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Natural convection that results from the dissolution of a diffusive species into a fluid saturated porous layer in
the presence of a capillary transition zone is an important phenomenon in geological flows. The prediction of the
onset of convection has remained elusive under the theory of gravitationally unstable multiphase flow in porous
media. The present study offers a paradigm for the stability of two-phase buoyancy-driven flow in the presence
of the capillary transition zone in a saturated porous medium, which allows for a quantitative description of the
onset of natural convection. The analysis, which is based on the quasi-steady-state approximation, stresses the
critical role of the capillary transition zone and the upward crossflow between the diffusive boundary layer and
the capillary transition zone in the stability of the system, as well as in the transient growth of perturbations. We
show that the instability problem can be characterized by capillary-dominant and buoyancy-dominant regimes
with a transition in between. In the capillary-dominant regime, capillarity has a strong role in destabilizing the
diffusive boundary layer. While in the buoyancy-dominant regime, the capillary transition zone is small enough
that it can be ignored and the buoyancy force is the sole cause of the instability. Furthermore, our analysis shows
that the capillary transition zone can potentially accelerate the evolution of the natural convection over 6 times
faster than the buoyancy-dominant regime. Finally, the nonlinear dynamics of the system is studied using direct
numerical simulations. The nonlinear simulations confirm the predictions from the linear stability analysis.
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I. INTRODUCTION

The buoyancy-driven convection of a gravitational unstable
diffusive boundary layer is a simple example of a physical
system for the study of nonlinear fingering dynamics and
pattern formation in multiphase flow through porous media.
Rather than a diffusive boundary layer, the flow may become
gravitationally unstable under some circumstances, and the
evolution of instabilities forms the fingers of a dense fluid
penetrating into a light fluid.

Buoyancy-driven flows in porous media have been ex-
tensively investigated [1–5], since the pioneering work of
Horton and Rogers [6] and Lapwood [7], mainly due to
the phenomenon’s vast applications in various scientific and
engineering disciplines. Intense experimental and theoretical
works on the mixing induced by buoyancy-driven flows were
reported in the 1970s [8], which were followed by numerous
stability analyses of the boundary layer in porous media
[9]. Natural thermal convection has often been the focus
of applications, such as porous insulation and geothermal
systems [10,11].

Increasing interest has recently been reported in the
unsteady boundary layers, due to solute diffusion in the
subsurface in the underground transport of pollutants and
saltwater intrusion in coastal aquifers [12] and carbon dioxide
(CO2) sequestration in deep saline aquifers [13–15]. In these
examples of solutal convection, the diffusion of a species into
the resident fluid creates a diffusive boundary layer, which
grows with time. As the mixed fluid density is greater than
the resident fluid, the diffusive boundary layer may become
unstable and set off natural convection. When convection
begins, the dissolved substance is carried downwards. Such
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convective mixing reduces the time scale of mixing, while
increasing the length at which a solute can penetrate deeply
into the subsurface.

In most cases, it is assumed that the initial transport process
is fast compared with the evolution of the boundary layer,
which results in an instant rise in the concentration within the
domain of interest. In some cases, such as the dissolution
of CO2 in deep saline aquifers, there is the additional
complication of a two-phase region at the top boundary, which
is usually simplified into a boundary condition of a constant
solute concentration for a single-phase system [16].

Despite overwhelming experimental and theoretical evi-
dence, the role of capillarity in the two-phase buoyancy-driven
flow in porous media has remained elusive. As mentioned
earlier, the majority of past investigations on the stability of
convective flows in porous media are based on a single-phase
flow region, where the top boundary is exposed to a constant
concentration of the diffusing species. In the traditional
approach, it is assumed that there is no flow across the
top boundary and the dissolution process occurs purely in
a single-phase region, which is the mixing region [17].

To assess the contribution of a capillary transition zone,
Elenius et al. [18] considered a crossflow between the capillary
transition zone and the diffusive boundary layer. Rather than
implementing the traditional closed boundary for velocity at
the top of domain, they assigned a homogeneous Neumann
(second-type) boundary condition to consider the effect of
the crossflow. The resulting stability condition showed that
the crossflow has no significant effect on the selection of the
critical mode. However, it exerts a destabilizing influence on
the boundary layer, such that the onset of instabilities occurs
much earlier, up to 5 times faster when the diffusive boundary
layer is thin. To the best of the authors’ knowledge, no previous
studies have explicitly investigated the role of the capillary
transition zone on the stability of a gravitational unstable
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diffusive boundary layer underneath a capillary transition
zone.

The stability of a steady or transient concentration or tem-
perature base profiles under a variety of boundary conditions
has been thoroughly investigated [19–29]. For instance, Riaz
et al. [30] performed a linear stability analysis (LSA) based
on the dominant mode of the self-similar diffusion operator
and direct numerical simulations. They presented scaling
relationships for the onset of convection with respect to the
Rayleigh number, which is the ratio of the driving buoyancy
forces to the dissipative effects of viscosity and diffusion.

Several methods have been used to characterize the stability
of a time-dependent concentration or temperature profiles,
including amplification theory [18,30–34], local Rayleigh
number analysis [9,35], the energy method [25,32,36], and
the quasi-steady-state approximation (QSSA) [28,31,37,38].
Onset times predicted by the energy method are such that the
energy stability analysis yields an earlier time of onset than
the amplification theory [32]. In addition, the energy methods
give no information about the growth rate and wave number
of the most detrimental disturbances. For steady-state convec-
tion, the amplification theory leads to an algebraic eigenvalue
problem [22,39], whereas the boundary layer remains time
dependent. For such stability problems, QSSA has been widely
used and is a common approach using the frozen-time concept.

