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Potential flow in the presence of a sudden expansion: Application to capillary driven transport
in porous media
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We present a theoretical analysis of the capillary driven transport of liquid in porous media that undergoes a
sudden expansion. The use of appropriate coordinates allows for exactly and analytically solving different cases
in two and three dimensions. The time dependence of liquid front motion in an expanding porous media is shown
to be different from the one-dimensional Lucas-Washburn [Lucas, Kolloid Z. 23, 15 (1918); Washburn, Phys.
Rev. 17, 273 (1921)] results as well as from the solution for two- and three-dimensional circular expansions
obtained by Hyväluoma et al. [Phys. Rev. E 73, 036705 (2006)] and Xiao et al. [Langmuir 28, 4208 (2012)].
These cases appear as asymptotic limits of our solutions. We also observe that capillary flow in expanding
three-dimensional porous materials exhibits a steady state solution for the bulk flow rate at the entrance of the
expansion.
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I. INTRODUCTION

Capillary driven liquid flows in porous media are ubiquitous
phenomena that occur both in nature and in various practical
applications [1–8]. The dynamics of such flows was first
analyzed about a century ago [9–11] for the simple case of
one-dimensional transport in porous materials (or capillaries)
of uniform cross section. The advancement of the liquid is
driven by the capillary pressure due to the curvature of the
liquid-gas interface in each individual pore. Hence the liquid
should wet the pore walls with a contact angle that is less than
90◦. As the liquid penetrates further into the porous material
of constant cross section, the total hydrodynamic resistance
increases and the bulk flow rate decreases proportionally
to t−1/2 (where t is time). This result is often referred to
as the Lucas-Washburn (LW) relationship [10,11]. The LW
model was strictly derived for the flow in a single straight
capillary. For a porous media the LW relationship has an
average macroscopic meaning, similar to the Darcy equation
[6,12] with pressure drop determined by capillarity and a
permeability coefficient that is a complex function of the
porosity. The LW model is based on the assumption that the
flow is governed by the liquid motion, and the displacement
of the gas phase at the front does not practically contribute
due to its much lower dynamic viscosity. The model assumes
a single-phase system with a moving front, and is valid in
the limit of small gas pressure and density. This has been
both experimentally and theoretically shown to be reasonable
for a great number of systems involving liquids moving in
porous media [4,6,13–18], including by carefully obtaining the
density profile at the front [19]. In the case of two immiscible
liquids displacing each other, the flow needs to be treated as a
two-phase liquid and will depend on both viscosities [6]. The
focus of the present paper is on liquid phase capillary flow in
porous materials without entrapment of air anywhere in the
wetted region.

The time behavior of liquid penetration in porous media is
very different if the flow occurs in porous media that expands
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(or contracts) in the direction of the flow. Estimations of the
bulk flows in two- (2D) and three-dimensional (3D) expanding
porous media were offered [13–15] suggesting that the time
dependence of the flow deviates from the LW one-dimensional
(1D) case. The cases of 2D radial flow where the front is
represented by a gradually expanding circle were analyzed in
detail by Hyväluoma et al. [17]. The authors compared the
capillary driven flow Darcy-type model to lattice-Boltzmann
simulation and obtained excellent agreement, thus validating
the analytical approach. The detailed analysis of the 3D case
corresponding to an expanding spherical surface was per-
formed by Xiao et al. [16]. There the capillary driven transport
model was tested against carefully performed experiments
and again both were found to be in agreement. To maintain
circular or spherical symmetries the flows must start from
a point or an already circular (for 2D) or spherical (3D)
boundary. Hyväluoma et al. [17] used the model to describe
the penetration of liquid in two dimensions from a droplet
with circular circumference sitting on porous paper. They
showed that the liquid velocity decreases with time following
a different and more complicated dependence. Xiao et al. [16]
used the spherical expansion model to fit experimental data
on capillary penetration of water in packed glass beads. All
these results are very important because they imply that the
shape of the porous material leads to qualitative differences in
the resulting flow patterns. This means that applications using
capillary driven transport in porous media can be optimized
by simply shaping the materials accordingly [4].

