement. The mixing width is larger everywhere for a
compound case compared with the corresponding shear only
case with the same �U value [see Fig. 5(a) for KH + RT 3 vs
KH or Figs. 3(b) and 3(c) for KH + RT 1 vs KH 1]. This is due
to the stretching of initial spanwise vortices closer to the plate
and faster growing buoyancy structure far away from splitter
plate. The expanded view near the origin [Fig. 5(b)] shows the
mixing width variation close to the splitter plate. The mixing
width is greater closer to the splitter plate for the shear only
case when compared with the RT case. The KH + RT 3 case
has a higher mixing width compared with the KH + RT 1,
and KH + RT 2 cases close to the plate, as a larger amount of
shear causes larger spanwise vortices that correspond to linear
stability theory [5], which predicts that the initial growth rate is
proportional to the square of the velocity difference between
the streams. The mixing width variations for all five cases
are curve fitted with a fourth order polynomial [defined by
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FIG. 4. (Color online) Volume fraction contours of bottom stream fluid fv,2 = 0.05 and fv,2 = 0.95 for different shear cases: (a) no shear
RT case, (b) KH + RT 1, (c) KH + RT 2, (d) KH + RT 3.

Eq. (9), where h,x are in centimeters] for numerical simulation
comparison purposes. All five coefficients obtained for each
case are shown in Table II. The coefficients shown here are
valid only from x = 10 cm to 175 cm, as the data available
before x = 10 cm have larger uncertainties due to the small
value of mixing width.

h =
4∑

n=0

anx
n. (9)

The plane mixing layer problem (shear only case) is
well studied [13,20], and linear growth of these mixing
layers in the self-similar regime is well known. The mixing
growth rate coefficient for KHI flows is defined as U1+U2

U1−U2

dh
dx

.
Youngs [9] proposed a parabolic growth of RTI mixing
layers in the self-similar regime, and this description has
been confirmed by numerous experiments and numerical
simulations [15,32]. The mixing growth rate coefficient for
RTI flows, α, is defined by Eq. (10), using the expression
for bubble mixing width hb by Youngs [9], and a time-space
conversion using Taylor’s hypothesis for the present convective
system.

hb = αAtgt2 = αAtg

(
x

U

)2

. (10)

For the present small Atwood number RT experiments, the
bubble mixing width hb can be taken as half of the total mixing
width [38]. This definition is extended to all the cases for the
calculation of the mixing width growth rate coefficient α. For
the cases with shear, the convective velocity is considered to
be the density weighted average velocity of both the streams.
At the present Atwood number of 0.035, the density weighted

average velocity and the arithmetic average velocity are close
(Table I). Kraft [39] used a linear fit between hb and Atgt2

in the self-similar regime (at roughly 1–1.2 m away from
the splitter plate) to determine the growth rate coefficient α.
Table III shows the growth rate coefficient values obtained
from this method in column 2. No particular trend is currently
observed for α using the linear fit method and the values are
within the range of 0.074–0.094.

Another linear fit method, similar to the one used by previ-
ous researchers (Banerjee et al. [38]), has been implemented to
calculate the value of α. This method uses a moving window,
in which a window of 100 pixels is moved downstream pixel
by pixel. In this window, a fit is made between the half mixing
width hb and Atgt2, and the slope of the line is taken as α at the
middle of the window. The mixing width growth rate variation
along the channel for the four cases is shown in Fig. 6(a).
In the RT self-similar regime, this method also finds an αvalue
in the same range as the earlier method (see Table III). Closer
to the splitter plate, the high shear case shows the highest value
of α due to faster growth of spanwise vortices. Far away from
the splitter plate and in the self-similar region, all the cases
have α value within the range of 0.073–0.094 (Fig. 6). The
way α is calculated for the KH + RT cases is reconsidered as
gt2 is not a proper scaling parameter for flows that have not yet
reached the buoyancy-governed region. One way to consider
the effect of shear in calculating α is proposed in Eq. (11),
where β is the initial KHI growth rate. The α and β values,
calculated using Eq. (11) by the moving window method, are
plotted in Fig. 6(b), and the values observed at the end of the
tunnel are tabulated in Table III. The value at the end of the
tunnel is calculated by averaging the value of α obtained from
the moving window averaging method in the last 40 cm of the
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FIG. 5. (Color online) (a) Mixing width variation for different
KH + RT cases, (b) expanded view near the origin showing the
variation closer to the splitter plate, and (c) mixing width variation
with time x/U .