The present study aims at the development of an LSA
of a gravitationally unstable diffusive boundary layer in the
presence of a capillary transition zone. In particular, the critical
role of the capillary transition zone and the role of the relative
permeability on the onset of instability are examined. In order
to analyze the long-term evolution of the instability predicted
by the LSA, a set of two-phase direct nonlinear numerical
simulations has been carried out. The results presented in
this study provide a better understanding of the effects of
the capillary transition zone on the stability of the diffusive
boundary layer.

The paper is organized as follows. Section II presents
the mathematical formulations that include the governing
equations. The base state solutions for the saturation and
concentration fields, around which the model is linearized,
are also shown in this section. Section III introduces the
linearized problem and its discretization, and the results of the
stability analysis are also presented. The results of nonlinear
simulations are given in Sec. IV; and, finally, the main
conclusions of the present study are summarized in Sec. V.

II. MATHEMATICAL FORMULATION

A two-dimensional (2D) fluid-saturated porous layer with a
capillary transition zone and a gas cap on top where the gravity
points downward in the positive z direction is considered, as
shown in Fig. 1. The porous layer is modeled as a homogeneous
and isotropic medium. Initially, the gas cap is saturated with
the nonwetting phase and residual wetting phase (sw = swr),
while the underlying domain is fully saturated with the wetting
phase (sw = 1). Above the wetting phase zone, the wetting
phase saturation decreases gradually upward, until it reaches
a residual value, swr, which forms a transition zone. In other
words, due to the capillary effect, a transition zone is expected
to form between the nonwetting and wetting regions. Since the

FIG. 1. Schematic presentation of the initial state of the two-phase
system in a simple geometry. The porous layer is saturated with the
wetting phase at the bottom. The saturated zone is overlaid by a
capillary transition zone where the wetting phase saturation decreases
gradually upward until it reaches a residual saturation value. The gas
component can diffuse from the unsaturated zone into the underlying
wetting phase, resulting in a downward flux of gas.

nonwetting phase (gas) is less dense than the wetting phase
(water), the two-phase system remains gravitationally stable.

The diffusion of gaseous species from the gas cap into the
underlying water zone may, however, lead to a slight increase
in water density [e.g., dissolution of sulphur dioxide (SO2)
and CO2 in water], consequently resulting in a gravitationally
unstable diffusive boundary layer that grows with time and can
potentially create convective instabilities in the water-saturated
zone and wetting phase mobile portion of the transition zone.
Therefore, the capillary transition zone combined with the
underlying wetting phase region is considered the domain of
study for the investigation of the role of the transition zone
on the onset of buoyancy-driven convection. Note that, in this
paper, the interface refers to the initial state of the dividing
horizon between the capillary transition zone and the diffusive
boundary layer, as shown in Fig. 1.

In the following subsections, the mathematical formula-
tions for the flow and transport of a two-phase and two-
component system described above are presented.

A. Governing equations

The governing equations for the dynamics of Boussinesq
flow for the two-phase system are given by the multiphase
extension of Darcy’s law [40,41]:

vw = −kkrw

μw

(∇pw − ρwg∇z), (1)

vn = −kkrn

μn

(∇pn − ρng∇z), (2)

φ
∂sw

∂t
= −∇ · vw, (3)

φ
∂sn

∂t
= ∇ · vn, (4)

v = vw + vn, (5)
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∇ · v = 0, (6)

pc = pn − pw, (7)

sw + sn = 1, (8)

where k is the absolute permeability; kr is the relative
permeability; μ is the viscosity; ρ is the density; g is the gravity
acceleration; φ is the porosity; v = [u,v] and is the velocity
vector, where u is the horizontal component of velocity and v

is the vertical component of velocity; s is the saturation defined
as the macroscopic quantity that describes the average volume
fraction of one phase in a representative elementary volume
normalized by porosity; and subscripts w and n refer to the
wetting and the nonwetting phases, respectively.

The equation for the saturation of the wetting phase that
holds capillary and gravity forces is obtained by combining
Eqs. (1), (2) and (5)–(7) as

∇ ·
(

vw

(
1 + krn

krw

μw

μn

)
− kkrn

μn

[
dpc

dsw

∇sw + (ρw − ρn)g∇z

])
= 0. (9)

The two-phase convection-diffusion equation, which gov-
erns dissolution of the diffusive species cw

d into the resident
fluids (wetting phase), is written as [1]

φ
∂

∂t

(
swcw

d

) = −∇ · (
vwcw

d

) + Dφ∇ · (
sw∇cw

d

)
, (10)

where D is the molecular diffusion coefficient.
The density of the wetting phase ρw is specified as a linear

function of concentration cw
d :

ρw = ρw0
(
1 + βcw

d

)
, (11)

where β = ∂ρw/ρw∂cw
d and is considered constant and ρw0 is

the density of the wetting phase at cw
d = 0.

The pressure can be eliminated using the stream function
definition. Combining uw = −∂ψ/∂z and vw = ∂ψ/∂x with
Eqs. (1) and (11) gives the flow equation for the system under
consideration,

∇2ψ = kkrwgρw0β

μw

∂cw
d

∂x
, (12)

where ψ is the stream function.

B. Nondimensional equations

For analysis purposes, it is convenient to write governing
equations in a dimensionless form. The model is nondimen-
sionalized by selecting the domain depth H as the length scale
and D/H 2 as the time scale. For simplicity, the origin of the
space coordinate is transferred to the interface between the
gas and the water. Accordingly, nondimensional space and
time parameters can be expressed as

η = x

H
, ς = z − h

H
, τ = D

H 2
t. (13)

The nondimensional forms of capillary pressure, satura-
tion, concentration, and stream function are defined as

follows:

Pc = pc


ρwngH
, S = sw − swr

1 − swr

, C = cw
d

c0
, � = ψ

Dϕ
,

(14)

where ϕ = φ(1 − swr ) is the effective porosity in the two-
phase system, and 
ρwn = ρw − ρn is the density difference
between the wetting and nonwetting phases.