In this paper we present exact analytical results for the flow
in porous media that exhibit sudden expansion (see Fig. 1).
The flow in these cases is not necessarily radial as in the
Refs. [16,17] because the entrance to the expanding porous
space has finite dimensions and is usually flat instead of
circular. Our results include a linear velocity field at each point
(on a scale greater than the typical average pore size) in the
domain of interest. The detailed knowledge of the local fluid
velocity is very important for applications like designing paper
based diagnostic devices with different shapes [2,4], delivering
solutions to power fuel cells [8], or to better understanding how
moisture penetrates construction materials [13,14]. We derive
the position of the wetted front as well as the bulk flow rate in
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FIG. 1. Examples for flows in various types of expanding porous
media in 2D cases [see Eqs. (5) and Fig. 2.] Case (a) corresponds to
0 � ψ � π . Case (b) corresponds to ψ1 � ψ � π − ψ1 where ψ1 is
an arbitrary angle. Case (c) corresponds to ψ1 � ψ � π . Case (d)
corresponds to ψ1 � ψ � π/2. Rotating cases (a) and (b) around
the y axis gives a 3D flow in expanding media [see Eqs. (29) and
Fig. 3] with 0 � θ � π/2 and 0 � θ � θ1, respectively, where θ1 is
an arbitrary angle.

the porous material as functions of the elapsed time. The 2D
solution is applicable to a wide variety of shapes. The 3D case
can be simply treated only if the domain has axial symmetry.
We will limit our analysis only to porous domains with zero
flow across the side boundaries and will ignore inertia effects.
Inertia and hydrodynamic nonlinearity are important in the
initial moment of liquid penetration into the porous media
and depend on the driving capillary pressure [20]. The latter
is a function of the pore (capillary) radius and the wetting
contact angle. As the pores may vary in size, the capillary
pressure used in our model is an average over the pore size
distribution, which has to be sufficiently narrow to prevent
capillary fingering from occurring. It has been shown that for
radii of the order of 50 μm inertia is usually important. If
the wetting contact angle is 0◦ then inertial terms might be
significant down to 10 μm pore radii [20]. Below these pore
sizes viscosity is dominant and inertia does not play a role.
The solution is restricted to the assumption that gravitational
effects are negligible. For approximately 2D systems this is
usually reasonable, even for large systems, as the dimensions
are commonly orthogonal to the gravitational field. However,
in 3D systems this means that the solution degrades as the total
weight of the fluid in the medium approaches the interfacial
contact length times the surface tension (i.e. the Bond number
grows) because this greatly distorts the front of the advancing
fluid by gravitational percolation [15]. Finally, our analysis
does not include possible evaporation of 2D surfaces or of the
side boundaries for both 2D and 3D systems. The analysis of
cases with permeable side boundaries and surface evaporation
will be published elsewhere [21].

In the next section, we present a general overview of the
capillary driven flow in porous materials. Section III presents
the derivation of results for the flow velocity in 2D expanding
porous media, Sec. IV presents the solution for the capillary
driven flow in an expanding 3D porous material, Sec. V

discusses and compares the results for each of the respective
geometries, and Sec. VI summarizes the conclusions.

II. GOVERNING EQUATIONS FOR THE FLOW
IN POROUS MEDIA

The flow of incompressible liquid in porous media is given
by the mass balance

∇ · v = 0, (1)

where v is the linear liquid velocity on a scale that is larger
than the individual pore size. For mass flux a sink or source
term, Q, (e.g., evaporation, condensation, etc.) may be added
to the right-hand side of Eq. (1); this term is presently ignored.
The liquid flow in porous media is irrotational [22]; therefore
the velocity can be expressed by means of the velocity
potential, ϕ,

v = ∇ϕ = − k

μ
∇P, ϕ = − k

μ
P. (2)

The right-hand side of Eq. (2) is Darcy’s law [12,22] where
k is the permeability of the medium, μ is the dynamic shear
viscosity of the liquid, and P is the pressure that drives the
flow. In the case of capillary driven flow the pressure is equal
to

PC = γ cos α

(
1

R1
+ 1

R2

)
, (3)

where γ is the interfacial tension at the gas-liquid interface
and α is the contact angle that characterizes the wetting of the
solid [23]. R1 and R2 are the two principal radii of curvature
of the pore. Equations (1) and (2) can be combined to give

∇2ϕ = 0. (4)

Equation (4) will be used to obtain expressions for the liquid
flow in all cases analyzed below.

