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In the present work, we consider a framework for characterizing electro-osmotic flows in topographically
complicated porous media and derive an effective up-scaled transport parameter to quantify this. We term this
parameter the electro-permeability, which characterizes the electro-osmotic flow through composite porous media
in analogy with Darcy’s law. The electro-permeability tensor, thus introduced, serves a simple means of relating
the volume flow rate with the applied electric field without going into the intricacies of the microstructure
of the porous domain. First, we consider cases where the solid fractions have a fractal dimension generated
by the Mandelbrot set, purely for the sake of demonstration. Based on such considerations, we employ the
method of homogenization to obtain the effective electro-permeability parameter from the numerical simulations
executed over a representative volume element. Our derived electro-permeability tensor components exhibit
functional relationships with the solid or liquid fraction as well as the topography of the porous medium. Having
established these functional relationships, we evaluate the tensor components for a binary composite porous
medium in which one constituent has markedly high ζ potential than the other constituent, for illustration with
potential relevance in microfluidics. We establish the sensitivity of the electro-permeability tensor on the domain
morphology, solid fraction, ratio of solid fractions of the two phases having the two different ζ potential values,
and the ζ potential contrast and compare it with equivalent Darcy permeability for the same. We thus provide a
simple mathematical framework that may be immensely helpful for devising a computationally efficient way of
characterizing electro-osmosis through topographically complicated porous media.
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I. INTRODUCTION

With increasing applications of flows through membranes
(e.g., proton exchange membranes [1]), nanoporous media
(for energy conversion [2–4]), and fibrous media (e.g., paper
microfluidics [5,6]), it is imperative to address the transport
of colloids and aqueous solutions through a domain that
is characterized by a tortuous and highly networked path
[7]. In the traditional paradigm of pressure-driven flows
through porous media, one typically refers to Darcy’s law
in addressing such scenarios, which relates the volume flow
rate to the applied pressure gradient via the permeability
parameter [8]. An inherent simplicity of Darcy’s law stems
from the fact that it may accommodate various correlations in
order to represent the consequences of inherent topographical
features like porosity and tortuosity in the flow analysis.
However, despite its inherent simplicity, use of it is often
restricted by its obvious limitations in explicitly capturing
the consequences of complicated topography of the domain
from a rather fundamental perspective. The situation gets even
more challenging when electro-osmosis occurs within the flow
domain, by virtue of an intricate interaction between a charged
interfacial layer formed at the solid-liquid interface, also
known as the electrical double layer (EDL), and an externally
applied electric field [9–22]. Implications of the topography
of the porous medium on the resultant flow characteristics,
under such circumstances, may remain far from being trivial,
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because of combined multiphysics and multiscale nature of
the underlying transport processes.

In an analogy to Darcy’s law, here we develop an effective
electro-permeability parameter which would relate the volume
flow rate with the applied electric field for electro-osmotic flow
in porous media. Electro-osmosis through porous media has
found applications in areas like: soil dewatering, enhanced
oil recovery in bitumen [23], proton exchange membranes in
fuel cells [1,24,25], flows involving suspensions of charged
particles [26,27], and liquid transfers in soils [25]. As such,
electro-osmotic transport in a porous medium is a complicated
interplay of the EDL [23,29], the topographical feature of the
flow domain, and the applied electric field, which may best be
addressed in a computationally efficient manner by employing
the concepts of multiple physical scales.

A wide variety of physical problems have multiple scales
integrated into the physics of the problem. A few such
problems are flows in porous media, turbulent flows, analysis
of composite materials, and many more [30–36]. Usually these
problems involve complex geometries or topographies and
hence are quite often not analytically tractable. For example,
flows of Newtonian fluids in porous media involve the solution
of the full Navier-Stokes equation in a complex domain. The
situation may be further complicated by the fact that in order
to capture the underlying physics of the problem (for instance,
flows through tortuous channels bearing surface potential),
we are required to resolve the computational domain to the
smallest length scale so that the local fluctuations are captured.
Failure to resolve the domain to the smallest domain of interest
may lead to physically unrealistic solutions because of the
inability to capture the physics which has its genesis in the
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FIG. 1. Schematic of the spatially periodic cells. Boundary pairs (1, 3) and (2, 4) in the Representative volume element (RVE or REV) are
periodic, whereas boundary 5 is the interior boundary, which represents the boundary of the solid microstructure.