tunnel. The value of β for KH + RT cases is obtained from
corresponding shear only case without buoyancy.

hb = β
�Ux

U
+ αAtg

(
x

U

)2

. (11)

The oscillatory behavior of α is caused by sudden changes
in the mixing width gradient from ensemble averaging.
Theoretically, this can be avoided by averaging a very large
number of images. After the transition region, α calculated

TABLE III. Comparison of growth rate coefficients α and β

values for different cases using Eqs. (10) and (11) with uncertainties
indicated in parentheses.

Case α from Eq. (10) α from Eq. (11) β

RT 0.074 (0.007) 0.074 (0.007) –
KH + RT 1 0.094 (0.007) 0.066 (0.007) 0.21
KH + RT 2 0.083 (0.007) 0.050 (0.007) 0.17

using Eq. (11) is closer to the RT self-similar value for the
KH + RT 1 case. For the KH + RT 1 case, the average α value
is close to zero before the transition region, where the flow
is KHI dominated, and slowly increased to a self-similar RTI
value after the transition where the flow is RTI dominated. For
the KH + RT 2 case, this transition is around 150 cm from the
splitter plate and close to the channel exit. We conclude that
the mixing layer may reach a self-similar value of RT case if
more distance is available. Thus, calculating α from Eq. (11)
tends to indicate more realistic values than just using Atgt2 as
a scaling parameter when shear is involved.

We now turn our attention to the transitional Richardson
number. The Richardson number, defined by Eq. (2), quantifies
the relative magnitudes of buoyancy compared with shear, and
is well known to be an important parameter for comparing
various experiments with different operating conditions. The
Richardson number value at which transition takes place from
the shear driven flow to buoyancy driven flow can be obtained
from the mixing width information. Here we determine the
transition Richardson number by observing the trend of the
mixing width gradient with downstream distance. The gradient
is calculated by a moving window technique, in which two
windows of 100 pixels in size (approximately 2 in.) are placed
side-by-side and traversed downstream. Mixing width values
are averaged in each window and the gradient is calculated
using the averaged values. The gradient values obtained for
the RT, KH + RT 1, KH + RT 2, and KH cases are plotted in
Fig. 7. The gradient variation shows oscillatory behavior due
to small fluctuations in the mixing width information obtained
from the image analysis.

Figure 7(a) shows a linear variation for the mixing width
gradient confirming a parabolic growth of the mixing width
for pure buoyancy driven mixing. Figure 7(d) shows a constant
mixing width gradient for the pure shear driven mixing. For
the compound KH + RT 1 case shown in Fig. 7(b), transition
from the shear dominated flow to the buoyancy dominated flow
is observed around 70–100 cm downstream distance, which
corresponds to a Richardson number range of − 1.6 to − 2.5.

TABLE II. Coefficients from curve fit for all five cases calculated using Eq. (9).

a0 a1 a2 a3 a4

RT 2.96 0.0135 0.003453 –2.00 × 10−5 5.40 × 10−8

KH + RT 1 2.51 0.1034 0.001698 –1.14 × 10−5 4.08 × 10−8

KH + RT 2 1.93 0.1468 0.000622 –4.90 × 10−6 1.96 × 10−8

KH + RT 3 3.04 0.1744 –5.63 × 10−5 6.97 × 10−7 2.56 × 10−9

KH 2.97 0.1795 –4.37 × 10−4 1.80 × 10−6 –2.61 × 10−9
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FIG. 6. (Color online) Variation of growth rate coefficient α along the channel for different cases (a) using Eq. (10), and (b) using Eq. (11).