III. CAPILLARY DRIVEN FLOW IN TWO-DIMENSIONAL
EXPANDING POROUS MEDIA

A. Exact solution in two dimensions

Different examples illustrating capillary liquid transport in
expanding 2D porous media are sketched in Fig. 1. Figures 1(a)
and 1(b) show symmetric regions with different extent of
expansion. Figures 1(c) and 1(d) represent two asymmetric
cases. The liquid enters the expanding region through an
entrance with finite width. Because of the finite size of the
entrance, the shape of the expanding liquid front is elliptical
rather than circular as in the case discussed by Hyväluoma
et al. [17]. The entrance is saturated with liquid and the
pressure there equals the ambient. The front of the moving
wetted region is where the liquid meets the gas phase in the
pores and the pressure there is equal to the ambient minus the
capillary pressure [see Eq. (3)]. Hence, we look for a solution
in the domain that starts at the entrance and propagates a wetted
front. The problem is best defined in elliptic coordinates [24]
(see Fig. 2),

x = a cosh η cos ψ, y = a sinh η sin ψ. (5)
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FIG. 2. Elliptic coordinates, used to describe the flow in an
expanding 2D porous domain. The points − a and a are the foci
of the ellipses.

The general form of Eq. (4) then becomes

∇2ϕ = 1

a2(cosh2 η − cos2 ψ)

(
∂2ϕ

∂η2
+ ∂2ϕ

∂ψ2

)
= 0. (6)

If there is no liquid flow across the edges of the domain that
are defined by ψ = ψ1 and ψ = ψ2 (see Fig. 1), there will
be no variation of ϕ with respect to the angular variable ψ .
Hence the term ∂2ϕ/∂ψ2 can be dropped from Eq. (6) and the
equation simplifies to

d2ϕ

dη2
= 0. (7)

The solution of this equation describes concentric elliptic lines
that correspond to the flow potential ϕ at a given η. The
boundary conditions are

ϕ = ϕ0 = − k

μ
PC at η = 0, ϕ = 0 at η = ηf ,

(8)

where η = 0 at the entrance and η = ηf at the front. The
solution of Eq. (7) is then

ϕ = − k

μ
PC

[
1 − η

ηf

]
. (9)

Hence the velocity of the moving liquid is

vη = (∇ϕ)η = 1

a(cosh2 η − cos2 ψ)1/2

∂ϕ

∂η

= 1

a(cosh2 η − cos2 ψ)1/2

(
kPC

μ

1

ηf

)
. (10)

Following the approach outlined by Washburn [11], we derive
an equation for the velocity of the moving front,

vηf
= a(cosh2 ηf − cos2 ψ)1/2 dηf

dt

= 1

a(cosh2 ηf − cos2 ψ)1/2

(
∂ϕ

∂η

)
η=ηf

=
(

kPC

aμ

)
1

(cosh2 ηf − cos2 ψ)1/2

1

ηf

. (11)

For plotting it is convenient to use a dimensionless velocity
that has the form ṽηf

= (μa/kPC) vηf
.

The time dependence of the position of the liquid front
ηf (t) can be derived by integrating Eq. (11):

kPC

μ

∫ ηf (t)

0

(cosh2 η′
f − cos2 ψ)

(∂ϕ/∂η)η=η′
f

dη′
f = t̃ , t̃ = kPC

μa2
t.

(12)

After integration and brief rearrangement Eq. (12) leads to the
following relationship for the time-dependent position of the
liquid front:

ηf sinh(2ηf ) − 1
2 cosh(2ηf ) − cos(2ψ)η2

f + 1
2 = 4t̃ . (13)

Equation (13) represents the dependence of the front position
on time ηf (t̃). Differentiating with respect to time and
multiplying it by the factor a(cosh2 ηf − cos2 ψ)1/2 gives
the time-dependent velocity of the front [see the top line of
Eq. (11)]. Alternatively ηf (t̃) can be introduced in the last line
of Eq. (11) to obtain the time dependence of the linear velocity
ṽf

(
t̃
)
.

Another quantity of interest is the volumetric flux of liquid
through the entrance, U . It is equal to the integral over the
liquid linear flow velocity across the area of the front, or [see
Eq. (11)]

U (t̃) =
∫

A

v · ndA

= a

∫ ψ2

ψ1

vηf
(t̃)[cosh2 ηf (t̃) − cos2 ψ]1/2dψ

=
[

kPC

μηf (t̃)

]
(ψ2 − ψ1). (14)

Since the liquid motion occurs in the 2D plane, the above result
is per unit length in direction normal to the plane surface. The
local linear velocity ṽ will decrease with the increase of η in an
expanding domain and is lowest at the front where η = ηf . The
volumetric flux, U , conserves because as the linear velocity
decreases the front area increases to exactly compensate. Both,
however, will change with time. For a fully open entrance
(ψ1 = 0, ψ2 = π ) one obtains