smallest possible physical scale. However, as a computa-
tionally inexpensive alternative to the full-scale simulation
process, one may exploit a mathematical up-scaling procedure
inside a small portion of the domain (a representative volume
element) by the virtue of which it is possible to absorb the
combined effect of the topography and field variables in terms
of a generalized up-scaled constitutive functional relationship.

In an effort to implement the above conceptual paradigm for
analyzing electro-osmotic transport [9,11–13,15,16,23,36–39]
through porous media, we employ the method of homogeniza-
tion [33,35,40–42]. The method of homogenization is a power-
ful tool for obtaining effective equations and computing effec-
tive parameters in problems where phenomena occur at various
well-separated length and time scales. Thus, under an assump-
tion of scale separation, it enables one to analyze the effects of
fluctuations of field variables over different length scales in a
coupled manner. This is achieved by obtaining mathematically
homogenized (or effective) properties over a macroscopic
control volume, based on variation of field variables over many
microscopic cells that constitute the volume element. Since
the effective property carries information of transport features
over microscopic length scales, it is expected to represent the
microscale physics in a macromodel in a much more rigorous
and efficient manner than what a simple volume averaging
does.

In the present work, we first apply the method of ho-
mogenization for analyzing electro-osmotic transport through
porous medium. As a consequence, we establish a func-
tional relationship between an effective electro-permeability
parameter and the solid fraction in the domain as well as a
chosen topographical parameter. We then apply this model
to evaluate the electro-permeability tensor components for a
binary composite porous medium in which one constituent
has markedly high ζ potential than the other constituent, as a
demonstrative example.

II. MATHEMATICAL MODELING

We consider a periodically repeating volume element in
the flow domain as shown in the schematic shown in Fig. 1.
The main assumption concerning this spatial periodicity is that
the cells Y repeat themselves at well-separated length scales
to form the heterogeneous media X. Such a periodic block
is referred as the representative volume element (known as
RVE or analogously REV, representative elemental volume;
highlighted in Fig. 1), which contains all the small details of
the microstructure [43,44]. The unit cell Y is formed by two
parts Ys and Yf representing the solid and liquid parts of the
domain, respectively. The boundaries 1, 2, 3, and 4 constitute
the boundaries of the RVE such that boundary pairs (1, 3) and
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(2, 4) are periodic and boundary 5, represented as �f s , is the
interface separating Ys and Yf .

Before introducing a formal implementation of the method
of homogenization as applied to the porous media in the
context of electro-osmotic transport, we first mention the gov-
erning equations for electrical potential distribution because
of the presence of surface charges on the walls of the porous
media, which is central to the phenomenon of electro-osmosis.

A. EDL potential distribution induced in the porous medium

The potential distribution (ψ) in the EDL is coupled with the
charge density distribution (ρe) through the Poisson equation,
as given by [29]

∇2ψ = −ρe/εr , (1)

where

ρe = e(z+n+ + z−n−). (2)

Here εr is the permittivity of the media, e is the protonic charge,
z+ and z− represent the valency of positive and negatively
charged species respectively, and n+ and n− represent the
ionic number densities of the positive and negative species,
respectively. The ionic number densities are assumed to be
described by the Boltzmann distribution [29], which is given
as

n± = n0 exp(−z±eψ/kBT ), (3)

where n0 is the bulk ionic concentration, kB is the Boltzmann
constant, and T is the absolute temperature. For a z: z

symmetric electrolyte, Eqs. (1)–(3) can be combined together
to yield the Poisson-Boltzmann equation [29]:

∇2ψ = 2zen0

εr

sinh

(
zeψ

kBT

)
. (4)

Equation (4) is subjected to ζ potential at the shear plane
(effectively the interface between the wall-adhering immobile
ionic layer and the outer mobile ionic layer; here applied at
boundary 5 in Fig. 1) and periodic boundary conditions on the
RVE/REV boundaries.

