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Description of non-Darcy flows in porous medium systems
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Fluid flow through isotropic and anisotropic porous medium systems is investigated for a range of Reynolds
numbers corresponding to both Darcy and non-Darcy regimes. A non-dimensional formulation is developed for
a Forchheimer approximation of the momentum balance, and lattice Boltzmann simulations are used to elucidate
the effects of porous medium characteristics on macroscale constitutive relation parameters. The geometric
orientation tensor of the solid phase is posited as a morphological measure of leading-order importance for
the description of anisotropic flows. Simulation results are presented to confirm this hypothesis, and parameter
correlations are developed to predict closure relation coefficients as a function of porous medium porosity, specific
interfacial area of the solid phase, and the geometric orientation tensor. The developed correlations provide
improved estimates of model coefficients compared to available estimates and extend predictive capabilities
to fully determine macroscopic momentum parameters for three-dimensional flows in anisotropic porous
media.
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I. INTRODUCTION

The equations that describe single-fluid-phase flow provide
a fundamental basis for our understanding of the influence
of of the pore morphology and topology on momentum
transport in porous media. Expressions such as Darcy’s law and
Forchheimer’s equation describe flow processes in an averaged
approximate sense, such that the complex microscopic struc-
ture typical of porous media can be effectively described using
a small number of macroscopic parameters [1,2]. The capacity
to describe flow processes for a wide range of pore structures
is contingent on our ability to identify and quantify the
morphological and topological properties of a porous medium
that are of leading-order importance. Existing correlations
predict parameters associated with approximations to the
conservation of momentum equation using only the porosity
and Sauter-mean diameter as the primary measures of porous
medium morphology [3–5]. These correlations have been
developed for restricted ranges of Reynolds numbers (Re)
and porous medium morphologies. Furthermore, the available
parametric correlations are insufficient to describe anisotropic
systems where directional dependent effects impact the flow
behavior. Proper mathematical description of anisotropy is
essential to predict transport phenomena in many naturally
occurring porous media.

The current state of knowledge categorizes single-fluid-
phase flow into two primary regimes: a creeping flow regime,
corresponding to low flow velocities in which viscous forces
completely dominate inertial forces, and a regime correspond-
ing to flow velocities for which inertial forces cannot be
neglected [6–13]. These two regimes are most commonly
modeled by two approximations of the macroscale momentum
equation for single-fluid-phase flow through a porous media:
Darcy’s law and Forchheimer’s equation, respectively. The
one-dimensional forms of these equations, which apply to
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isotropic flows, are familiar and have been studied extensively
[1–3,14–19]. More recent work has focused on deriving these
traditional models for single-fluid-phase flow from first prin-
ciples and linking macroscopic phenomena with microscopic
flow behavior [6,20–26]. Investigations have also linked the
macroscopic permeability to tortuosity in both isotropic and
anisotropic porous media [27–30]. While the anisotropic form
of Darcy’s law is relatively well established, the proper form
of the inertial correction term remains a matter of debate and
predictive correlations for parameters in the anisotropic case
are unavailable at present.

As details of porous medium microstructure become in-
creasingly accessible, opportunities exist to use this informa-
tion to advance a more complete macroscopic understanding of
flow through porous media. Computed microtomography tech-
niques can provide three-dimensional, high-resolution images
that reveal the pore structure for a wide range of materials
[31]. Numerical simulation techniques permit the study of
increasingly large systems that can approach or exceed the
size required for system properties to become size independent
provided that systems are homogeneous at the macroscale.
The emergence of these technologies provides ample oppor-
tunities to exploit information collected in the field, such as
imaging of core data. Most typically, properties such as the
permeability and porosity are considered [32–34]. However,
we suggest that the amount of predictive information that can
be extracted from such data can be extended significantly based
on current technology, particularly for anisotropic porous
media.

The present state of knowledge is hindered by an in-
complete understanding of non-Darcy flow in general at
the macroscale, insufficient links between microscale porous
medium morphology and anisotropic flow characteristics, and
the lack of generally applicable estimations of parameters
appearing in common flow equations. The development of
the thermodynamically constrained averaging theory provides
an opportunity to advance such descriptions by explicitly
connecting spatial scales and identifying critical variables
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expected to affect single-fluid-phase flow [35]. This work
capitalizes on that opportunity.

The primary objectives of this work are
(i) to develop a means to generate systematically isotropic

and anisotropic porous medium systems with varying proper-
ties;

(ii) to perform highly resolved microscale simulations for
a wide variety of porous medium systems at a scale that is
sufficient to ensure a representative elementary volume (REV)
for describing macroscale systems and hence the generality of
the results;

(iii) to develop a formulation of the macroscale momentum
resistance tensor that is consistent with microscale observa-
tions of anisotropic, non-Darcy flow behavior;

(iv) to identify porous medium characteristics that are of
leading-order importance for determining parameter values
appearing in macroscale equations used to describe fluid flow;

(v) to derive an expression that can be used to relate media
properties to macroscale flow parameters; and

(vi) to compare parameter correlations developed based
upon this work with existing correlations.

II. BACKGROUND

A. Non-Darcy flow

The three-dimensional momentum equation for
single-phase flow in anisotropic porous media is approximated
by [35]

−∇pw + ρwgw = R̂
w·vw, (1)

where pw is the volume-averaged fluid pressure of phase
w, ρw is the volume-averaged mass density, gw is the
mass-averaged gravitational acceleration vector, and vw is
the mass-averaged velocity vector. The momentum resistance
tensor R̂

w
must be symmetric and positive semidefinite

to ensure that the entropy production is non-negative. We
consider Eq. (1) written in the form

ψ |−∇pw + ρwgw| = R̂
w·ω|vw|. (2)

Unit vectors provide the force orientation,

ψ = −∇pw + ρwgw

|−∇pw + ρwgw| , (3)

and flow orientation,

ω = vw

|vw| . (4)

Since ψ and ω are dimensionless unit vectors, the dimensioned
variables of importance can be identified as

|−∇pw + ρwgw| [m/(l2t2)], (5)

|vw| [l/t], (6)

ρw [m/l3], (7)

μ̂w [m/(lt)], (8)

εws [1/l], (9)

where μ̂w is the dynamic viscosity and εws is the surface area of
the ws interface per unit volume, which is equal to the specific
interfacial area of the solid for this single-fluid-phase system.
The surface-to-volume ratio is incorporated by using the Sauter
mean diameter as the representative length scale for the flow

d = 6
εs

εws
, (10)

where εs is the volume fraction of the solid phase.
For convenience, Eq. (2) can be arranged into a dimen-

sionless form to simplify the task of analyzing parametric
dependence on medium properties. Multiplying Eq. (2) by
ρwd3/(μ̂w)2 leads to the expression