The system under consideration can be explored with the
following nondimensional groups:

Ca = H

h
(Capillary number), (15)

Ra = k
ρw
d gH

Dϕμw

(Rayleigh number), (16)

where 
ρw
d = ρw0βc0 is the solutal density difference orig-

inated by dissolution of the diffusing species (gas) into the
resident fluid (water) and h is the capillary rise, whose
dependence on the system parameters is given by the Leverett
scaling [42],

h ∼ γ cos θ


ρnwg
√

k/ϕ
, (17)

where γ is the surface tension between the wetting and
nonwetting phases and θ is the contact angle between the fluids
interface and the rock surface, which quantifies the wettability
of the rocks by the fluids [43].

Based on these definitions and the understanding of the
space and time coordinates as their dimensionless counter-
parts, the nondimensional form of the governing equations for
flow, wetting phase saturation, and transport can be expressed
as

∇2� = krwRa
∂C

∂η
, (18)

∂S

∂τ
= krw

λ

(
∂�

∂η

(
λ

krw

)′
∂S

∂ς

− RaG

[
(krnJ

′)∇2S + (krnJ
′)′

(
∂S

∂ς

)2

+ k′
rn

∂S

∂ς

])
,

(19)

S
∂C

∂τ
= ∂�

∂ς

∂C

∂η
− ∂�

∂η

∂C

∂ς
+ ∇S · ∇C + S∇2C, (20)

where J (S) = CaPc(S) is a dimensionless capillary pressure
function, G = k
ρnwg/Uμw is the gravity number, U =
k
ρw

d g/μw is the buoyancy velocity, λ = krwM + krn is
the total mobility, M = μn/μw is the viscosity ratio, and
primes denote derivatives with respect to saturation S. These
governing equations are subject to the following boundary
conditions:

�(η,ς = −h/H,τ ) = 0, �(η,ς = 1,τ ) = 0, (21)

S(η,ς = −h/H,τ ) = 0, S(η,ς = 1,τ ) = 1, (22)

C(η,ς = −h/H,τ ) = 1, C(η,ς = 1,τ ) = 0. (23)
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FIG. 2. Constitutive relations for relative permeabilities and
capillary pressure as given by van Genuchten’s model.

The functional forms of the relative permeabilities and
capillary pressure constitutive relations are adopted from the
van Genuchten-Mualem model [44,45],

krn(S) = (1 − S)1/3[1 − S1/m]2m, (24)

krw(S) = S1/2[1 − (1 − S1/m)m]2, (25)

J (S) = (S−1/m − 1)1/n, (26)

where m = 1 − 1/n and n is the material parameter that
depends on degree of sorting grains in the porous medium [44].
These functions are plotted in Fig. 2 for three different values
of n.

C. Base-state solutions

The base state that results on dissolution of the diffusing
species into the underlying water in a horizontal porous layer
is examined. The base stream function �o that represents
velocity is zero. Although a streamwise velocity does not
exist, this term is used to describe the perturbation stream
function component in the direction of acceleration due to
gravity. The base saturation So is obtained based on capillary-
gravity equilibrium using van Genuchten’s capillary pressure

constitutive relation [46],

So(ς ) = 1 + H(−ς )([1 + (−υCaς )n]−m − 1), (27)

where H(−ς ) is the Heaviside step function and υ is the
matching parameter that forces the saturation of swr at the
top boundary of the capillary transition zone, which should be
assigned according to the value of n. Note that the saturation
base state is time independent, since the saturation profile is
caused by the equilibration of the capillary and gravity forces.

The base concentration Co is the solution of Eq. (21)
with ∂/∂ς = ∂/∂η = ∂2/∂η2 = 0, which admits the following
streamwise one-dimensional (1D) solution [47]:

Co(ς,τ ) = 1 − 2H(ς )
∞∑
l=1

1

α
sin(ας) exp(−α2τ ), (28)

where α = (2l − 1)π/2.
Note that the concentration base state is time dependent

and that the penetration depth of the diffusive boundary layer
δ(τ ), the depth over which Co is nonzero, can be considered
small compared to the depth of domain. For δ ∼ √

4τ � 1,
the domain behaves as a semi-infinite medium in the z

direction, i.e., C(z → ∞) → 0, and the base concentration
can be expressed by [47]

Co(ς,τ ) = 1 − H(ς )erf

(
ς√
4τ

)
. (29)

The objective of employing a semi-infinite domain is
to achieve considerable improvement in accuracy at small
times. For the original layer geometry in a finite domain, the
parameter range over which the results are valid should obey
δ ∼ √

4τ � 1. Note that the semi-infinite domain does not
impose a new length scale on the problem under consideration.
The penetration depth is time dependent, as is the Rayleigh
number based on δ(τ ). A critical Rayleigh number is a function
of the critical time at which the boundary layer becomes
unstable, i.e., Rac = Ra(δ(τc)), and the length scale can be
scaled out of calculations by specifying the time scale as a
ratio of the diffusion coefficient to the square of the height,
D/H 2. In this case, the critical time is the only criterion for
the onset of instability.