U (t̃) = πkPC

μηf (t̃)
. (15)

B. Asymptotic results for small and large η f

For short times, ηf is small and we can further simplify the
solution (13) (also setting ψ = π/2) to read

η2
f

2
= t̃ . (16)

This expression is formally identical to the LW result
[10,11],

L (t)2

2a2
= t̃ , (17)

which describes the position of the front L(t) in a porous
domain with constant cross section. Hence for short times
and small ηf the effect of the expansion is negligible. It is
also important to stress that the short times discussed here are
reflecting only the effect of the porous media geometry and are
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still long in comparison to the time scale of any inertial fluid
motion. Inertia (if present) occurs on a time scale that is much
faster (about a fraction of a second) and practically absent for
pores with radii below 10 μm, or for even larger pores if the
wetting contact angle is less than 0◦ [20].

The asymptotic result for large ηf is obtained by
realizing that sinh(2ηf ) → exp(2ηf )/2 and cosh(2ηf ) →
exp(2ηf )/2. At long times the asymptotic result for Eq. (13)
is

1
8ηf exp(2ηf ) − 1

16 exp(2ηf ) = t̃ . (18)

As will be shown below, Eq. (18) is identical to the long-time
asymptotic results of Hyväluoma et al. [17],

(
Rf

R0

)2

ln

(
Rf

R0

)2

−
(

Rf

R0

)2

+ 1

≈
(

Rf

R0

)2

ln

(
Rf

R0

)2

−
(

Rf

R0

)2

= 4kPC

μR2
0

t. (19)

Rf is the postion of the expanding liquid front and R0 is the
radius of the entrance, which in their analysis must be circular.
Using the relationship between polar and elliptical coordinates
defined by

r2 = x2 + y2 = a2(cosh2 η cos2 ψ + sinh2 η sin2 ψ), (20)

one can write Eq. (19) in terms of ηf . Tracing the position of
the liquid front along the y axis, we obtain

R2
f

R2
0

= a2

R2
0

sinh2 ηf + 1. (21)

The term 1 on the right-hand side of the above equation is
added to ensure that Rf /R0 � 1. Inserting (21) into Eq. (19)
describes the position of the liquid front (along the y axis) as
a function of time:(

sinh2 ηf + R2
0

a2

)
ln

(
sinh2 ηf + R2

0

a2

)
− sinh2 ηf

= 4kPC

μa2
t = 4t̃ . (22)

The factor R2
f /a2 can be found from the condition that

entrances for both circular and elliptical cases are the same.
For 0 � ψ � π this condition reads

2a = πR0 or
a

R0
= π

2
. (23)

For large ηf we have

cosh2 ηf → exp(2ηf )

4
, sinh2 ηf → exp(2ηf )

4
(24)

and

R2
f

R2
0

= a2

R2
0

exp(2ηf )

4
(cos2 ψ + sin2 ψ)

= a2

R2
0

exp(2ηf )

4
. (25)

Then the right-hand side of Eq. (19) becomes

a2

R2
0

{
exp(2ηf )

4
ln

[
a2

R2
0

exp(2ηf )

4

]
− exp(2ηf )

4

}

= a2

R2
0

{
exp(2ηf )

4

[
2ηf + ln

(
a2

4R2
0

)]
− exp(2ηf )

4

}

≈ a2

R2
0

[
ηf exp(2ηf )

2
− exp(2ηf )

4

]
, (26)

since 2ηf � ln(a2/4R2
0) and therefore can be neglected.

Introducing the above expression in Eq. (19) makes it identical
to Eq. (18). For very large ηf one may use the approximation

x ln x − x ≈ ln (x!) ≈ ln [
 (x + 1)] , (27)

which allows one to write the left-hand sides of Eq. (18) in a
more compact form:

1
8ηf exp(2ηf ) − 1

16 exp(2ηf ) ≈ 1
16 ln[
(e2ηf + 1)]. (28)

IV. CAPILLARY DRIVEN FLOW IN EXPANDING
THREE-DIMENSIONAL POROUS MEDIA

A. Exact solution in three dimensions

For flow in 3D porous media, a general grasp of the
geometry can be obtained from Figs. 1(a) and 1(b) if the graphs
are revolved around their vertical axis of symmetry (the z axis
in Fig. 3). The coordinates that are relevant to such a system
are defined by Ref. [24] (see also Fig. 3)

x = a cosh η sin θ cos ψ, y = a cosh η sin θ sin ψ,

z = a sinh η cos θ. (29)