The transition is further delayed for the KH + RT 2 case of
Fig. 7(c), due to stronger shear, to a downstream distance of
150–170 cm, which corresponds to a Richardson number range
of −1.5 to −1.8. Thus, the transition Richardson number for
KH + RT flows at the Atwood number of 0.035 is found to be in
the range of −1.5 to −2.5. To further check this result, another
experiment with �U = 0.3 m/s is performed at the same
Atwood number and the transition Richardson number found
to be closer to −1.5. According to Eq. (2), at a set Atwood
number, the Richardson number is only dependent upon the
ratio of h/(�U )2, and this ratio value is in between 4.5 and
7.0 in the transition region. Thus it can be interpreted that, for
KH + RT flows at the Atwood number 0.035, if the h/(�U )2

ratio crosses the value of 4.5–7.0, the velocity gradient �U is
spread over a larger distance across the region, and the rollup
structure of the shear cannot act against the buoyancy from
this point onwards.

We now consider the Reynolds numbers (Re) obtained
in the present KH + RT experiments. Snider and Andrews
[32] defined the mixing layer Reynolds number as Re = 2hv′

υ

for RTI flows. In this definition, the vertical velocity rms
fluctuation v′ is calculated based on the assumption that the loss
in potential energy is converted into turbulent kinetic energy
with linear density profile across the mixing layer. Then the
definition for Reynolds number becomes

Re = 2h3/2

ν

√
gAt

3
. (12)

Under this definition the KH + RT 1 experiment achieved
a Reynolds number around 6000 at the end of the chan-
nel, and the transition Reynolds number between KHI
dominated mixing to RTI dominated mixing is around
800–2000.
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FIG. 8. (Color online) (a) Variation of v′ along the channel for different cases; (b) variation of mixing growth coefficient α along the channel
calculated from Eq. (14).

B. S3WCA results

The S3WCA technique, described in the diagnostics section
above, is used to measure the instantaneous density and
velocity at different points in the channel. Measurements
at different streamwise locations from the splitter plate are
presented here for the RT, KH + RT 1, KH + RT 2, and KH
cases. The vertical velocity mean square fluctuation v′ is
an important turbulence parameter that governs the mixing
width [37], and is measured at the mixing layer centerline.
Equation (13) defines v′, where v is the vertical velocity
measured at an instant, v is the mean vertical velocity, and
N is the number of samples. According to [34] v′ can be
related to mixing width growth rate in a self-similar regime
by the relation given in Eq. (14). This equation is derived
by differentiating Eq. (10) with respect to time t from the
onset of instability. An interpretation of v′ is that it quantifies
the fluid movement in the vertical direction that contributes
to mixing layer growth. The faster the fluid moves in the
vertical direction, the higher the value of v′, which indicates
faster mixing layer growth. For example, v′ increases linearly
[Fig. 8(a)] with time (streamwise distance for the present
facility) in the RT case, indicating faster moving bubble and
spike structures developing with time, thus contributing to the
parabolic nature of the mixing layer. Furthermore, if v′ remains
constant with time for a self-similar plane mixing layer then
the mixing layer grows linearly.

v′ =
√∑

N

(v − v̄)2

N
, (13)

v′ = dh

dt
= 2αAtgt. (14)

Figure 8 shows the variation of v′ along the channel and
the growth rate values calculated from Eq. (14). For the plane
mixing layer problem (KH case), the v′ value is higher closer
to the plate and becomes constant in the self-similar regime.
This behavior is similar to the behavior reported by Bell and
Mehta [13] for untripped plane mixing layers. This higher
value of turbulent normal stress closer to the splitter plate
was attributed to larger turbulence production due to a higher
gradient of streamwise velocity in the boundary layers at
the splitter plate. For the RT case, v′ varies linearly in the
self-similar regime. For the KH + RT 1 case, the behavior
closer to the splitter plate resembles the KH case, and the

linear variation corresponding to RT is observed at the end
of the channel. The transition from KH to RT takes place at
a location of 60–100 cm (0.45 < τ < 0.65) from the splitter
plate, corresponding to a Richardson number of −1.6 to −2.5.
Similar transition behavior for KH + RT 2 case is observed
at 150–170 cm (0.95 < τ < 1.15) away from splitter plate
corresponding to a Ri number of −1.5 to −1.8. The length of
the present channel is not long enough to observe the transition
behavior for the KH + RT 3 case. The observations made here
support the image analysis results. The growth rate coefficient
α value [Fig. 8(b)] is higher closer to the splitter plate for
all cases, and it has the highest value for the KH + RT 2
case, which indicates the stronger effect of shear as shown
by visualization experiments. The growth rate coefficient for
all cases seems to converge to a value between 0.06 and 0.07
at the end of the channel. All the cases presented in Fig. 8
transitioned to RTI behavior at late time, thus the α values
calculated from Eq. (14) are valid at late times.