III. LINEAR STABILITY ANALYSIS

A. Linearized equations

The interest of this study is the stability of the dif-
fusive boundary layer in the presence of a capillary
transition zone. In order to conduct an LSA, small
disturbances of stream function �̂, saturation Ŝ, and
concentration Ĉ are introduced, and the equations are
then linearized. In the semi-infinite domain, the per-
turbation equations are transformed in such a way that the
eigenfunctions associated with the diffusion operator can be
localized around the front of the base concentration. Therefore,
a coordinate transformation of ξ = ς/

√
4τ is applied on the

perturbation equations. Since the base-state equations are
independent of η, the perturbations decompose into Fourier
components in the x direction. The perturbations are assumed
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to be small in magnitude, therefore⎧⎪⎨
⎪⎩

�

S

C

⎫⎪⎬
⎪⎭ (η,ξ,τ ) =

⎧⎪⎨
⎪⎩

�o

So

Co

⎫⎪⎬
⎪⎭ (η,ξ ) + ε

⎧⎪⎨
⎪⎩

i�̂

Ŝ

Ĉ

⎫⎪⎬
⎪⎭ (ξ,τ ) eiκη,

(30)

where κ is the horizontal wave number, and its amplitude ε is
assumed to be sufficiently small and the higher powers may
be neglected.

Introducing the perturbed solutions in Eqs. (19)–(21) and
retaining the terms that are the first order in ε, the evolution
equations for the perturbations in the transformed coordinate
are (

1

4τ

∂2

∂ξ 2
− κ2

)
�̂ − krwRaκĈ = 0, (31)

∂Ŝ

∂τ
= − κ√

4τ

krw

λ

(
krn

krw

)′
∂So

∂ξ
�̂ − RaG

4τ

(
krw

λ
(krnJ

′)
∂2

∂ξ 2

+
[

2
krw

λ
(krnJ

′)′
∂So

∂ξ
+

√
4τ

krw

λ
k′
rn − 2ξ

RaG

]
∂

∂ξ

+
(

krw

λ
(krnJ

′)
)′

∂2So

∂ξ 2
+

(
krw

λ
(krnJ

′)′
)′(

∂So

∂ξ

)2

+
√

4τ

(
krw

λ
k′
rn

)′
∂So

∂ξ
− 4τκ2 krw

λ
(krnJ

′)
)

Ŝ, (32)

So

∂Ĉ

∂τ
= κ√

4τ

∂Co

∂ξ
�̂ + 1

4τ

∂Co

∂ξ

∂Ŝ

∂ξ

+ 1

4τ

(
So

∂2

∂ξ 2
+

(
2ξSo + ∂So

∂ξ

)
∂

∂ξ
− 4τκ2So

)
Ĉ,

(33)

where the relative permeabilities and capillary pressure are
decomposed using the first-order Taylor expansion {kr ,J } =
{kr ,J }(So) + Ŝ{kr ,J }′.

Moreover, the relative permeabilities and capillary terms
and their derivatives in the perturbation equations should be
evaluated according to the base states. It is important to note
that the transformation of the coordinate from ς to ξ inserts
the term 2ξ∂/∂ξ in both the saturation and transport equations.

B. Quasi-steady-state approximation and discretization

In the perturbation equations, the concentration base state
is a function of both time τ and space ς . In order to solve
the linearized equations numerically, the time dependence
of the base state is eliminated using the QSSA [48]. This
approximation assumes that the growth rate of perturbations is
asymptotically faster than the evolution rate of the base state.
As such, the concentration base state is frozen at a time τ0, and
the stability of this frozen profile is determined by expanding
the disturbances in terms of Fourier components. Therefore,
defining ⎧⎪⎨

⎪⎩
�̂

Ŝ

Ĉ

⎫⎪⎬
⎪⎭ (ξ,τ ) =

⎧⎪⎨
⎪⎩

�∗

S∗

C∗

⎫⎪⎬
⎪⎭ (ξ,τ0) eσ (τ0)τ (34)

and substituting into Eqs. (31)–(33) gives(
1

4τ

∂2

∂ξ 2
− κ2

)
�∗ − krwRaκC∗ = 0, (35)

− κ√
4τ

krw

λ

(
krn

krw

)′
∂So

∂ξ
�∗ − RaG

4τ

(
krw

λ
(krnJ

′)
∂2

∂ξ 2

+
[

2
krw

λ
(krnJ

′)′
∂So

∂ξ
+

√
4τ

krw

λ
k′
rn − 2ξ

RaG

]
∂

∂ξ

+
(

krw

λ
(krnJ

′)
)′

∂2So

∂ξ 2
+

(
krw

λ
(krnJ

′)′
)′(

∂So

∂ξ

)2

+
√

4τ

(
krw

λ
k′
rn

)′
∂So

∂ξ
− 4τκ2 krw

λ
(krnJ

′)
)

S∗ − σS∗ = 0,

(36)
κ

So

√
4τ

∂Co

∂ξ
�∗ + 1

So4τ

∂Co

∂ξ

∂S∗

∂ξ

+ 1

4τ

(
∂2

∂ξ 2
+

(
2ξ + ∂So

So∂ξ

)
∂

∂ξ
− 4τκ2

)
C∗ − σC∗,

(37)

which are subject to the following boundary conditions:

�∗(ξ = −h/H
√

4τ ) = 0, �∗(ξ = ∞) = 0, (38)

S∗(ξ = −h/H
√

4τ ) = 0, S∗(ξ = ∞) = 0, (39)

C∗(ξ = −h/H
√

4τ ) = 0, C∗(ξ = ∞) = 0, (40)

where the variables that are defined by asterisks represent the
perturbation eigenfunctions and σ is the quasistatic growth
rate that appears as the eigenvalues in the problem.