Note that the variable ψ is different from the one used in the
elliptic 2D case discussed above (see Fig. 3 and compare it to

FIG. 3. Oblate spheroid coordinates, used to describe the flow in
an expanding 3D porous domain. The points −a and a are the foci
of the oblate surface corresponding to η. Only systems with axial
symmetry are considered.
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Fig. 2). The Laplace equation for the flow potential, Eq. (4),
has the form [24]

∇2ϕ = 1

a2(cosh2 η − sin2 θ )

×
(

∂2ϕ

∂η2
+ tanh η

∂ϕ

∂η
+ ∂2ϕ

∂θ2
+ cot θ

∂ϕ

∂θ

)

+ 1

a2 cosh2 η sin2 θ

∂2ϕ

∂ψ2
= 0. (30)

Since we consider an axis-symmetric domain, ∂2ϕ/∂ψ2 = 0,
the last term can be dropped. Additionally, there is no flow
across the surface corresponding to θ = π /2 and θ = −π /2;
hence there is no change with θ and all derivatives with
respect to the polar angle are zero. Therefore Eq. (30) can
be significantly simplified to

d2ϕ

dη2
+ tanh η

dϕ

dη
= 0. (31)

This equation describes concentric oblate surfaces that corre-
spond to the flow potential ϕ(η). The boundary conditions for
capillary driven flow are identical to those given by Eq. (8):

ϕ = ϕ0 = − k

μ
PC at η = 0, ϕ = 0 at η = ηf .

(32)

The solution for the flow potential is then

ϕ = ϕ0

{
1 − arctan[tanh(η/2)]

arctan[tanh(ηf /2)]

}
. (33)

Note that for ηf → ∞ the above expression becomes

ϕ = ϕ0

{
1 − 4 arctan[tanh(η/2)]

π

}
, (34)

which means that in the 3D case we have a finite asymptotic
result on an infinite domain which is not true for the one- and
two-dimensional cases.

The liquid velocity profile in the 3D porous region has only
an η component, which is

vη = 1

a(cosh2 η − sin2 θ )1/2

∂ϕ

∂η

= kPC

2μa cosh η(cosh2 η − sin2 θ )1/2 arctan[tanh(ηf /2)]
.

(35)

The velocity of the front is

vηf
= 1

a(cosh2 ηf − sin2 θ )1/2

(
∂ϕ

∂η

)
η=ηf

= kPC

2μa cosh ηf (cosh2 ηf − sin2 θ )1/2 arctan[tanh(ηf /2)]
.

(36)

The velocity is formally expressed in terms of the spatial and
temporal variables by

vηf
= a(cosh2 ηf − sin2 θ )1/2 dηf

dt
. (37)

Hence, combining (36) and (37) one derives∫ ηf (t)

0
(cosh2 η′

f − sin2 θ ) arctan

[
tanh

(
η′

f

2

)]
cosh η′

f dη′
f

= kPC

2μa2
t = t̃

2
. (38)

After integration we obtain a relationship between the front
position ηf and scaled time t̃ :

1

3
arctan

[
tanh

(
ηf

2

)]
[2 + 3 cos(2θ ) + cosh(2ηf )] sinh(ηf )

− 1

6
[1 + 3 cos(2θ)] ln[cosh(ηf )] − 1

12
[cosh(2ηf ) − 1]

= t̃ . (39)

The front velocity is then obtained by introducing the calcu-
lated time dependence of ηf in Eq. (36) or (37). The volumetric
flux is obtained from

U (t̃) =
∫

A

v · ndA

= kPC

μa

a2

arctan
{
tanh

[ ηf (t)
2

]}
∫ 2π

0
dψ

∫ θ0

0
sin θdθ

= 2πakPC(1 − cos θ0)

μ arctan
{
tanh

[ ηf (t)
2

]} . (40)

For a fully open entrance (θ0 = π/2),

U (t̃) = 2πakPC

μ arctan
{
tanh

[ ηf (t)
2

]} . (41)

B. Asymptotic results for small and large η f

For short times and small values of ηf and θ = 0 Eq. (39)
simplifies to

η2
f

2
= t̃ . (42)

The long-time, large ηf , asymptotic result can be derived for
Eq. (39) using the same arguments as above [see Eq. (18)] and
also noting that arctan[tanh(ηf /2)] → π/4. The result is

π

4

exp
(
3ηf

)
12

= t̃ . (43)

For large ηf the front shape should approach that of an
expanding sphere. The latter can be derived from Eq. (4)
written in the form

1

r2

d

dr

(
r2 dϕ

dr

)
= 0, (44)

together with the following boundary conditions:

r = R0, ϕ = ϕ0 = − k

μ
�P, �P = PC,

(45)
r = Rf , ϕ = 0.