ψFc = d2

μ̂w
R̂

w · ωRe, (11)

where the dimensionless forcing term is

Fc = ρwd3|−∇pw + ρwgw|
(μ̂w)2

(12)

and the Re is

Re = ρwd|vw|
μ̂w

. (13)

The momentum resistance tensor is symmetric and positive
semidefinite and can be written in the form

d2

μ̂w
R̂

w = Qw·�w·(Qw)−1, (14)

where the column vectors of Qw are a set of orthonormal
eigenvectors of R̂

w
, denoted qw

i , i = 1,2,3. The diagonal
tensor �w contains the associated eigenvalues �w

i . The
eigenvectors of R̂

w
are assumed to be a property of the porous

medium only.
The dependence of the momentum resistance on the flow

velocity has been studied extensively for one-dimensional
flows [2,6,8,21,22]. This dependence is introduced into the
three-dimensional form by assuming that the eigenvalues �w

i

are a function of Re. For sufficiently small Re, a linear
expansion can be applied to describe the flow behavior

�w
i (Re) ≈ �a

i + �b
i Re. (15)

Based on this expansion the momentum resistance tensor takes
the form

d2

μ̂w
R̂

w = A + BRe, (16)

where the Darcy momentum resistance tensor is

A = Qw·�a·(Qw)−1, (17)

and the inertial momentum resistance tensor is

B = Qw·�b·(Qw)−1. (18)

The diagonal tensors �a and �b provide the momentum re-
sistance coefficients associated with the Darcy and non-Darcy
flow effects. The diagonal values �a

i specify the momentum
resistance associated with qw

i within the Darcy regime and
the diagonal values �b

i account for the inertial correction that
becomes important in the non-Darcy regime. While there are
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three independent components of vw, the dependence on Re
only considers the influence of the lone invariant quantity |vw|.
The remaining two independent quantities are provided by the
flow orientation ω. If A and B are independent of ω, Eq. (16) is
a dimensionless form for the momentum resistance proposed
by Wang et al. [27]. However, the directional-dependent flow
behavior observed by McClure et al. suggests that the inertial
momentum resistance tensor must also be a function of ω for
certain systems [36].

It would be advantageous to be able to predict A and B
based on the knowledge of a small set of easily measured
quantities. These tensors provide a macroscopic measure of
the momentum resistance associated with a particular porous
medium and, therefore, depend on measures of the pore
morphology and topology. In the dimensionless formulation
this influence can be incorporated by identifying a set of
dimensionless measures that can be functionally related to
the components of A and B to produce predictive forms.

B. Correlations for flow in isotropic porous media

When the porous medium is isotropic, the tensors appearing
in Eq. (16) must reduce to

A = a∗I, (19)

B = b∗I, (20)

where a∗ and b∗ are momentum resistance coefficients that
apply for flows in isotropic porous media. Such flows can be
described using the resulting one-dimensional counterpart to
Eq. (11):

Fc = a∗Re + b∗Re2. (21)

The dependence of the coefficients a∗ and b∗ on the
porous medium morphology has been studied extensively
[4,5,37–40]. With surface-to-volume effects accounted for
by the length scale definition given in Eq. (10), existing
correlations typically predict the coefficient values a∗ and
b∗ as functions of the volume fraction of the w phase εw,
or, equivalently, the porosity for this single-fluid-phase case,
which is given by

ε = 1 − εs. (22)

The most well known of these expressions is Ergun’s equa-
tion, which specifies functional forms for the dimensionless
permeability,

a∗
e = ε2

α∗
e (1 − ε)2

, (23)

and inertial coefficient,

b∗
e = β∗

e

(1 − ε)

ε
. (24)

Ergun [3] suggested that α∗
e = 150 and β∗

e = 1.75, but several
values for the coefficients have been proposed. When α∗

e =
180, Eq. (23) is the widely used Carman-Kozeny relationship
[41]. MacDonald et al. [5] determined that 1.8 � β∗

e � 4.0
served to match experimental data from six different porous
medium systems. For the case of Darcy flow, Rumpf and Gupte

[4] predict the permeability using the relationship

a∗
rg = 5.6ε−5.5. (25)

Pan et al. [39] found that the Carmen-Kozeny relationship
underestimates the permeability and observed deviations from
the Rumpf-Gupte relation when systems outside the range
of experimental support for this expression were considered.
They proposed an alternative correlation form in which
an additional dimensionless variable, the relative standard
deviation σ̃D , was also included, whereby

a∗
p = α∗

p1
εα∗

p2(
1 + α∗

p3σ̃
α∗

p4

D

) , (26)

where α∗
p1, α∗

p2, α∗
p3, and α∗

p4 are best-fit coefficients.

III. METHODS

The objectives of this work are accomplished using a
simulation approach that relies upon the generation of a large
set of isotropic and anisotropic porous medium systems with
specified variations in size, shape, orientation, and porosity.
The factors of leading-order importance for non-Darcy flow
in anisotropic systems must first be posited and then evaluated
and compared to simulation results. Simulations must be
highly resolved microscale simulations of sufficient size
to yield a reliable measure of a macroscale system. Each
component of these methods is described in turn.

A. Generation of sphere and ellipsoid packs

Surrogate porous media were constructed by generating
sphere packs with log-normally distributed radii ri . The
sphere centroids, ci , i = 1,2, . . . ,Ns , were determined by a
collective rearrangement algorithm designed for applications
in porous media. The algorithm is a modified version of the
one developed by Williams and Philipse to generate packs
of sphereocylinders [42]. Our version of the algorithm is
constructed to provide precise control over the final system
porosity ε and to accommodate a lognormal size distribution
for the sphere radii. Initially, a system of spheres is instantiated
into a domain of fixed size. The initial sphere radii are
assigned from a lognormal distribution with variance σ 2 and an
initial mean μ0. The sphere centroids are initially distributed
randomly based upon a uniform distribution throughout the
domain, which is a rectangular prism with sides of length
Lx,Ly , and Lz. The initialization is summarized in the
following pseudocode:

for i = 1,2, . . . ,Ns do
log(ri) ← Normal(μ0,σ

2)
ci,x ← Uniform(0,Lx)
ci,y ← Uniform(0,Ly)
ci,z ← Uniform(0,Lz)