C. Molecular mixing parameter (θ )

Danckwerts [45] quantified the amount of molecular mixing
between two different materials by the intensity of segregation
(1 – θ ). The parameter θ is defined by Eq. (15) below and was
first adapted to RTI flows by Youngs [46], and subsequently
used by others ([37,38]) to quantify molecular mixing. Inside
the mixing layer, the θ value is equal to 1 when both the fluids
are completely molecularly mixed, and θ becomes zero when
the two fluids are immiscible. In Eq. (15), ρ is the instantaneous
density at a location, whereas ρ̄ is the time averaged density
for a total measurement duration of T . The instantaneous
density values are obtained from the SW3CA technique. The
top stream volume fraction f1 is defined by (15), where ρ

is the measured instantaneous density and ρ2 is the bottom
stream fluid density. The parameter B0 is the nondimensional
autocorrelation of the density, and B2 is the same correlation
for immiscible fluids. In Eq. (15), f̄1 is the time averaged top
stream volume fraction, and f̄2 is the time averaged bottom
stream volume fraction. The value of B2 is typically close to
its maximum of 0.25 at the mixing layer centerline for RTI
mixing, as equal amounts of molecularly mixed top stream
and bottom stream fluids are observed. B0 measures the rms
density fluctuation, and becomes equal to zero either when the
fluids are completely mixed, or at the edge of the mix where
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only one fluid is available.

θ = 1 − B0

B2
,

B0 = lim
T →∞

1

T

∫ T

0

(ρ − ρ̄)2

(�ρ)2
dt ; B2 = f̄1f̄2, (15)

f̄1 = 1

T

∫ T

0

(ρ − ρ2)

�ρ
dt ; f̄2 = 1 − f̄1.

Another parameter �, known as chemical product thick-
ness, defined by Eq. (16), is also used by many researchers
([47,48]) to quantify molecular mixing in a fast-kinetic
chemical reaction where the product formed is limited by the
amount of lean reactant. The definition of �, used by Cook
and Dimotakis [47] and Youngs [48], is an integrated parameter
across the mixing layer. In the present work another parameter
ξ is defined at the centerline of the mixing layer, which is
similar to the parameter �. Banerjee et al. [38] have found
that the variation of ξ is small across the mixing layer; thus it
can be expected that the value of ξ will be close to the value of
�. We found that the variation of ξ is identical to the variation
of θ along the mixing layer, so either of the parameters can be
used to quantify the molecular mixing.

� =
∫∫

min(f1,f2)dtdy∫
min(f̄1,f̄2)dy

,

(16)

ξ =
∫

min(f1,f2)dt

min(f̄1,f̄2)
.

The variation of θ , measured at the mixing layer centerline,

with nondimensional time τ = x
U

√
Atg

H
for RT, KH + RT 1, and

KH + RT 2 cases is plotted in Fig. 9(c). In the late self-similar
regime (τ > 1), θ value lies in between 0.72 and 0.74 for
RTI and is in good agreement with the previously reported
values [37,38]. At τ = 0.83, where the RT plume structures
are smaller in size, the value of θ is less than 0.7. At τ = 1.4,
the value of θ is around 0.73 indicating that the fluids are well
mixed compared with early times. This higher value of θ at late
times is due to large secondary KH rollup structures developed
between the bubbles and spikes, creating more interfacial area
between the fluids [38].