The set of ordinary differential equations is discretized
using a finite difference technique, which leads to an algebraic
eigenvalue value problem. A finite difference method is
convergent if the approximation solution approaches the exact
solution as the sizes of the grids go to zero [49]. Therefore, a
nonuniform geometric grid is employed, which is very fine
in vicinity of the interface (ς = 0), and the grid spacing
increases logarithmically with the distance from the interface.
This kind of discretization efficiently improves the accuracy,
while decreasing the computational time for a large number of
grid blocks. Accordingly, the following formulation is used to
obtain the nouniform grid spacing [49],


ξν = χν∑Ng

l=1 χl
, (41)

where 
ξ is the grid spacing, Ng is the number of grid blocks,
χ � 1 is the mesh increment rate, and ν refers to the grid
spacing index which starts from one for the first grid interval
at the interface and ends with Ng for the last grid interval at
the bottom or top of the domain. In order to obtain uniform
grid spacing the value of χ in Eq. (41) should be equal to
1. However, in the present study, the mesh increment rate is
chosen to be greater than 1, i.e., 1.005 � χ � 1.01. The grid
convergence or mesh independence analysis is discussed in
more detail in next subsection.

The numerical differentiation procedure that is used for
unequal intervals is based on a three-point centered Lagrange
polynomial approximation. Based on this approximation, the
first and second spatial derivatives of a dependent variable f
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with respect to ξ can be expressed as [50]

∂f

∂ξ
= 
ξ+


ξ+(
ξ− + 
ξ+)
fj+1 − 
ξ− − 
ξ+


ξ−
ξ+ fj

− 
ξ+


ξ−(
ξ− + 
ξ+)
fj−1, (42)

∂2f

∂ξ 2
= 2


ξ+(
ξ− + 
ξ+)
fj+1 − 2


ξ+
ξ− fj

+ 2


ξ−(
ξ− + 
ξ+)
fj−1, (43)

where f is the perturbation eigenfunction in Eqs. (34)–(37),

ξ+ = ξj+1 − ξj , 
ξ− = ξj − ξj−1, and subscript j refers
to the grid block index, which varies from 1 to Ng + 1.
Discretizing Eqs. (34)–(37) based on Eqs. (42) and (43) results
in an eigensystem, which can be compactly expressed as[

A1 − σ I B1

A2 B2 − σ I

] [
S

C

]
= 0, (44)

where S and C are the saturation and concentration
eigenvectors, respectively; A1, A2, B1, and B1 are the
discretization operators related to the eigenfunctions; and I is
the identity matrix.

FIG. 3. Growth rate vs wave-number curves for Ra = 500 and
1000 for τ0 = 0.0005 and 0.0001, respectively, for different values of
Ca. The other parameters are fixed: n = 2 and υ = 100.

Note that the stream function equation Eq. (35) is elimi-
nated by substituting it into the saturation and concentration
perturbation equations [Eqs. (36) and (37)] and rearranging
the resulting equations. Standard techniques are used to solve
for the eigenvalues and eigenvectors [51], and only the largest
eigenvalue is reported from the set of discrete eigenvalues. The
results from the LSA are presented in the following subsection,
which discusses the effect of the capillary transition zone on
the growth of instability for a gravitationally unstable diffusive
boundary layer.

FIG. 4. Growth rate vs wave-number curves for Ca = 1, 102, and
104 at various τ0. The other parameters are fixed: Ra = 500, n = 2,
and υ = 100.
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C. LSA results

We first discuss the effect of the gravity number and
viscosity ratio on the stability. Based on the schematic of
the problem shown in Fig. 1, the displacement takes place in
the z direction, and the denser fluid with the higher viscosity
(wetting phase) is located under the lighter fluid with the lower
viscosity (nonwetting phase). The stability of such a system
can be examined with the following expression [52]:

(
μw

krw

− μn

krn

)
(V − Vc)

{
< 0 ⇒ stable displacment

> 0 ⇒ unstable displacment
,

(45)

where Vc = k
ρwng/(μw/krw − μn/krn) and V is the base
state advective velocity, which is equal to zero in our problem.
This expression is always negative under the conditions of the
problem. Therefore, the gravity number G and the mobility
ratio M have no effect on the instability of the system, although
they appeared in the stability analysis.

We now examine how the capillary number Ca combined
with the Rayleigh number Ra affects the stability of the
diffusive boundary layer. The growth rate versus the wave-
number curves given by the QSSA are shown in Fig. 3 for
different Ca at Ra = 500 and 1000 for τ0 =0.0005 and 0.0001,
respectively. The evolution of the maximum value of either the
concentration or the saturation or the velocity (stream function)
eigenfunction forms the basis of the growth rate plotted at τ0

(a particular time) for each wave number. At an early time,
the dynamical system is said to be stable if σ < 0 for every
wave number, and a critical time τc (the onset of convection)
is indicated when the growth rate just becomes positive at a
critical wave number κc.

Figure 3 reveals that the flow system turns more stable as the
capillary number increases. This can be expected and attributed
to influence of the capillary height as it approaches zero (h →
0) when Ca → ∞. More precisely, at high Ca, the system
behaves like a single-phase system (only the wetting phase),
which behaves like an impervious boundary to flow at ς = 0,
i.e., the wetting phase has zero relative permeability at the
interface. The capillary transition zone allows a crossflow at the
interface and also acts as a feeding source, where the gas cap
continuously feeds the underlying body of water. Therefore,
convection is expected to begin faster in the presence of a
capillary transition zone.

The results reveal that the growth of perturbation is not
a monotonic function of Ca, which is due to distribution of
the wetting phase in the transition zone, especially in the
vicinity of the interface. This is analyzed in more detail in this
subsection. Two physical processes are competing here: the
diffusion of the gaseous component into the wetting phase,
resulting in an unstable density profile, and the capillary
force, which acts to increase the height of the transition zone.
The zero or negative growth rates for small wave numbers
(i.e., large wavelengths) implies that the system is always
stable. Moreover, the critical wave number vanishes as the
capillary number increases. Hence, for a given Ra and τ0, the
systems turns unstable at a critical wave number corresponding
to a critical capillary number. Therefore, the onset time of
convection for the two-phase system is characterized by the
two dimensionless numbers of Ra and Ca.