end for
The value of μ0 is chosen so that the initial porosity is high

based on the size of the system (in our case the initial porosity is
ε0 = 0.80). Once the initial system of spheres has been created,
a collective rearrangement algorithm is applied to sequentially
increase the size of the radii ri using a constant rescaling
factor λ, thereby decreasing ε until the desired porosity is
reached. As the sizes of the radii are increased, the value of
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μ will increase and the system porosity will decrease. Each
time the radii are rescaled an iterative procedure is applied to
shift the sphere centroids so that all overlaps are eliminated.
The direction to shift each sphere is determined by the overlap
vector 
xi . The parameter κ was introduced in order to provide
a way to tune the rate of convergence, which is increasingly
important as σ 2 increases. This is due to the fact that sphere
overlaps frequently occur between spheres of widely disparate
radii as σ 2 increases. A value of κ = 0.6 was sufficient for the
systems considered in this work. However, it may be necessary
to consider smaller values of κ to generate systems with larger
values of σ 2. The rescaling procedure is summarized in the
following pseudocode:

while
∑

i

4πr3
i

3 < (1 − ε)LxLyLz do
ri ← λri

μ ← μ + log(λ)
while maxi,j (|ci − cj | − ri − rj ) > 1 × 10−10 do

for i = 1,2, . . . ,Ns do

xi = ∑

j �=i[|ci − cj | − (ri + rj )](ci − cj )
end for
for i = 1,2, . . . ,Ns do

ci ← ci + κ
xi

end for
end while

end while
Full periodic boundary conditions are enforced, which elimi-
nates the potential for boundary effects. For the homogeneous
case σ 2 = 0 the minimum achievable porosity approaches
0.367, which is a well-established result for random close
packs of equally sized spheres [43,44]. Lower porosity values
become accessible as σ 2 increases. The variance σ 2 is specified
as an input parameter and is unchanged by the rescaling
procedure. The final value of μ is determined from the desired
porosity, which can be estimated using the equation

ε = 1 − 4πNsE
[
r3
i

]
3LxLyLz

, (27)

where the expected value of the cube of the radius is

E
[
r3
i

] = exp
(
3μ + 9

2σ 2
)
. (28)

Then insertion of Eq. (28) into Eq. (27) and solution for μ

yields

μ = 1

3
log

(
3 (1 − ε) LxLyLz

4πNs

)
− 3

2
σ 2, (29)

which relates the final mean radius for the lognormal distribu-
tion to the two independent input parameters ε and σ 2.

The coordination number was used to evaluate the stability
of each packing in a gravitational field. For a coordination
number greater than 6, the average number of spheres
supporting each sphere is at least three. This threshold was
used to establish an upper limit on the maximum porosity for
a stable packing at a prescribed variance. The porosity ranges
obtained for each variance are listed in Table I.

Anisotropic systems were constructed by applying the
mapping {ηx,γy,ζ z} → {x ′,y ′,z′} to sphere packs. In this
work the stretch factors fall within the range of 1 � η,γ,ζ �
1.7. This procedure stretches the sphere packs to yield a system
of axially aligned ellipsoids. The resulting ellipsoid surfaces

TABLE I. Range of stable, accessible porosity values for log-
normal sphere packs.

Variance (σ 2) Porosity range

0 0.37–0.60
0.1 0.35–0.54
0.2 0.32–0.48
0.3 0.30–0.42

are given by the equation
(

x ′ − c′
x

ηr

)2

+
(

y ′ − c′
y

γ r

)2

+
(

z′ − c′
z

ζ r

)2

= 1, (30)

where {c′
x,c

′
y,c

′
z} = {ηcx,γ cy,ζ cz}. This mapping preserves

both media porosity and grain contacts and can be used
to generate a sequence of anisotropic media by considering
different stretch factors η, γ , and ζ applied to a given
sphere packing. While alternative algorithms exist to generate
anisotropic media, this approach is advantageous due to the
fact that each anisotropic packing is directly associated with
an isotropic counterpart. Changes in the coefficient values can
therefore be directly associated with changes in the system
anisotropy with a minimum number of confounding factors.

B. The orientation tensor as a quantitative
measure of anisotropy

In order to extend the relationships developed for isotropic
porous media to anisotropic systems, a dimensionless mor-
phological measure of anisotropy must be identified and
functionally related to A and B. In this work, we consider
the average geometric orientation tensor [45] for the ws, or
solid, surface as a quantitative measure of anisotropy,

Gws =
∫
�s

nsns dr∫
�s

dr
, (31)

where ns is the unit vector outward normal to the solid
surface �s .

The spectral decomposition of Gws provides a straightfor-
ward way to determine the anisotropic properties of a porous
medium. The orientation tensor is symmetric and can be
expressed in the form

Gws = Qs·�s·(Qs)−1, (32)

where orthonormal eigenvectors of Gws serve as the column
vectors of Qs . The eigenvectors are denoted qs

i , i = 1,2,3. The
diagonal matrix �s contains the associated eigenvalues �s

i .
Since ns is a unit vector, the first invariant of the orientation
tensor places a constraint on the eigenvalues

tr(Gws) = tr(�s) = 1. (33)

This implies that the tensor is uniquely specified according to
two independent quantities and establishes that �s

1 = �s
2 =

�s
3 = 1/3 for an isotropic system.
The eigenvectors provide the principal directions of

anisotropy and the eigenvalues quantify the relative surface
orientation associated with each eigenvector. The significance
of these quantities is illustrated by the simple case of a
rectangular prism. Consider a rectangular prism for which Ax ,
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Ay , and Az denote the surface area of the x, y, and z faces,
respectively. Based on Eq. (31), the associated orientation
tensor can be computed as

Gws = 1

Ax + Ay + Az

⎡
⎣Ax 0 0

0 Ay 0
0 0 Az

⎤
⎦ . (34)

For this geometry the eigenvectors align with the coordinate
axes and the eigenvalues are

�s
0 = Ax

Ax + Ay + Az

, (35)

�s
1 = Ay

Ax + Ay + Az

, and (36)

�s
2 = Az

Ax + Ay + Az

. (37)

Each eigenvalue �s
i has the straightforward interpretation as

the relative area of the part of the surface that has a normal
vector aligned with qs

i .
Since �s

i are dimensionless and provide a quantitative
measure of anisotropy, it is natural to incorporate them
into functional forms to predict the coefficients �a

i and
�b

i . Furthermore, if qs
i can be used to approximate qw

i the
momentum resistance tensor R̂

w
can be fully predicted using

a small set of morphological information: ε, εws , and Gws . This
posited leading-order dependency will be investigated through
a series of highly resolved simulations.