For KH + RT cases, the molecular mixing is higher at
earlier times as indicated by higher values of θ from Fig. 9(c).
For KHI, the mixing layer is dominated by spanwise vortical
structures, and these structures create a higher contact area
between the two streams compared with RTI structures due to
the rolling up of one fluid around another. The larger contact
area gives a higher amount of molecular mixing. RTI plume
structures are primarily vertical and fine scale mixing is due
to shear generated by the rising bubbles and falling spikes.
Inspection of Fig. 3 shows that the flow is initially dominated
by spanwise vortical rollups for the KH + RT cases. For the
KH + RT 2 case, θ value is 0.81 at τ = 0.3–0.6, and it is
higher than the θ value of the self-similar RTI layer. This
early-time θ value is around 0.78 for the KH + RT 1 case,
which is smaller than KH + RT 2 case due to smaller spanwise
vortices formed because of the smaller amount of shear. The
transition from KHI to RTI happens between τ values of
0.97–1.2 for the KH + RT 2 case, and between 0.4 and 0.6
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for the KH + RT 1 case. For both KH + RT cases, before
the transition, the θ value is reasonably constant and starts
dropping in the transition region. This drop in the value of θ

can be attributed to the breakup of the rollup structure. The
value of θ follows the RTI trend after the transition region,
indicated by the values measured at the end of the test section
that are close to the RTI values for the KH + RT 1 case. The
parameters that define θ , B0, and B2 are plotted in Figs. 9(a)
and 9(b). The value of B2 is equal to 0.25 at the center of the
mixing layer and the variation B0 directly affects the variation
of θ . A larger value of B0 (variance of density fluctuation) at
the mixing layer centerline shows that the diffusion between
the gases is not complete, due to smaller interfacial area in
the present case, which gives the smaller value for θ . The
variation of B0 with τ is similar to (mirror) θ as B2 remained
the same for all cases. The probability density function (PDF)
distributions of density fluctuations for RT, KH + RT 1, and
KH + RT 2 cases are shown in Fig. 10. The KH case is not
considered here as there is no density difference between the
streams.

PDF distribution of density fluctuation is a useful tool to
understand the mixing process. The amplitude of the peaks
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FIG. 10. (Color online) Probability density function distribution
of density fluctuations at different times (τ = x

U

√
At g

H
) indicated on

plots for (a) RT, (b) KH + RT 1, and (c) KH + RT 2.

in the PDF distribution and their location on the density
fluctuation axis gives information about the amount of fluid
present in a particular mixed state as well as the information
about that mixing state (whether it is a pure or mixed fluid).
For RTI at τ = 0.83, the PDF function in Fig. 10(a) shows two

peaks at the ends indicating that a lesser amount of molecularly
mixed fluid is available at the center of the mix, which gives a
θ value of less than 0.7. Figure 10(a) also shows a broader and
higher peak at the center of the PDF at τ = 1.4, indicating that
the fluids are well mixed compared with earlier times resulting
in a higher value of θ (see Fig. 9). At early times (τ<0.6)
for KH + RT cases, PDF distributions from Figs. 10(b) and
10(c) show a larger peak at the center in contrast to RTI at
early times where the distribution is bimodal at the ends with
smaller and broader distribution at the center. A higher amount
of molecularly mixed fluid is observed at the center of the
distribution due to the rollup structure of the KH instability
for KH + RT cases at early times. This height of the peak at
the center of the PDF for the KH + RT 2 case is larger (around
2.5 at τ = 0.49) than the late-time RTI peak height at the
center (around 1.5 at τ = 1.4). This shows that the primary
rollup structure of shear is more effective in molecularly
mixing the fluids than the vertical plume structure of the RTI
where the rollups are small, and higher in number. At early
times, the KH + RT cases have not shown any peaks at
the end of PDF distribution indicating that all the fluid is
molecularly mixed with no or little amount of pure fluid.
For comparison, the PDF distributions are plotted again
in Figs. 11(a) and 11(b) at approximately same τ for all
cases. The height of these center peaks is larger for the
KH + RT 2 case compared with the KH + RT 1 case at
the same τ ∼ 0.95 [Fig. 11(a)], indicating that the higher
amount of shear caused a higher amount of molecularly mixed
fluid.