Then the solution for the potential is (see also Ref. [16])

ϕ = ϕ0
Rf R0

Rf − R0

(
1

r
− 1

Rf

)
. (46)
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It is interesting to point out that in the case of 3D radial flow,
there is a finite solution for ϕ (r) even if Rf is at infinity. In
this case

ϕ = ϕ0
R0

r
. (47)

The radial velocity is then

vr = ∂ϕ

∂r
= −ϕ0

Rf R0

Rf − R0

1

r2
= Rf R0

Rf − R0

kPC

μ

1

r2
. (48)

At r = Rf

vRf
= dRf

dt
= R0

Rf (Rf − R0)

kPC

μ
. (49)

Hence the time-dependent position of the moving front is given
by

∫ Rf

R0

R′
f (R′

f − R0)

R3
0

dR′
f = R3

f

3R3
0

− R2
f

2R2
0

+ 1

6
= a2

R2
0

t̃ .

(50)

The radial coordinate in 3D oblate spheroid coordinates is

r2 = x2 + y2 + z2

= a2(cosh2 η sin2 θ cos2 ψ + cosh2 η sin2 θ sin2 ψ

+ sinh2 η cos2 θ )

= a2(cosh2 η sin2 θ + sinh2 η cos2 θ). (51)

At the front η = ηf and for large ηf we use the approximations
cosh2 ηf ≈ exp(2ηf )/4 and sinh2 ηf ≈ exp(2ηf )/4. Hence

R2
f

R2
0

= a2

R2
0

exp(2ηf )

4
, (52)

and Eq. (50) becomes

R3
f

3R3
0

− R2
f

2R2
0

+ 1

6

= a3

3R3
0

exp(3ηf )

8
− a2

2R2
0

exp(2ηf )

4
+ 1

6
= a2

R2
0

t̃ , or

a

R0

exp(3ηf )

24
− exp(2ηf )

8
+ R2

0

6a2
= t̃ . (53)

Keeping only the leading order term in Eq. (53) and expressing
the ratio a/R0 using Eq. (23) we obtain

π

2

exp(3ηf )

24
= t̃ , (54)

which is identical to Eq. (43).

V. RESULTS AND DISCUSSION

A. Transport in two-dimensional porous media

Two effects govern the liquid transport in an expanding 2D
porous region. Both of them follow from the mass conservation
of the incompressible liquid. The first one follows from the
mass conservation and is due to the liquid distribution over an
ever-increasing space (or area). This effect leads to an apparent
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FIG. 4. (a) Position of the liquid front in an expanding 2D porous
material as a function of time [see Eq. (13)] (solid line). The dashed
line corresponds to the nonexpanding LW result [see Eq. (16)]. The
dotted line represents the result for an expanding circular front [see
Eq. (19)]. (b) Velocity of the liquid front for capillary motion in
expanding 2D porous material. The solid line corresponds to the flow
depicted in Fig. 1(a) [see also Eqs. (11) and (13)]. The dashed line
shows the LW while the dotted line shows the 2D radial flows.

decrease in the velocity of the moving front. At the same time
the liquid travels less distance per unit time, which lowers the
friction resistance while the capillary force increases due to
the expansion of the front. The combination of the two effects
slows down the linear velocity and facilitates the bulk flow
rate in an expanding porous material. Figures 4(a) and 4(b)
show the dependence of the liquid front position and linear
velocity of capillary driven liquid flow in two-dimensional
porous regions. The solid lines correspond to the case depicted
in Fig. 1(a) (the entrance has finite dimensions). The plot
was derived from Eq. (13) setting ψ = π/2, i.e., the flow
along the y axis is traced (see Fig. 2). It is compared to the
LW power-law case [10,11] of nonexpanding porous material
which maintains constant cross sectional dimension [dashed
line; see also Eqs. (16) and (17)], as well as to the case of
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radial flow [17] [see Eq. (19)]. At short times the front position
shows a power-law increase similar to the LW solution. This
is due to the fact that the effect of the expansion is weak for
short distances, the liquid has not spread too much, and the
streamlines are almost parallel. As time progresses, however,
the expansion effect increases and the distance traveled by the
front in the expanding porous domain decreases in comparison
with the nonexpanding LW case because liquid has also moved
to the sides to form the elliptically shaped front. For long times
the front becomes less elliptical and more circular and the
solution for the front position asymptotically approaches that
for an expanding circle given by the dotted line in Fig. 4(a)
[see Eqs. (18) and the discussion thereafter]. Hence, the LW
[10,11] solution and the circular expansion result obtained by
Hyväluoma et al. [17] represent the 2D limiting cases of no
expansion and maximum expansion, respectively. Our result
given by Eq. (13) describes the entire time behavior including
two limiting cases as well as the intermediate case, as seen
from Fig. 4(a). The latter applies to a range of more than two
orders of magnitude of the scaled time.