C. Lattice Boltzmann scheme

Simulations were carried out using a three-dimensional, 19-
velocity-vector (D3Q19), multi-relaxation-time lattice Boltz-
mann (LB) scheme [46,47]. The LB scheme recovers the
Navier-Stokes equations to second order and is valid within
both the Darcy and the non-Darcy regimes. A solution for
the pore-scale velocity field vw was obtained by simulating a
steady-state flow driven by an external force gw. Full periodic
boundary conditions were used for all simulations, ensuring
that ∇pw = 0. The density was given by ρw = 1 for all
simulations. Prescribing gw in addition to the fluid viscosity μ̂w

directly determines the value of Fc and ψ for each steady-state
simulation. Based on the microscale steady-state velocity field,
the macroscopic velocity was computed according to

vw =
∫
�w

ρwvw dr∫
�w

ρw dr
. (38)

The macroscopic velocity can be used to compute the Re
according to Eq. (13), and ω may be computed from Eq. (4).

D. Determination of representative elementary volumes

To ensure that the macroscopic results are independent of
the domain size, each simulated system was large enough to
be considered an REV. For the generated packing to be a valid
REV, the resistance tensor must be independent of both the
lattice size of the simulated domain and the packing size of
the generated media.

Simulations were performed to generate flows for a se-
quence of Re < 120. The upper bound on Re was selected to
ensure that a steady state was achieved. Higher values of Re

TABLE II. Domain sizes and resolution necessary to achieve a
grid-independent REV.

σ 2 Ns n3 D (pixels)

0 1500 3603 33
0.1 1500 3803 30
0.2 3000 4603 28
0.3 4000 4903 25

lead to unsteady flows in which vortex shedding may occur. A
least-squares fit of Eq. (21) was applied to the simulation data
to obtain the corresponding values of a∗ and b∗. To develop a
porous medium that yielded grid-independent results, a system
containing a set number of spheres was packed and the lattice
size was increased until the resistance tensor converged to one
definitive solution. This determined the number of lattice sites
needed to resolve the mean grain diameter:

D = exp
[
μ + 1

2σ 2
]
. (39)

The resulting parameter values are listed in Table II. Since
the relative error for Eq. (21) was of order 1 × 10−2, it was
determined that was an appropriate threshold to determine the
REV for the purposes of this work. REV size was determined
by incrementally increasing the number of spheres until the
variation in the parameters a∗ and b∗ decreased below 1 ×
10−2, relative to the values a∗

∞ and b∗∞ obtained at the highest
resolution. The relative variations of these quantities are shown
as functions of sphere number for each variance of lognormal
distributed radii in Fig. 1. Table II lists the number of spheres
and cubic lattice sizes that define an REV porous medium for
each variance of the log-normally distributed radii.

IV. RESULTS AND DISCUSSION

A. Approximating the eigenvectors of the momentum
resistance tensor

In order to produce useful parameter estimates for the
anisotropic form of the momentum resistance tensor, the
eigenvectors of R̂

w
must be associated with morphological

properties of the solid phase. In an isotropic system every real-
valued vector is an eigenvector of the momentum resistance
tensor. This is readily apparent from Eq. (20). This is no longer
the case for anisotropic systems. In anisotropic systems the
eigenvectors qw

i correspond to those directions for which the
force and flow orientations align. Identification of qw

i greatly
simplifies the task of generating parameter estimates of R̂

w

since it reduces the number of undetermined parameters. Since
the eigenvectors of Gws provide a way to identify principal
directions of anisotropy in a given media, it is natural to relate
them to the eigenvectors of R̂

w
.

The two-dimensional flows depicted in Fig. 2 provide
physical insight into the significance of the eigenvectors in
non-Darcy flows. In this case, the symmetry of the solid
geometry ensures that eigenvectors of Gws align with the
coordinate axes. When ψ aligns with one of these eigenvectors,
the resulting flow orientation satisfies ω = ψ = qs

i , as in
Figs. 2(a), 2(b), 2(d), and 2(e). The implication is that for
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(a) Permeability (b) Inertial

FIG. 1. Coefficient values relative to the associated REV obtained for a∗ and b∗ for a range of sphere packs.

this case the eigenvectors of Gws are also eigenvectors of R̂
w

.
Figures 2(c) and 2(f) demonstrate that ψ and ω will generally
not be aligned in anisotropic systems.

Specifying the force orientation as ψ = qs
i permits us to

quantitatively evaluate whether qs
i is an eigenvector of R̂

w
for a

particular porous medium. The corresponding flow orientation
ω can be obtained by simulating the steady-state velocity
field. If qs

i is an eigenvector of R̂
w

, qs
i · ω = 1. The accuracy

of the eigenvector approximation qw
i ≈ qs

i can therefore be
evaluated by computing |1 − ψ · ω|. This error is plotted in
Fig. 3 as a function of the Re. The properties of the associated
ellipsoid packing were ε = 0.38, �s

0 = 0.46, �s
1 = 0.25, and

�s
2 = 0.29. These results demonstrate that the eigenvectors of

Gws provide an accurate way to identify the eigenvectors of
R̂

w
for ellipsoid packs. The extensibility of this result to more

general anisotropic media requires further study. Based on this
approximation, we can write

A = Qs·�a·(Qs)−1, (40)

B = Qs·�b·(Qs)−1. (41)

The task is thereby simplified to develop predictive relation-
ships laws to approximate �a and �b. Specific forms are
presented in Sec. IV E.

B. Dependence on the flow orientation

It has been known for over a century that the inertial
correction to Darcy’s law depends on the flow velocity [2,3].
The precise form of this dependence has been the subject
of ongoing study [27,48,49]. For one-dimensional flows, this
dependence can be expressed in terms of Re without a loss
of generality. For three-dimensional flows Re accounts for
only the invariant of the velocity vector, |vw|, leaving two
independent components unaccounted for. The remaining
two independent components specify the flow orientation
ω. Understanding how the momentum resistance depends

on the flow orientation represents an important challenge to
understanding flow processes in anisotropic porous media.