B. Hydrodynamic equations

The corresponding governing transport equations for a
steady flow of Newtonian fluid are

�∇ · �v = 0, (5)

ρ�v · �∇�v = −�∇p + μ∇2�v + ρe
�E. (6)

Equation (5) represents the continuity equation, and Eq. (6)
represents the momentum equation with an augmented body
force term, which is derived from the Maxwell stress tensor
[10]. Here �v is the flow velocity, p is the pressure, μ is the
viscosity, and �E is the electrical field. Equation (6) is subject
to no slip and no flux at the solid boundaries bounding the
topographically complex domain present in each RVE/REV
(boundary 5 in Fig. 1) and periodicity on the RVE/REV
boundaries.

C. Applied potential field

In addition to the EDL potential field, an electric field due
to the externally applied voltage is also established. The later
satisfies the Laplace equation [29,45] as given by

∇2φ = 0. (7)

Equation (7) is subject to no electric flux on the solid
boundaries bounding the topographically complex domain
present in each RVE/REV (boundary 5 in Fig. 1), and Dirichlet
boundary conditions on two parallel boundaries (for example,
boundaries 1 and 3 for an electric field applied along the x1

direction), and periodic on the other two of the RVE/REV
boundaries (for example, boundaries 2 and 4 for an electric
field applied along the x1 direction).

D. Asymptotic expansion and homogenized equations

We nondimensionalize the governing equations and
boundary conditions with the following parameters: x̄i =
xi/Lmac, ȳi = yi/Lmic, ψ̄ = ψ/ζ , φ̄ = φ/φref , v̄i = vi/Uref ,
Eref = φref/Lmac, and ∇̄p̄ = ∇p/(∇p)ref where Uref =
(εrζφref)/(Lmacμ), (∇p)ref = μUref/L

2
mac where Lmac and Lmic

are the characteristic length scale of the macroscopic and
microscopic domains respectively, εr is the permittivity of
the medium, and ζ is the wall ζ potential.

If the number of microscopic periodically repeating unit
cells constituting the macroscopic domain is small, the ratio of
the characteristic micro to the macrolength scale, (Lmic/Lmac),
is not small, and the assumption of the separation of scale fails.
In such cases, the effective property is not an intrinsic one,
and there is no effective description of the porous medium.
Therefore, the fundamental requirement is that the scales must
be separated such that the condition ε = Lmic/Lmac � 1 is
satisfied. If the separation of scales is valid, any field quantity
may effectively be represented as a function of these two
separated variables x̄ and ȳ. Under the premise of scale
separation, we next proceed to expand different variables
asymptotically in terms of the small parameter ε [36,42–44].
The asymptotic expansions of the physical fields are given as

v̄ε = v̄0
i ( �̄x, �̄y) + εv̄1

i ( �̄x, �̄y) + ε2v̄2
i ( �̄x, �̄y) + O(ε3), (8a)

p̄ε = εsp̄0( �̄x, �̄y) + εs+1p̄1( �̄x, �̄y) + εs+2p̄2( �̄x, �̄y)

+O(εs+3), (8b)

ψ̄ε( �̄x, �̄y) = εeψ̄0( �̄x, �̄y) + εe+1ψ̄1( �̄x, �̄y) + εe+2ψ̄2( �̄x, �̄y)

+O(εe+3), (8c)

φ̄ε = εqφ̄0( �̄x, �̄y) + εq+1φ̄1( �̄x, �̄y) + εq+2φ̄2( �̄x, �̄y)

+O(εq+3), (8d)

The thermo-physical properties in a multiscale approach are
given as

με = εaμ0, (9a)

ρε = εbρ0, (9b)

and

εε
r = εcεr,0. (9c)
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The values of the parameters s, e, q, a, b, and c can be
determined by equating the different terms of the governing
transport equations depending on their relative importance.
The expansion terms given above are then introduced into the
governing transport equations with the definition of the total
differential operator as [43,44] D