Figure 4 describes the impact of the diffusion time on the
stability of the boundary layer. The stability curves are plotted
for three different capillary numbers, Ca = 1, 102, and 104. As
shown, the system is more unstable for smaller capillary num-
bers. Note that, at lower values of Ra (e.g., 500), the capillarity

t0 = 0.0005

~~~

~~

~

~~

= 0.0005

~~~

~~

~

~~

τ 0

0.161

= 0.0009

~~~

~~

~

~~

τ 0

0.317

= 0.0002

C
a
=
1

~~~

~~

~

~~

τ 0

v 6(10 m/s)=max

0.064

~~~~ 0.074~~~~ 0.046

C
a
=
10
0

~~~~ 0.025

C
a
=
10
00
0

~~~~ 0.002 ~~~~ 0.004 ~~~~ 0.008

FIG. 5. Velocity contours at three different Ca and τ0, where the numbers represent the maximum velocity of the fluid in μm/s. The other
parameters are fixed: Ra = 500, n = 2, and υ = 100.
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is strong enough to compete with diffusion and convection.
At a particular Ra, the most detrimental wave numbers and
maximum growth rates are shifted to the larger values as τ0 in-
creases. Contrary to the small capillary numbers, the boundary
layer becomes more stable as the front becomes more diffusive
when capillary number increases, which means diffusion has
a stabilizing effect on the system when the capillary effect is
diminishing. Again, for a typical diffusion time, there may be
a critical wave number when the convection evolves.

To comprehend the effect of a capillary transition zone on
the stability of the diffusive boundary layer, the velocity con-
tours for Ra = 500 for different values of capillary numbers
related to Fig. 4 are presented in Fig. 5. The dimensional
velocity fields are calculated by converting the perturbation
stream functions back to the vertical and horizontal component
of velocity using the following equations:

uw =
√

4τ0
Dϕ

H
sin(κmaxη)eσmaxτ0

∂�∗
max

∂ξ
, (46)

vw = −κmax
Dϕ

H
cos(κmaxη)eσmaxτ0�∗

max, (47)

where κmax and σmax are the wave number and the growth rate
corresponding to the maximum perturbation stream function
�∗

max, which itself corresponds to the largest eigenvalue
obtained by solving Eq. (44).

For comparison purposes, the maximum value of velocity
obtained from Eqs. (46) and (47) for each case is provided
in Fig. 5. The comparison between the velocity contours
at capillary numbers 1 and 104 reveals how the upward
flow across the interface (crossflow) affects the onset of
convection. Results shown in this figure reveal that, due to
the small thickness of the transition zone, there is almost
no crossflow at Ca = 104. On the other hand, at Ca = 1,
the interaction between the diffusive boundary layer and
the capillary transition zone increases the instability of the
boundary layer such that the onset of instability occurs earlier,
when the upward crossflow is accounted for. Furthermore, the
number of convective cells increases as Ca decreases, which
implies a smaller wavelength for the convection cells and
confirms the stronger velocity field.

The critical time and its corresponding wave number for
Ra values of 500, 1000, and 2000 are shown in Fig. 6. As
expected, the flow becomes more unstable as Ra increases,
due to the gravitationally unstable nature of the diffusive
boundary layer. In fact, a larger density gradient across the
boundary layer creates a more unstable front. As the capillary
number decreases (Ca → 0), the boundary layer becomes
more unstable, leading to larger wave numbers. This simply
reflects the destabilizing effect of the capillary transition zone.

The variation of the capillary number in the range of
Ca ∈ [1,104] shows a nonlinear dependence of τc and κc

to the capillary number at a particular Ra. At large values
of the capillary number (Ca → ∞), the capillary transition
zone has no significant effect on the stability of the diffusive
boundary layer. Based on these observations, two regimes of
instability can be identified; namely capillary-dominant and
buoyancy-dominant regimes with a transition between them.
In the capillary-dominant regime (Ca � 1), capillarity plays
the ultimate role in destabilizing the diffusive boundary layer;
however, in the buoyancy-dominant regime (Ca � 104), the

FIG. 6. Critical time and its corresponding wave-number curves
for Ra = 500, 1000, and 2000 vs Ca, which shows the nonlinear
dependence of τc and κc with Ca. The other parameters are fixed:
n = 2 and υ = 100.

capillary transition zone is small enough that it can be ignored,
and the density difference 
ρw

d (i.e., Ra) solely causes the
instability of the diffusive boundary layer.

To better understand the dependency of τc and κc with Ca
during the transition regime, the values of the wetting phase’s
relative permeability krw and 1/So(dSo/dς ) just above the
interface must be analyzed. These two terms appear in the
flow equation [Eq. (35)] and transport equation [Eq. (37)].

Figure 7 shows the behaviors of krw and 1/So(dSo/dς )
with regard to Ca at a point just above the interface. While
the wetting phase relative permeability decreases, the latter
term increases, suggesting that the relative permeability
and the capillary diffusion are competing with each other.
As the saturation of the wetting phase increases in the vicinity
of the interface, the corresponding relative permeability also
increases, which enhances the crossflow across the interface
promoting instability of the diffusive boundary layer. In
contrast, the abrupt changes in the saturation just above the
interface results in larger values for 1/So(dSo/dς ), which
strengthens the effect of diffusion in the transport equation,
Eq. (37), and, consequently, delays flow instability. Figure 7
demonstrates that such a behavior is more pronounced for
larger values of the material parameter at higher Ca.
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FIG. 7. Relative permeability of the wetting phase and
1/So(dSo/dς ) vs Ca at n = 2, 4, and 10. For a particular n, the
value of υ is defined in such a way that the normalized wetting phase
saturation S at top boundary tends to zero (i.e., S = 0.001).

Further investigation is conducted by plotting the critical
time and the critical wave number as a function of Ra at
different capillary numbers. Figure 8 illustrates that, for both
the lower (capillary-dominated regime, Ca � 1) and upper
(buoyancy-dominant regime, Ca � 104) limits of the capillary
number, the critical time varies with Ra−2, while the critical
wave number scales linearly with Ra. Similar scalings have
been obtained by Caltagirone [32] but our analyses eliminate