The dependence of the momentum resistance on Re is
already established by Eq. (16). If the correction to Darcy’s
law is presumed to depend generally on vw, the implication is
that B is also a function of ω, of which only two components
are independent. The first problem is that the components of
ω are inherently determined by the coordinate system. Since
the coordinate system is arbitrary, we must develop a way to
study the impact of the flow orientation that is independent of
this choice. Since the projection of the flow orientation onto
the eigenvectors qs

i does not depend on the coordinate system,
we consider how �b depends on the three quantities ω · qs

0,
ω · qs

1, and ω · qs
2.

Due to the fact that ω has a fixed unit length, a Taylor series
cannot be applied to approximate the associated impact on the
flow behavior. As a consequence, determining the functional
dependence of B on the flow orientation requires empiricism.
However, the form of this dependence is subject to restrictions.
First, in isotropic porous media Eq. (20) must be recovered for
all possible flow orientations. Second, entropy production must
be positive for all Re. In order to satisfy these constraints, we
propose that the eigenvalues of B can be predicted by the form

�b
i = �

b(0)
i

∣∣ω · qs
0

∣∣ + �
b(1)
i

∣∣ω · qs
1

∣∣ + �
b(2)
i

∣∣ω · qs
2

∣∣∣∣ω · qs
0

∣∣ + ∣∣ω · qs
1

∣∣ + ∣∣ω · qs
2

∣∣ . (42)

The coefficients �
b(j )
i are functions of the porous medium

morphology that determine the inertial contribution to mo-
mentum resistance in the direction of qs

i that results from a
change in the projection of ω on qs

j . A total of nine coefficients
are necessary to specify B in addition to the eigenvectors. The
work of McClure et al. [36] suggests that �b(j )

i will also depend
on the signed values of ω · qs

i for certain porous media. This
possibility is not explored in this work.
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FIG. 2. (Color online) Streamlines resulting from Darcy (a)–(c) and non-Darcy (d)–(f) flows obtained using various force orientations in
a simple periodic two-dimensional flow geometry. Darcy flows correspond to Re = 0.01 and non-Darcy flows correspond to Re = 100. The
grayscale (color) value represents the magnitude of the flow velocity |vw|.

C. Physical significance of flow coefficients and eigenvectors

Recent work investigating the microscopic origins of
inertial behavior in porous medium flows has linked the
formation of eddies with macroscopic deviations from Darcy’s
law [7,8,36,50]. This insight is particularly useful when
attempting to understand the three-dimensional form given
in Eq. (11). Eddies associated with the onset of inertial effects
distort the flow field such that the resistance to flow increases.
In anisotropic systems the size, shape, and location of these ed-
dies differ depending on the flow orientation, and correspond-
ing differences in the macroscopic flow behavior result. This
effect is evident upon considering the simple two-dimensional
flows shown in Fig. 2. Three flow orientations were considered
in a periodic flow domain, providing qualitative insight into
the microscopic phenomena that must be accounted for by
macroscopic coefficient values in anisotropic flows.

In Darcy flows, streamlines are independent of Re and
invariant upon flow reversal, as shown in Figs. 2(a)–2(c). As a
result the eigenvalues �a

i are properties of the porous medium
only. The three eigenvalues can be measured by conducting a

set of three flow experiments in which flow orientations are
aligned with each of the eigenvectors.

Inertial flows present a more challenging scenario; stream-
lines are no longer independent of Re as inertial effects begin to
distort the flow field. For a sufficiently high Re, the formation
of eddies will be observed. The size, shape, and position of
these eddies depend on both the Re and the flow orientation.
Macroscopic coefficients must account for the impact that eddy
formation has on the resulting flow behavior for all possible
flow orientations. When the direction of ψ is aligned with one
of the eigenvectors of Gws , as shown in Figs. 2(d) and 2(e),
the eddies formed do not alter the eigenvectors of R̂

w
. As a

consequence, qw
i values are presumed to be independent of Re.

The coefficients �
b(i)
i determine the rate that momentum

resistance increases due to the inertial distortions of the flow
field that result when flow is aligned with qs

i . The coefficient
�

b(j )
i , j �= i, contributes to the momentum resistance only if

ω · qs
i and ω · qs

j are both nonzero. These coefficient values
provide a macroscopic measure of the momentum resistance
caused by the varying size, shape, and position of the eddies
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FIG. 3. Error for the approximation qw
i ≈ qs

i in an axially aligned
ellipsoid packing.

that form for different flow orientations. This picture is
described qualitatively in Fig. 2(f). A comparison of Figs. 2(f)
to 2(d) and 2(e) reveals distinct qualitative differences between
the flow fields. The necessity of the coefficients �

b(j )
i , j �= i,

can be assessed by considering their capacity to improve
the accuracy of the estimated three-dimensional flow in an
anisotropic porous medium.

The three-dimensional analog of Fig. 2 was used to evaluate
the usefulness of Eq. (42). For simplicity, a symmetric
geometry was selected to satisfy �s

1 = �s
2. If B is independent

of ω, only the three eigenvalues are needed to fully specify
the form of the tensor, reducing to the form proposed by
Wang et al. [27]. Flows aligned with the eigenvectors are
sufficient to predict all three coefficients. In Fig. 4, flows
aligned with eigenvectors qs

0 and qs
1 are labeled Case A and

Case B, respectively. The relative error of this approximation
is determined by how well the quadratic form involving the
Re matches the simulated data. In Case C, the flow orientation
was selected to be (qs

0 + qs
1)/2. Based on the form of Wang

et al. [27], Cases A and B provide all of the coefficients needed

Case A (1-D)
Case B (1-D)
Case C (Wang et. al.)
Case C (This Work)

0.01 0.1 1 10 100

0.001

0.01

0.1

Re

|
-(

[A
+

B
 R

e]
•

 R
e)

/F
c 

|

FIG. 4. (Color online) Relative error associated with various
predictive forms plotted as a function of Re. Accurate prediction of
three-dimensional flow behavior requires all coefficients appearing
in Eq. (11).

to predict the flow behavior in Case C. However, comparing the
predicted and simulated data demonstrates that while this form
predicts the flow behavior quite well in the Darcy regime, the
relative error increases substantially with the onset of inertial
effects at higher Re.