Dx̄i
∼ ∇̄x + ε−1∇̄y where ∇̄x

and ∇̄y represent the gradient operators with respect to x̄ and ȳ

respectively. We obtain the following set of non-dimensional
equations, which describe the electro-osmotic flow through a
representative volume element and will be used subsequently
for homogenization. While nondimensionalizing the transport
equations, we multiply the terms with the orders of the
respective dimensionless groups:

∇̄ · �̄v = 0, (10)

εb−aRe�v · ∇̄ �̄v = −ε−a∇̄p̄ + ∇̄2 �̄v + εc−a∇̄2ψ̄∇̄φ̄, (11)

∇̄2φ̄ = 0, (12)

∇̄2ψ̄ = ε−2−c A2

ζ̄
sinh(ζ̄ ψ̄). (13)

These are the dimensionless equations that we will use for
the process of homogenization. Here Re = ρ0UrefLmac/μ0 and

A = Lmic/λ where λ =
√

εr,0kBT

2z2e2no
is the characteristic Debye

length.
First, for the equation governing applied electric potential,

we write the pertinent equation as

D

Dx̄i

(
D

Dx̄i

φ̄ε

)

= (∇̄xi
+ ε−1∇̄yi

)(∇̄xi
+ ε−1∇̄yi

)
[εqφ̄0 + εq+1φ̄1

+ εq+2φ̄2 + O(εq+3)] = 0, (14)

which yields the leading order term as

∇̄yi
∇̄yi

φ̄0 = 0. (15)

Next, we consider the asymptotic expansion of the equation
governing the EDL potential distribution Eq. (13).

On the left-hand side,

D

Dx̄i

(
D

Dx̄i

ψ̄ε

)
= (∇̄xi

+ ε−1∇̄yi

)(∇̄xi
+ ε−1∇̄yi

)
[εeψ̄0

+ εe+1ψ̄1 + εe+2ψ̄2 + O(εe+3)], (16)

which yields the leading order expansion term as

εe−2 : ∇̄yi
∇̄yi

ψ̄0. (17)

Next, we take the right-hand side of the equation where we
take only the first two orders in the sinh term by neglecting the
higher order terms and expand it:

ε−2−c A2

ζ̄
sinh[ζ̄ (εeψ̄0 + εe+1ψ̄1)]

= ε−2−c A2

ζ̄
[sinh(εeζ̄ ψ̄0) cosh(εe+1ζ̄ ψ̄1)

+ cosh(εeζ̄ ψ̄0) sinh(εe+1ζ̄ ψ̄1)]. (18)

Since ε is a small parameter and noting that ψ1 will be small
since it is considered to be part of perturbation of a convergent

series, we can write the leading order term of the right-hand
side as

εe−2−c :
A2

ζ̄
sinh(ζ̄ ψ̄0). (19)

Equating the orders of two sides, we get c = 0, and we get the
leading order term of the potential distribution equation as

∇̄yi
∇̄yi

ψ̄0 = A2

ζ̄
sinh(ζ̄ ψ̄0). (20)

Writing the continuity equation in terms of ε we get

D

Dx̄i

(
v̄ε

i

) = (∇̄xi
+ ε−1∇̄yi

)[
v̄0

i + εv̄1
i + ε2v̄2

i + O(ε3)
] = 0.

(21)

Separating different orders of ε we get

ε−1 : ∇̄yi
v̄0

i = 0, (22)

ε0 : ∇̄yi
v̄1

i + ∇̄xi
v̄0

i = 0. (23)

Equation (22) describes the microscopic equation for the
continuity, while Eq. (23) is the equation that links the
microscopic and macroscopic velocity fields.

In a similar fashion, we consider the asymptotic expansion
of the terms appearing in the momentum equation Eq. (11).