the effect of the boundary condition and consider the effect of
the capillary transition zone, so the following scaling relations
for the critical time and critical wave number are obtained:

Ca � 1

{
τc ≈ 25 Ra−2

κc ≈ 0.095 Ra
Ca � 104

{
τc ≈ 162 Ra−2

κc ≈ 0.07 Ra
. (48)

These scaling relations show that the presence of the
capillary transition zone can potentially decrease the onset
time of convection by sixfold. Note that the above-mentioned
scaling relationships apply only when

√
4τ � 1 or the QSSA

is deemed to be valid. The scaling relations obtained in present
study in the absence of a capillary transition zone (Ca � 104),
Eq. (48), are in close agreement with the critical time to onset
of convection and the critical wave number found by Kim and
Choi [28]. Although, the onset of convection in the absence

FIG. 8. Critical time and its corresponding wave-number curves
vs Ra for different Ca. At very low and high values of Ca, the critical
time varies with Ra−2, while the critical wave number scales linearly
with Ra. The other parameters are fixed: n = 2 and υ = 100.

of a capillary transition zone has been studied extensively, the
effect of capillarity on the onset of natural convection has not
been studied in the past.

Further examination is carried out to analyze the impact
of Ra on the stability of the boundary layer by studying the
onset of instability. Figure 9 depicts the velocity contours for
two different cases: one for a small Ca = 1, representing the
capillary-dominant regime, and the other for a large Ca = 104,
representing the buoyancy-dominant regime. In the compari-
son of these two cases, one may observe that the flow system
is more stable in the buoyancy-dominant regime (Ca � 104).

Velocity contours at different Ra in Fig. 9 demonstrate
that the wavelengths decrease with increasing Ra, resulting
in the evolution of a stronger convection current earlier in
the mixing process. Results also show that, in the case of
capillary-dominant flow, the convective currents penetrate
upward into the capillary transition zone and most likely
improve the mixing process. Such an observation has not been
made for the buoyancy-dominant flow regime.

The maximum growth rate σmax as a function of time and
the corresponding most detrimental mode κmax for the low and
high limits of capillary numbers at different Rayleigh numbers
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FIG. 9. Velocity contours at Ca = 1 and 104 for three different Ra at the onset of instability, where the numbers represent the maximum
velocity of the fluid in μm/s. The other parameters are fixed: n = 2 and υ = 100.

are depicted in Fig. 10. These results show that, after the onset
of convection, the maximum growth rate σmax rapidly reaches
a maximum value. In the later time of the evolution, σmax

FIG. 10. Maximum growth rate and the most detrimental wave
number as a function of time for Ra = 500, 1000, and 2000 at the
lower and higher limits of Ca. The other parameters are fixed: n = 2
and υ = 100.

decays slowly and is scaled with τ 2/5. The most detrimental
wave number displays τ 1/4 scaling, which is similar to the
result obtained by Riaz et al. [30]. These observations clearly

FIG. 11. Growth rate vs wave-number curves for Ca = 100 and
Ca = 1000 for different values of material parameters n. The other
parameters are fixed: Ra = 500 and τ0 = 0.0005.
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FIG. 12. Critical time and its corresponding wave-number curves
vs Ca for different values of n. The other parameters are fixed: Ra =
500 and τ0 = 0.0005.

describe that the flow system becomes less unstable as the
diffusion increases around the boundary layer.

In order to find the effect of the material parameter on the
onset of instability, the growth rate versus wave-number curves
for different n at Ca = 100 and 1000 are given in Fig. 11. This
figure reveals that the flow system becomes more unstable as n

increases. This can be attributed to the larger amount of wetting
phase saturation, S just above the interface, which manifests
itself in krw. From a quick comparison between the instability
curves for Ca = 100 and 1000, one may notice that the effect
of n is more evident at Ca = 1000, although the onset occurs
earlier at Ca = 100.

For a better understanding of the mutual effect of n and Ca
on the onset time, the critical times and their associated wave-
number curves for different n versus Ca are given in Fig. 12.
This figure reveals that the material parameter has no signifi-
cant influence on the onset of instability in both capillary- and
buoyancy-dominant regimes. It can be observed that the onset
time and the critical wave number are considerably responsive
to the material parameter in the transition regime.

Before comparing the LSA results with the results obtained
from nonlinear simulations, we examine accuracy of the
algorithm developed to solve Eq. (44) by showing mesh

FIG. 13. Maximum growth rate and the most detrimental wave
number as a function of the number of grids for Ca = 1, 102, and 104.
The other parameters are fixed: Ra = 500, n = 2, and υ = 100.

independence of the leading eigenvalue and most unstable
wave number. The maximum growth rate σmax as a function
of number of grid blocks Ng and the corresponding most
detrimental mode κmax for Ca = 1, 100, and 10 000 at Ra = 500
are depicted in Fig. 13. This figure shows how the algorithm
copes with change in grid spacing and how very close it is in
having grid independence at Ng � 800. As can be seen, the
maximum growth rate σmax changes as the number of grids
increases and at Ng � 800 it stabilizes around a positive value
slightly greater than zero (the onset of convection). In contrast,
the most detrimental wave number corresponds only slightly
with respect to the number of grids or the grid spacing.

IV. NONLINEAR SIMULATIONS

A. Numerical approach

Nonlinear mixing dynamics in the presence of a capillary
force are investigated by solving the nonlinear problem
using highly refined direct numerical simulations. In order to
examine the nonlinear development of mixing, Eqs. (1)–(8)
are solved numerically. The 2D numerical solution developed
in this work evaluates convective mixing considering the effect
of the capillary transition zone. The model is based on solving,
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first, for the pressure field and then for the saturation and
composition. In other words, the implicit pressure and explicit