The implication of this result is that differences in the
location, size, and shape of eddies are dependent on the
flow orientation, and these differences are manifested by a
macroscopic difference in the flow behavior. To describe this
flow behavior accurately, the inertial tensor B must depend
on ω. Flow data from Cases A, B, and C were then used
to determine the associated coefficients, �a

0,�
a
1 = �a

2 and
�

b(0)
0 ,�

b(1)
0 = �

b(2)
0 , �

b(0)
1 = �

b(0)
2 ,�

b(1)
2 = �

b(2)
1 , and �

b(1)
1 =

�
b(2)
2 , where the equalities are implied by the symmetry of the

flow geometry. The description of the inertial regime improves
significantly when the effects of flow orientation are accounted
for due to Eq. (42).

D. Parametric estimates for flow in isotropic porous media

Simulations of non-Darcy flow were performed in isotropic
sphere packs representing the full range of porosities and
variances listed in Table I and Re < 120. Existing correlations
for the dimensionless permeability and inertial parameter were
then compared to these simulation results.

In Fig. 5, the simulation results of a specific isotropic case
are shown. Based on the simulated data points, the relative error
is minimized for a∗ and b∗ based on Eq. (21). As a function
of the Re, the relative error exhibits a similar profile for the
isotropic case compared to the anisotropic profile plotted in
Fig. 4. Based on our analysis, the accuracy of Eq. (21) is
within several percent. Since this is true for both isotropic and
anisotropic cases, alternative forms which more accurately
approximate the transition region from 1 < Re < 50 would
be a logical way to improve the predictive capabilities of this
model. The consideration of such forms is beyond the scope
of this work.

The functional forms listed in Eqs. (23)–(26) do not fully
match the simulated data throughout the range of porosity
values considered. This is unsurprising given that the range of
porosity values considered here is broader than what has been
considered in other studies. The Pan et al. [39] permeability
relation was based on a set of flow simulations within a
porosity range of 0.33 � ε � to 0.45. At the porosities
outside the experimentally supported range, the Pan et al. [39]
relation underestimates the measured permeability values,
demonstrated in Fig. 6. The Carmen-Kozeny relation for lower
porosities (ε � 0.42) underestimates the associated coefficient
(Fig. 6). The lower porosity deviations are consistent with
the findings of others [14,16,39,51,52]. The Rumpf-Gupte
permeability relation deviates the most from the simulated
data, overpredicting the data for ε � 0.38 and underpre-
dicting for ε � 0.38. The Rumpf-Gupte data are based on
flow experiments using sphere packs with relative standard
deviations of the sphere-size distribution, σ̃D , of 0.0945, 0.32,
and 0.327 over a wide range of porosities (0.366 � ε �0.64)
and 0 < Re < 100 [4,5]. The cases with σ 2 = 0.3 and 0.36 <

ε < 0.42 are the only simulations that fit entirely within the
experimentally supported regime of the Rumpf-Gupte relation.
The data within the Rumpf-Gupte experiments correlate with
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FIG. 5. Simulated data points and best-fit curve for an isotropic sphere pack with a porosity of 0.37.

the porosity range where deviations are at a minimum, an
observation supported by others [39,51,53].

We found that an exponential fit yields more satisfactory
agreement for the full range of the simulation data. The
associated functional form is

a∗(ε) = α∗
1 exp(α∗

2ε), (43)

where the best-fit coefficient values are α∗
1 = 1.95 × 10−5 and

α∗
2 = 9.85 based on the simulated data points plotted in Fig. 6.

The inertial correction to Darcy’s law is shown in Fig. 7,
The coefficient b∗ measured from simulation increases as the
porosity decreases. Simulated values for the inertial parameter
are shown in comparison with values predicted by the Ergun
functional form [Eq. (24)] in Fig. 7. Neither of the inertial
coefficients predicted by Ergun or MacDonald provide a
satisfactory fit to the simulation data; both relations overpredict

Carman-Kozeny
Rumpf-Gumpte
Pan et. al.
Proposed Model

2=0
2=0.1
2=0.2
2=0.3

0.30 0.35 0.40 0.45 0.50 0.55 0.60

0.0005
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0.002

0.005

0.01

1 
/ a

*

FIG. 6. (Color online) Comparison of isotropic constitutive laws
that predict a∗ with simulated data.

the lower range of porosities (<0.40) and underpredict the
higher range of porosities (>0.40). The Ergun relation was
qualitatively based on a straight tube geometry of the pore
space and has been found to be valid only in a range of Re
values, 0 � Re � 75 [3,5]. Based on the packing parameters
set by the REV calculations (Table II), the range of Re
simulated differs for each variance. The Re range is 0 � Re �
140 for the homogeneous packing (σ 2 = 0), 0 � Re � 130 for
σ 2 = 0.1, 0 � Re � 115 for σ 2 = 0.2, and 0 � Re � 95 for
σ 2 = 0.3. As the Re range for each variance increases past the
upper Re limit of the Ergun relation, the difference between
the simulated data and the inertial parameters predicted by
Ergun increases. The Ergun relation has also been found to be
valid only for 0.38 � ε � 0.47 [54].

The Ergun relation matches the simulated data well within
the restricted range before diverging at a porosity of 0.35. The

2=0.0
2=0.1
2=0.2
2=0.3

Ergun
Proposed Model

0.30 0.35 0.40 0.45 0.50 0.55 0.60
1.0

1.5
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2.5

3.0

3.5
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FIG. 7. (Color online) Comparison of isotropic constitutive laws
that predict b∗ with simulated data.

033012-9



DYE, MCCLURE, MILLER, AND GRAY PHYSICAL REVIEW E 87, 033012 (2013)

MacDonald et al. relation is the Ergun relation [Eq. (24)] with
a modified β̂∗

e coefficient based on the comparative analysis of
numerous experimental results, including the data of Rumpf
and Gupte. The analysis took into account data from a wide
range of porosities (0.123 � ε � 0.919) and granular shapes
and sizes with the goal of deriving an Ergun relation that was
applicable for packs of nonspherical grains [5]. Much of the
lower porosity data (ε � 0.40) came from experiments using
irregularly shaped objects, sand and gravel mixtures, and a
variety of undisclosed materials. Since the simulated data only
take into account porous media composed of smooth spheres,
roughness could explain the large deviations between the
inertial parameter predicted by the MacDonald et al. relation
and the simulated data at ε � 0.40.

To provide a better fit for the full range of simulated data,
an alternative functional form is proposed to provide a better
match of the simulated data,

b∗(ε) = β∗
1

(1 − ε)β
∗
2

εβ∗
3

, (44)

where the coefficients β∗
1 = 4.21, β∗

2 = 1.58, and β∗
3 = 0.378

were obtained by performing a least-squares analysis to
minimize the relative error based on the simulated data points
shown in Fig. 7.