The inertia term yields

εb−aRe

(
v̄ε

k

D

Dx̄k

v̄ε
i

)

= εb−a
{[

v̄0
k + εv̄1

k + ε2v̄2
k + O(ε3)

](∇̄xk
+ ε−1∇̄yk

)
× [

v̄0
i + εv̄1

i + ε2v̄2
i + O(ε3)

]}
. (24)

The leading order term is

εb−a−1 : Rev̄0
k ∇̄yk

v̄0
i . (25)

The pressure gradient term yields

ε−a D

Dx̄i

p̄ε = ε−a
(∇̄xi

+ ε−1∇̄yi

)
[εsp̄0 + εs+1p̄1

+ εs+2p̄2 + O(εs+3)] (26)

whose leading order terms are

εs−a−1 : ∇̄yi
p̄0, (27)

εs−a : ∇̄yi
p̄1 + ∇̄xi

p̄0. (28)

The viscous term yields

D

Dx̄k

(
D

Dx̄k

v̄ε
i

)
= (∇̄xk

+ ε−1∇̄yk

)(∇̄xk
+ ε−1∇̄yk

)[
v̄0

i + εv̄1
i

+ ε2v̄2
i + O(ε3)

]
. (29)

The leading order term is

ε−2 : ∇̄yk

(∇̄yk
v̄0

i

)
. (30)

033006-4



ELECTRO-OSMOTIC FLOWS THROUGH TOPOGRAPHICALLY . . . PHYSICAL REVIEW E 87, 033006 (2013)

The electrical body force term yields

εc−a D

Dx̄k

(
D

Dx̄k

ψ̄ε

)
D

Dxi

φ̄ε

= εc−a
(∇̄xk

+ ε−1∇̄yk

){(∇̄xk
+ ε−1∇̄yk

)
[εeψ̄0 + εe+1ψ̄1

+ εe+2ψ̄2 + O(εe+3)]
}(∇̄xi

+ ε−1∇̄yi

)
[εqφ̄0 + εq+1φ̄1

+ εq+2φ̄2 + O(εq+3)]. (31)

The leading order term is

εe+q+c−a−3 : ∇̄yk

(∇̄yk
ψ̄0

)∇̄yi
φ̄0. (32)

Before collecting the terms with the same powers of ε, the
values of the s, e, q, a, and b must be determined. The
macroscopic pressure gradient term is of the order s − a,
the microscopic inertia term is of the order b − a − 1, the
microscopic viscous force is of the order −2, and the electrical
body force is of the order e + q − a − 3. It is important to
note that the percolation flow velocity in porous materials is
normally small, and the flow Reynolds number is often less
than unity. We therefore assume the flow to be a Stokes-like
flow, which is valid for most cases. The order of the inertia
term should thus be less than that of the viscous term,
and the other three terms of the momentum equation, viz.,
the macroscopic pressure gradient, the viscous force, and
the electrical body force should balance each other (cases
where the flow Reynolds number is not negligible, the inertia
term could not be neglected and the up-scaled permeability
tensor will have a nonlinear contribution arising due to
the inertia term; see the Appendix for details). Therefore,
we take a = 0, b = 0, s = −2, e = 0, and q = 1. With
this parameter choice, we rewrite the momentum equation
as

ε−3
(−∇̄yi

p̄0
) + ε−2

(−∇̄xi
p̄0 − ∇̄yi

p̄1 + ∇̄yk
∇̄yk

v̄0
i

+∇̄yk
∇̄yk

ψ̄0∇̄yi
φ̄0

) + O(ε−1) = 0. (33)

The first expansion term of the momentum equation tells us
that p̄0 depends only on the macroscopic variable x̄i and not
on ȳi , i.e.,

p̄0(x̄i ,ȳi) = p̄0(x̄i). (34)

The second term of the expansion governs the microscopic
transport of momentum in the cell and is given by

−∇̄xi
p̄0 − ∇̄yi

p̄1 + ∇̄yk
∇̄yk

v̄0
i + ∇̄yk

∇̄yk
ψ̄0∇̄yi

φ̄0 = 0. (35)

The boundary value problem describing the microscopic
transport through the representative volume element is thus
given as