mole fractions and saturations (IMPECS) are employed. Such
formulations can perform well in large-scale flow simulation
where the numerical stability limitations are not severe [40].
For modeling a highly nonlinear convective flow, the explicit
methods that are conditionally stable, but of higher accuracy,
are prone to generating nonphysical perturbations, unless the
grid block size and time step are sufficiently small. To control
the oscillations due to temporal and spatial discretizations,
the grid Courant, Peclet, and Rayleigh numbers are checked
to meet the specific criteria and to assure the numerical
accuracy [17].

The numerical model is based on the formulation for multi-
component and multiphase flow presented by Aziz and Settari
[40]. A two-component and two-phase model is employed. In
this model, the nonwetting phase is present in both phases,
while the wetting phase is present only in the aqueous phase.
Detailed information of the fluid properties employed in fluid
model is presented by Hassanzadeh et al. [53].

The governing equations are discretized based on a finite
difference formulation in a block-centered Cartesian grid
system, where the grid blocks can be uniform or nonuniform.
As mentioned before, the pressure equation is discretized

implicitly in pressure, while the transmissibilities are ap-
proximated explicitly. The Picard iteration is incorporated to
alleviate the nonlinearity and solve the pressure and compo-
nent balance equation. The calculated pressure distribution
is then used to obtain the velocity field. The pressure and
velocity fields are used in component mass balance equations
to obtain the mass of each component for all grid blocks at
each time step. Eventually, the calculated parameters are used
to perform a new iteration, and the calculations are repeated
until convergence is achieved.

B. Direct numerical simulation results

Direct numerical simulations are presented here to discuss
the nonlinear dynamics of fingering by analyzing the temporal
and spatial concentration distributions for Ra = 500. To see
how a capillary transition zone may affect the stability of
the boundary layer, the concentration contours are plotted for
the capillary-dominant, transition, and buoyancy-dominant
regimes.

Figure 14 depicts the concentration contours at different
times. These three simulations are carried out with the number
of grids at 200 × 100 and where the height of the system
above and below the gas-water contact is considered to be

FIG. 14. (Color online) Concentration contours at different times for Ra = 500, where top of the domain shows C = 1 [red (light gray)]
and bottom of the domain shows C = 0 [blue (dark gray)], respectively, representing (a) the buoyancy-dominant regime, (b) the transition
regime, and (c) the capillary-dominant regime.
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the same. However, the capillary transition zone differs for
each case, representing different regimes. The same relative
permeabilities and capillary pressure constitutive relations
given in the stability analysis section [Eqs. (24)–(26)] are
employed with n = 2. It can be observed that the flow is
destabilized, as predicted by the present stability analysis,
and fingers of high-density fluid start to grow with time
(Fig. 5). The boundary layer is initially stable, but the fingering
phenomenon appears as time passes. The fingers gradually
grow and interact with each other at later times, until they
reach the bottom boundary, which is closed. Consequently,
the concentration of the diffusive component cw

d builds in the
wetting phase region and becomes saturated with respect to
the dissolving component.

Figure 14 illustrates the concentration contours for h ∼ 0,
h ∼ H/5, and h ∼ H , representing the buoyancy-dominant,
transition, and capillary-dominant regimes, respectively. As
predicted by the linear stability analysis, the larger h results
in faster development of the instability. Furthermore, the
fingering pattern is dramatically changed as h is increased. The
change is very great, such that the convective mixing is delayed
significantly in the absence of the capillary transition zone for
the buoyancy-dominant case (h ∼ 0). The front convects faster
in the capillary-dominant regime (h ∼ H ) compared with the
buoyancy-dominant regimes. This confirms the predictions
from the linear stability analysis.

V. CONCLUSIONS

This study presents a macroscopic transport model of the
buoyancy-driven convective flow in a saturated porous medium
in the presence of a capillary transition zone. The gravitational
stability of the diffusive boundary layer underneath a capillary
transition zone was studied using the QSSA. The results of
the LSA reveal that the capillary transition zone destabilizes
the diffusive boundary layer, due to the flow across the

interface. Furthermore, the instability problem is character-
ized by capillary-dominant (Ca � 1) and buoyancy-dominant
(Ca � 104) regimes with a transition (1 < Ca < 104) regime
in between. The results presented in this study provide a new
understanding of the effects of a capillary transition zone on
the instability of the diffusive boundary layer.

The scaling relations for the most unstable growth rate
and wave number and the critical time and its corresponding
wave number, which were obtained by the LSA, are in
quantitative agreement with the scaling relations reported in
the literature. In the capillary-dominant regime, the capillarity
has a strong role in destabilizing the diffusive boundary layer,
where the critical time scales as τc ≈ 25 Ra−2. On the other
hand, in case of the buoyancy-dominant regime, where the
capillary transition zone is negligible, the critical time scales
as τc ≈ 162 Ra−2. Furthermore, for long times, the maximum
growth rate decays slowly as τ 2/5, while the most detrimental
wave number scales as τ 1/4 for the both instability regimes.

Direct numerical simulations were also conducted to ob-
serve the development of instability of the diffusive boundary
layer for different regimes identified in the LSA. It was
revealed that a larger capillary transition zone results in
faster development of instability, as predicted by the LSA.
Moreover, the capillary transition zone significantly affects
the fingering pattern such that the natural convection occurs
considerably faster for the capillary-dominant regime than for
the buoyancy-dominant regime.
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