E. Parametric estimates for flow in anisotropic porous media

The results in Sec. IV D establish functional forms that
predict the values of flow coefficients in an isotropic system as
a function of the media porosity, expanding on the results
of prior studies. In this section, extended correlations are
developed that apply to systems where anisotropic effects
contribute to the flow behavior.

To resolve the flow behavior in anisotropic porous media,
six different force orientations were used. These orientations
corresponded to [1,0,0]T , [0,1,0]T ,[0,0,1]T , [

√
2,

√
2,0]T ,

[
√

2,0,
√

2]T , and [0,
√

2,
√

2]T . Between 100 and 150 steady-
state simulations were performed for each anisotropic medium.
Each steady-state simulation corresponded to values of ψ , ω,
Fc, and Re that were used to determine all coefficient values
for the media. Based on Eqs. (40) and (41), 12 coefficients are
necessary, in addition to the eigenvectors qs

i , to fully specify the
macroscopic flow behavior. These coefficients were calculated
by performing a nonlinear least-squares approach to minimize

�i =
∑

{Re,F,ω,ψ}

[
ψ · qs

i

− 1

F

(
�a

i Re +
∑

j �
b(j )
i

∣∣qs
i · ω

∣∣∑
j

∣∣qs
j · ω

∣∣ Re2

)
ω · qs

i

]2

, (45)

where the index i = 0,1,2 specifies the eigenvectors associated
with the principal directions of anisotropy. The full set of
coefficients was determined by numerical solution of a set of
the nonlinear equations

∂�i

∂�a
i

= 0 for i = 0,1,2, (46)

∂�i

∂�
b(j )
i

= 0 for i,j = 0,1,2. (47)
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FIG. 8. Domain range for the two independent components of the
orientation tensor considered in the constitutive laws.

Simulations were performed using a large number of media to
obtain a well-resolved range of anisotropies as shown in Fig. 8.
Based on these simulations flow coefficients were determined
for each medium using Eqs. (46) and (47). Specific functional
forms accounting for anisotropy were then selected to match
the simulation data.

Since each ellipsoid pack is defined by the mapping
procedure given in Eq. (30), we can understand anisotropic
effects by considering how the introduction of anisotropy
alters the flow coefficients for a given sphere pack. In practice,
each sphere pack exhibits a small amount of anisotropy as
determined by the accuracy of the REV. We account for
this by measuring the full set of coefficients for each sphere
pack, which we denote �a∗

i and �
b(j )∗
i . The coefficient values

from an ellipsoid packing can then be compared to these
values to more accurately determine the associated impact
on flow behavior. The components of Gws were determined
numerically for the anisotropic systems considered in this
work.

Predictive functional forms for �a
i and �b

i were developed
by constructing separable functions to account for each
independent variable. Because of the constraint of Eq. (33),
two functions are sufficient to fully describe the influence of
Gws . Since the indexing of the eigenvectors qs

i is nonunique,
the constitutive functions must be identical for all permutations
of the index convention. The eigenvalue �s

i , which provides a
measure of the relative blockage orthogonal to qs

i , was selected
as the first of these values. Since the labeling of the remaining
axes is arbitrary, the additional quantity obtained from the
orientation tensor must be symmetric with respect to �s

j and
�s

k . This is satisfied by choosing the second independent
quantity to be |�j − �k|. We then search for constitutive
relationships of the form

�a
i = a∗(ε)a‖(�s

i

)
a⊥( ∣∣�s

j − �s
k

∣∣ ), i �= j �= k, (48)

�
b(i)
i = b∗(ε)b‖(�s

i

)
b⊥( ∣∣�s

j − �s
k

∣∣ ), i �= j �= k. (49)
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FIG. 9. (Color online) Anisotropic simulation data and best-fit functional forms for α‖(�s
i ) and β‖(�s

i ).

The functional forms a‖, a⊥, b‖, and b⊥ must equal unity for an
isotropic system (i.e., �s

i = 1
3 and |�s

j − �s
k| = 0), which is

satisfied by the subsequent expressions given in Eqs. (50)–(53).
Simulation results indicate that �s

i is responsible for the
largest part of the anisotropic correction to �a

i and �b
i . In

order to match the simulation data, the constitutive laws were
formulated as

a‖ (
�s

i

) = [
1 + α

‖
1

(
�s

i − 1
3

)]α
‖
2 , (50)

b‖(�s
i

) = [
1 + β

‖
1

(
�s

i − 1
3

)]β
‖
2 . (51)

The best-fit coefficients are α
‖
1 = 1.40, β‖

1 = 0.351, α‖
2 = 1.06,

and β
‖
2 = 11.1. To obtain these coefficients, systems were

constructed such that �s
j = �s

k for k �= j �= i. Plots of the
simulation data and resulting functions are shown in Fig. 9.

A smaller contribution is associated with |�s
j − �s

k|. A
linear functional form was selected to account for this

contribution,

a⊥ (∣∣�s
j − �s

k

∣∣) = 1 + α⊥ ∣∣�s
j − �s

k

∣∣ , (52)

and

b⊥ (∣∣�s
j − �s

k

∣∣) = 1 + β⊥ ∣∣�s
j − �s

k

∣∣ . (53)

The best-fit coefficients were α⊥ = 0.0173 and β⊥ = 0.229.
The ranges of porosity values and variances considered to
obtain these results are summarized in Table I and the range
of orientation tensor eigenvalues is plotted in Fig. 8. Since
a⊥(0) = 1 and b⊥ (0) = 1, the anisotropic contribution disap-
pears when an isotropic system is considered. As demonstrated
in Fig. 10, the contribution of a⊥ and b⊥ is approximately
the same order of magnitude as the error contribution. Not
coincidentally, this error is the same order of magnitude as
the error in the quadratic form for the non-Darcy momentum
resistance, shown in Fig. 4. Based on this, we conclude that the
inclusion of a⊥ and b⊥ is unlikely to improve the description
significantly. Alternatively, a⊥ and b⊥ could be set to 1, their
value for an isotropic system, for simplicity.
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FIG. 10. Anisotropic simulation data plotted with best-fit functional forms for a⊥(|�s
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k|) and b⊥(|�s
j − �s

k|).
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k).