The time dependence of the linear velocity of the liquid
front is shown in Fig. 4(b). The solid line corresponds to our
solution given by Eq. (11) in combination with Eq. (13). The
dashed line is the LW result [10,11] and the dotted line is
that for the radial flow when Rf /R0 or, equivalently, ηf are
large [17]. Clearly the velocity drops with time for all the cases
but at different rates. If the porous region does not expand,
then the reason for the velocity decrease is due to the increase
of the length of liquid penetration. This length contributes
to the viscous resistance and hence, slows down the motion. If
the liquid travels in an expanding material (like the examples
outlined in Fig. 1) the front motion is also slowed by the fact
that liquid is diverted sideways into the available expanding
space. The effect of the expansion is strongest in the case of
pure radial flow. At short times our solution is close to that for
a nonexpanding medium and asymptotically approaches the
one for radial flow at very long times.

It is interesting to examine the dependence of the bulk
(volumetric) flow rate since it is a measure of the ability of
the porous material to absorb liquid. An important practical
application exploiting this ability is to drive fluids in devices
and materials using capillary action instead of an external
power source [4]. The solid line in Fig. 5 shows the change
of the bulk flow rate with time calculated from Eq. (41).
Since we are considering a 2D domain, the bulk flow rate is
calculated per unit length in the direction normal to the plane
of the flow. Again, for comparison both the nonexpanding
LW and the radial expanding cases (for large ηf ) are shown.
Both are obtained in a similar way by multiplying the liquid
velocity at the front by its length. Clearly an expanding
porous material has better capabilities of absorbing liquids;
as is evident in the plots, the bulk flow rate decreases
much slower with time in comparison with the nonexpanding
case.

B. Transport in three-dimensional porous media

The effect of expansion is stronger when it occurs in
three dimensions. The reason is that there is more space
available for the liquid to occupy as it moves forward driven
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FIG. 5. Bulk flow rate vs time for expanding 2D porous materials.
The solid line corresponds to the flow depicted in Fig. 1(a) [see
Eqs. (15) and (13)]. The dashed line shows the LW while the dotted
line shows the 2D radial flows for large ηf .

by capillary pressure. The calculations presented below are
for a fully opened medium where θ = π/2 (see Fig. 3). The
entrance has a circular shape. The flow along the y axis is
traced, which corresponds to θ = 0. Figure 6(a) shows the
position of the fluid front as a function of the elapsed time.
The solid line corresponds to the solution in oblate spheroid
coordinates given by Eq. (39) (i.e., the fluid enters the porous
material through a circular entrance with finite dimensions)
and it is compared to the nonexpanding case (dashed line)
and the expansion in spherical symmetry for large Rf /R0

[or ηf —see Eq. (54)]. At short times the expansion effect
is insignificant while at long times the behavior approaches
that of an expanding spherical front. Similarly to the 2D case,
our solution interpolates between these two limiting cases and
provides a correct description for the cases where the liquid
enters the 3D expanding porous material through an entrance
with a finite size.

The linear velocity of the advancing liquid front is shown
in Fig. 6(b). The effect of the expansion on the front velocity
resembles a 2D case [see Fig. 4(b)] but is more pronounced
because of the spreading of the liquid over a larger front area.
That leads to greater reduction of the velocity of the moving
liquid front.