∇̄yi
v̄0

i = 0 in Yf , (36a)

−∇̄xi
p̄0 − ∇̄yi

p̄1 + ∇̄yk
∇̄yk

v̄0
i + ∇̄yk

∇̄yk
ψ̄0∇̄yi

φ̄0 = 0 in Yf ,

(36b)

∇̄yi
∇̄yi

φ̄0 = 0 in Yf , (36c)

∇̄yi
∇̄yi

ψ̄0 = A2

ζ̄
sinh[ζ̄ (ψ̄0)] in Yf , (36d)

ψ̄0 = 1 at �f s, (36e)

Periodic

0 =0
iy iv∇

0
0 1 0

i i k kx y y y ip p v−∇ − ∇ + ∇ ∇ =

0v =
1

2

3

4

y2
y1

Periodic
PeriodicPe

ri
od

ic

FIG. 2. Schematic of the cell problem highlighting the boundary
conditions (equations written in the box) and the governing differen-
tial equations for an up-scaling Darcy-permeability tensor. Boundary
pairs (1, 3) and (2, 4) are periodic in space.

�̄v = 0 at �f s, (36f)

∂nφ̄0 = 0 at �f s. (36g)

The above set of equations is solved subjected to periodic
boundary conditions to determine v̄0, p̄1, φ̄0, and ψ̄0. Because
of the linearity of the set of microscopic transport equations,
the macroscopic velocity is expected to follow linear superpo-
sition of the effect due to the two flow actuating mechanisms
viz., the applied pressure gradient and electric field. We,
therefore, consider the effects of the imposed pressure gradient
and the external fields and seek the individual up-scaled
permeability tensors and then superimpose the two effects
for cases where the two actuating mechanisms are applied
simultaneously.

Let us first consider the case where the flow across
the unit cell is driven by the imposed pressure gradient.
Homogenization-based up-scaling of the Darcy permeability
tensor is well studied and discussed in detail elsewhere [49,50].
However, in the present article, we retrace the path for the sake
of completeness. The boundary value problem describing the
microscopic transport through the unit cell is given as

∇̄yi
v̄0

i = 0 in Yf , (37a)

−∇̄xi
p̄0 − ∇̄yi

p̄1 + ∇̄yk
∇̄yk

v̄0
i = 0 in Yf , (37b)

v̄0
i = 0 at �f s, (37c)

v̄0
i is Y -periodic. (37d)

The above set of equations (schematically shown in Fig. 2 with
appropriate governing equations and boundary conditions) is
solved subjected to periodic boundary conditions to determine
the unknowns v̄0 and p̄1, using a finite volume formalism in
an unstructured mesh. A first order upwind scheme is used
for discretizing the equations and the SIMPLE algorithm [47]
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Periodic

0=0y iv∇

( )( )
2

00 sinhy y
Aψ ζ ψ
ζ

∇ ∇ =

0
001 0y y y i y y yp v ψ φ−∇ + ∇ ∇ + ∇ ∇ ∇ =

0

0

1

0
0n

v
ψ

φ
=

∂

=

=

0 0y yφ∇ ∇ =

0 0φ = 0 1φ = −

y1

1

4

5

y2

Periodic

0=0y iv∇

( )( )
2

00 sinhy y
Aψψ ζ ψ(
ζ

∇ ∇ =

0
001 0y y y i y y yp vi ψ φ00−∇ + ∇ ∇ + ∇ ∇ ∇ =

0

0

1

0
0n

v
ψ

φ0n

=
∂

=

=

0 0y yφ0∇ ∇ =

0 0φ00 = 0 1φ0 = −

y1

1

4

5

y22
2

3
5

Periodic

FIG. 3. Schematic of the cell problem highlighting the boundary
conditions (equations written in the box) and the governing differ-
ential equations for up-scaling electro-permeability tensor. Boundary
pairs (1, 3) and (2, 4) are periodic in space for the velocity, pressure,
and ψ field. The figure schematically shows the boundary conditions
when the applied electric field is imposed in the X1 direction.
Boundary 5 represents the boundary of the solid surface.

is used for pressure-velocity coupling on a collocated grid.
The algebraic-multigrid solver [48] is used for solving the
discretized equations.