The remaining inertial coefficients, �b(j )
i , i �= j , contribute

only when the flow is not aligned with one of the eigenvectors
qs

i . Parameter values for these coefficients presumed that these
coefficients could be described by

�
b(j )
i = b∗(ε)b†

(
�s

i − �s
j

)
b‡

(
�s

k

)
. (54)

The coefficient �
b(j )
i provides the relative change to the

momentum resistance in the direction of qs
i that results from a

change in

b†
(
�s

i − �s
j

) = exp
[
β†(�s

i − �s
j

)]
, (55)

b‡
(
�s

k

) = exp
[
β‡(�s

k − 1
3

)]
, (56)

where β† = 0.742 and β‡ = −2.05. A plot of the resulting
functional form is shown in Fig. 11.

The anisotropic parameter correlations given in Eqs. (50)–
(56) combine with the results in Sec. IV D to provide
a complete set of predictive coefficients for Eq. (11) for
any system where the porosity, specific surface area, and
orientation tensor are known. The functional forms proposed
to account for these various contributions are summarized in
Table III. Several basic principles were relied upon to produce
these relationships, which are summarized as follows.

(1) The eigenvalues of tensors A and B are each non-
negative, to ensure that the second law of thermodynamics
is satisfied for all Re values.

(2) By constructing the formulation in terms of the eigen-
decomposition of the momentum resistance tensor and iden-
tifying the associated eigenvectors, the description is fully
independent of the coordinate system choice.

(3) The tensor form of the momentum transport equation
reduces exactly to the one-dimensional form given in Eq. (21)
if the solid surface is isotropic (�s

i = 1
3 ).

Specific functional forms were selected to satisfy these
constraints while matching the simulated data as closely as
possible.

Microscopic imaging techniques can be exploited to obtain
direct measurements of both surface area and orientation
tensor values. When working with such data, a spectral
decomposition must be applied to the numerically computed
orientation tensor Gws to obtain qs

i and �s
i . Our results suggest

that the eigenvectors of Gws provide a good approximation
for the eigenvectors of A and B. Since our results were
obtained for systems of axially aligned ellipsoids, future
studies should consider the extensibility of these results to
more general anisotropic porous media. However, the use
of dimensionless variables should facilitate the extension of
these results to a wide range of systems. Since the surface
area and orientation tensor can be constructed easily based
on computed microtomography data, this would seem to
present a natural opportunity to examine the extensibility of
these results to more general anisotropic porous media. It
is possible that other dimensionless morphological measures
exert an influence on momentum transport for certain systems,
and the identification of such measures presents additional
opportunities to expand the predictive capabilities for non-
Darcy flows beyond the leading-order factors identified
herein.

V. SUMMARY AND CONCLUSIONS

In this work, a large set of LB simulations has been
performed to produce constitutive relationships that fully
predict all coefficients required to close a tensorial form of the
momentum transport equations for single-phase flow in porous
media. Essential closure information for both isotropic and
anisotropic flows in porous media is provided as a function of
nondimensional measures of the porous medium morphology.
In the isotropic case, simulated data were compared to existing

TABLE III. Summary of functional forms and coefficient values proposed to predict momentum equation parameters (i �= j �= k). Tensors
A and B can be determined by combining these expressions with Eqs. (48) and (49), Eq. (54), and Eqs. (40) and (41).

Parameter Dependence Functional form Coefficient values

�a
i a∗(ε) α∗

1 exp(α∗
2ε) α∗

1 = 1.95 × 10−5, α∗
2 = 9.85

�a
i a‖(�s

i ) [1 + α
‖
1(�s

i − 1
3 )]α

‖
2 α

‖
1 = 1.40, α

‖
2 = 1.06

�a
i a⊥(|�s

j − �s
k|) 1 + α⊥|�s

j − �s
k| α⊥ = 0.0173

�
b(i)
i , �

b(j )
i b∗(ε) β∗

1
(1−ε)β

∗
2

ε
β∗

3
β∗

1 = 4.21, β∗
2 = 1.58, β∗

3 = 0.378.

�
b(i)
i b‖(�s

i ) [1 + β
‖
1 (�s

i − 1
3 )]β

‖
2 β

‖
1 = 0.351, β

‖
2 = 11.1

�
b(i)
i b⊥(|�s

j − �s
k|) 1 + β⊥|�s

j − �s
k|. β⊥ = 0.229

�
b(j )
i b†(�s

i − �s
j ) exp[β†(�s

i − �s
j )] β† = 0.742

�
b(j )
i b‡(�s

k) exp[β‡(�s
k − 1

3 )] β‡ = −2.05
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relationships including those due to Ergun, Rumpf and Gupte,
MacDonald et al., Carmen-Kozeny, and Pan et al. As shown
in our work, these equations have varying degrees of accuracy
in their application, depending on the quantity and quality of
the data used to derive them. Our work improves upon these
existing correlations by considering data for a wider range
of morphological and flow characteristics than previously ex-
amined. We also studied the dependence of single-fluid-phase
flow through anisotropic media on morphological character-
istics beyond porosity and postulated a quantitative measure
of anisotropy that we demonstrated to be predictive of the
macroscopic flow behavior. This result is significant because
it concretely establishes a connection between the macroscopic
flow coefficients and an averaged measure of the anisotropy
of underlying solid phase morphology: the orientation tensor.
As a consequence, the predictive capabilities for anisotropic
flows are extended significantly. A summary of the major
contributions of this work is as follows.

(1) A collective rearrangement algorithm and mapping
procedure is developed to generate packed periodic systems of
spheres and ellipsoids that match a specified porosity and size
distribution.

(2) An approach is derived to simulate highly resolved
flows that are essentially grid independent for a representative
elementary volume of porous medium systems, and guidance
is given on how such systems can be created.

(3) The momentum resistance of non-Darcy flows is demon-
strated to depend linearly on the Re and nonlinearly on the flow
orientation, accounting for all three independent components
of the flow velocity. An empirical form is introduced to account
for the influence of the flow orientation in anisotropic flows.

(4) Porosity, specific interfacial area, and geometric orien-
tation of the solid surface are shown to be the variables of
leading-order importance in assessing Darcy and non-Darcy
single-fluid-phase flow through anisotropic porous media.

(5) The spectral decomposition of the momentum resistance
tensor is studied and an approach is proposed to predict both
the eigenvectors and the eigenvalues. An empirical functional
form is posited to represent the momentum resistance tensor
and correlations are developed to predict parameter values
based upon a large number of highly resolved simulations.

(6) The functional form developed in this work to predict the
resistance tensor is compared to available estimates and shown
to be significantly more accurate than previous estimates when
the entire range of simulations performed in this work is
examined.
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