For KH + RT flows, the amplitude of the peaks at the center
of the PDF distributions decreased as the transition region
to RTI is approached [Fig. 10(c), τ = 0.98]. The difference
between the heights of the center peaks also reduced as both
the KH + RT 1 and KH + RT 2 cases approached transition to
RTI [Fig. 11(b)]. As the rollup structure has grown in size due
to the stretching by buoyancy, and the fresh fluid is entrained
into the mixing layer, the amount of fully molecularly mixed
fluid present at the center is reduced. However, the θ value in
this region is still higher than the self-similar RTI value. After
the transition region, increasingly more fluid is entrained from
the free stream, and the rollup structure is replaced with the
RTI vertical plume structure and causes the PDF distribution
to look like RTI PDF distributions at late times [Fig. 10(a),
τ = 1.4 and Fig. 10(b), τ = 1.32].
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FIG. 11. (Color online) Comparison of PDF distributions (from Fig. 10) for all the cases at similar values of (a) τ ∼ 0.9, (b) τ ∼ 1.35.
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V. CONCLUSIONS

The effect of shear on Rayleigh-Taylor instability is studied
at an Atwood number of approximately 0.035 in a convective-
type statistically steady gas channel facility at Texas A&M
University. The top stream velocity is varied from 1.0 to 2.0
times that of the bottom stream. Mixing width data obtained
from the visualization experiments have shown that the flow
closer to the splitter plate is governed by spanwise vortical
structures from the Kelvin-Helmholtz instability, while away
from the splitter plate it is governed by vertical plume
structures from the Rayleigh-Taylor instability. This fact is
also confirmed by simultaneous three wire and cold wire
anemometry used for density and velocity measurements.
The growth rate coefficient, calculated based on the vertical
velocity fluctuation, appears to converge to a single value
(0.06–0.07), which is closer to that of the RT case at the
end of the channel, irrespective of the amount of shear
present in the flow at the splitter plate. Results from the
measurements suggest that a transition from KHI-like behavior

to RTI-like behavior for compound shear and buoyancy driven
flows occurs around a Richardson number value of −1.5
to −2.5 at the Atwood number of 0.035. PDF distributions
of density fluctuations and the molecular mixing parameter
θ , for different cases at the mixing centerline, indicate that
the rollup structure of KHI is more effective in molecularly
mixing the fluids at the mixing layer centerline than the RTI
plume structure where the rollup structure is small (secondary)
and higher in numbers. This observation has significant
implications for reactive flows.

ACKNOWLEDGMENTS

This paper is based upon the work supported by the US
DOE-NNSA under Contract No. DE-FG52-09NA29462. The
authors would like to thank Jacob McFarland and others for
their help in setting up the experimental facility. The authors
would like to thank the reviewers for their valuable comments
and suggestions to improve the quality of the paper.

[1] J. S. Turner, Buoyancy Effects in Fluids (Cambridge University
Press, Cambridge, 1980).

[2] K. Nagata and S. Komori, J. Fluid Mech. 408, 39 (2000).
[3] J. Imberger and P. Hamblin, Annu. Rev. Fluid Mech. 14, 153

(1982).
[4] D. H. Sharp, Physica D 12, 3 (1984).
[5] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability

(Dover Publications, New York, 1961).
[6] K. O. Mikaelian, Phys. Fluids 6, 1943 (1994).
[7] N. M. Hoffman, in Laser Plasma Interactions 5: Inertial

Confinement Fusion, edited by M. B. Hooper (Taylor & Francis,
New York, 1995), p. 105.

[8] V. A. Thomas and R. J. Kares, Phys. Rev. Lett. 109, 075004
(2012).

[9] D. L. Youngs, Physica D 12, 32 (1984).
[10] P. G. Drazin and W. H. Reid, Hydrodynamic Stability

(Cambridge University Press, Cambridge, 2004).
[11] D. Lewis, Proc. R. Soc. London, Ser. A 202, 81 (1950).
[12] K. Read, Physica D 12, 45 (1984).
[13] J. H. Bell and R. D. Mehta, AIAA J. 28, 2034 (1990).
[14] S. B. Pope, Turbulent Flows (Cambridge University Press,

Cambridge, 2000).
[15] G. Dimonte, D. Youngs, A. Dimits, S. Weber, M. Marinak,

S. Wunsch, C. Garasi, A. Robinson, M. Andrews, and
P. Ramaprabhu, Phys. Fluids 16, 1668 (2004).
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