The bulk volumetric velocity is presented in Fig. 7. It should
be emphasized that the 3D expanding case allows for a solution
where fluid will keep entering the porous material through the
circular entrance. This is also evident from Eq. (41) which for
time and ηf → ∞ becomes

Ũ∞ = μU∞
2πakPC

= 4

π
. (55)

This result implies that 3D porous media can be used as
capillary pumps to drive fluids in devices. This cannot be
accomplished if the porous material does not expand, or the
expansion is two dimensional (see also the discussion below).
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FIG. 6. (a) Liquid front position as a function of the elapsed time
in a 3D expanding porous material. The solid line corresponds to the
solution in oblate spheroid coordinates, the dashed line is the LW
nonexpanding case, and the dotted line is the solution for spherical
expansion at large ηf . (b) Linear velocity of the moving liquid front
in a 3D porous material. The solid line represents the solution for
an oblate spheroid front, the dashed line is for the LW solution, and
the dotted line corresponds to the asymptotic case of an expanding
spherical front.

The actual rate of drawing liquid in, however, will depend on
parameters such as the average pore size, liquid viscosity, and
pore wetting ability, and may turn out in many cases to be too
low (see experimental results in Xiao et al. [16]).

Since the asymptotic result (55) follows from the di-
mensionality of the system, one may expect that a similar
relationship exists for the pure radial (spherical) transport (see
Fig. 7). Indeed, using Eq. (48) we can find the linear velocity
at the entrance where r = R0. To obtain the bulk flow rate one
needs to multiply the result by the area of the entrance which
we assume to be hemispherical in order to better compare to
the oblate spheroid case discussed above. Thus the asymptotic
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FIG. 7. Bulk flow in a 3D porous medium. The solid line shows
the result for oblate spheroid symmetry, the dashed line corresponds
to the LW case, and the dotted line represents the spherical case.

(Rf → ∞) expression reads

Ũ∞ = μU∞
2πR0kPC

= 1. (56)

Hence, if the system is 3D, stationary solutions are possible,
which is generally the case for Laplace equations in infinite
or semi-infinite spaces and processes such as heat transfer or
diffusion [25].

C. Effect of porous media dimensionality

The dimensionality of the porous media is extremely
important for the flow rate. There is no expansion of the
advancing fluid front in the case of 1D transport (which is
represented by the LW case [10,11]) and the linear velocity
(as well as the bulk flow rate) drops as 1/

√
t . At the other

extreme, the 3D case allows for a solution even for ηf → ∞
[see Eq. (55) above]. Figure 8(a) shows a comparison for
the time-dependent position of the moving liquid front for
1D, 2D (elliptical), and 3D (oblate spheroid) cases. The 1D
case exhibits the farthest liquid penetration while in the 2D
and 3D cases the distance is much shorter. The rate of liquid
motion also decreases with the dimensionality of the flow [see
Fig. 8(b)]. This is due to distribution of the advancing liquid
over greater space. The cross sectional area that the fluid moves
through does not change in the 1D case, increases linearly
with distance in the 2D case, and increases quadratically in
the 3D case. Since the liquid is incompressible it can cover
shorter distances per unit time for the two- and particularly
the three-dimensional cases. It is, however, very different for
the bulk flow rate (see Fig. 9). The volume absorbed per unit
time by the porous domain decreases the fastest for the 1D
flow. The decrease in the bulk flow rate for the 2D expanding
case is lower and for the 3D case it levels off to a steady
state [see Eq. (55) above]. The reason is the bulk flow rate is
slowed down by the viscous resistance which increases with
the length of the traveled path. The latter is greatest in the 1D
case, shorter in the 2D case, and shortest in the 3D case.
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VI. CONCLUSIONS

We derived solutions for potential capillary driven liquid
flow in 2D and 3D expanding porous media. The selection
of suitable coordinate systems allows for simplification of
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FIG. 9. Bulk liquid flow vs time in 1D (dashed line), 2D (solid
line), and 3D (dotted line) cases.

the mass balance expressions to ordinary differential equa-
tions that can be exactly solved. The obtained solutions for
expanding 2D and 3D porous materials are different from
the well-known Lucas-Washburn solution describing liquid
motion in nonexpanding material geometries. The functional
forms of the time dependence of the front position and velocity
are more complicated if the porous domain is expanding. At
the same time the liquid linear velocity is lower, which is due to
spreading of the incompressible liquid over an ever-increasing
domain.

The bulk flows display a qualitative difference in the 1D,
2D, and 3D cases. It decreases the fastest if the porous domain
does not expand, less in the 2D expanding domain, and least in
the 3D domain. In fact the 3D case can reach a steady state for
the bulk flow into the porous material. This makes it suitable
to use in driving fluids through devices using capillary forces
and without the need of an external power source.
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