The solution of the above set of equations is of the form

�̄v0
P ( �̄x, �̄y) = −↔

kD( �̄y) · ∇̄xp̄
0( �̄x), (38)

p̄1( �̄x, �̄y) = −�τ ( �̄y) · ∇̄xp̄
0( �̄x) + 〈p̄1〉( �̄x), (39)

where
↔
kD(y) gives the microscopic variation of the filtration

velocity, �τ (y) gives the distribution of the microscopic pressure
field in the domain, and 〈·〉 = 1

|�|
∫
�

· dV .

Integrating the ε1 term of the continuity equation over the
period, we get

1

|�|
∫

�

∇̄y �̄v1
dV + 1

|�|
∫

�

∇̄x �̄v0
dV = 0. (40)

Due to periodicity and the boundary conditions, we have∫
�

∇̄y �̄v1
dV =

∫
∂�

�̄v1 · n̂ dS = 0. (41)

Therefore, Eq. (40) becomes

1

|�|
∫

�

∇̄x �̄v0
dV = ∇̄x ·

(
1

|�|
∫

�

�̄v0
dV

)
= ∇̄x〈�̄v0〉� = 0.

(42)

We have Darcy’s law given by 〈v0
P 〉� = − ↔

KD · ∇̄xp̄
0 where

↔
KD = 〈↔

kD〉� = 1

|�|
∫

�

↔
kD dV (43)

is the permeability tensor. The first order macroscopic behavior
for the flow in the two-phase region is given by Eqs. (42) and
(43) as

∇̄x(
↔
KD · ∇̄xp

0) = 0. (44)

Thus, the components of the permeability tensor can be
obtained by evaluating the v̄0

1 and v̄0
2 for the cases when

the pressure gradient is applied along directions 1 and 2,
respectively.

Next, we consider the case of externally applied electric
field, �̄E, on to the porous media and in this case, the externally
applied pressure gradient, ∇̄xp̄1 is absent. However, there will
be an induced pressure gradient ∇̄yp̄1 in the domain as a result
of the electro-osmotic flow. The governing equations dictating
the transport through the porous media are the following:

∇̄yi
v̄0

i = 0 in Yf , (45a)

−∇̄yi
p̄1 + ∇̄yk

∇̄yk
v̄0

i + ∇̄yk
∇̄yk

ψ̄0∇̄yi
φ̄0 = 0 in Yf , (45b)

∇̄yi
∇̄yi

φ̄0 = 0 in Yf , (45c)

∇̄yi
∇̄yi

ψ̄0 = A2

ζ̄
sinh[ζ̄ (ψ̄0)] in Yf , (45d)

v̄0
i = 0 at �f s, (45e)

v̄0
i is Y -periodic, (45f)

ψ̄0 = 1 at �f s, (45g)

∂nφ̄0 = 0 at �f s. (45h)

The objective is to derive a homogenized parameter which
would effectively represent the intricate microscopic phe-
nomenon via a single macroscopic parameter with the obvious
loss of information at the microscale. The electro-osmotic
flow velocity across the porous media can be calculated
by integrating the local velocity field across the unit cell.
Because of the linearity, the flow velocity across the unit cell
is proportional to the applied electric field �̄E. Toward this,
we analogously define the “electro-permeability” parameter
which relates the macroscopic velocity to the applied potential
field as

�̄v0
E( �̄x, �̄y) = ↔

kE( �̄y) · �̄E( �̄x), (46)

where
↔
kE(ȳ) gives the microscopic variation of the filtration

velocity because of the applied dimensionless electric field
�̄E = (∇̄φ0)L.

To determine the homogenized parameter, we once again
use the higher order term of the continuity equation (42) to
arrive at the first order macroscopic behavior:

∇̄x

〈 �̄v0
E

〉
�

= ∇̄x〈
↔
kE(ȳ) · �̄E〉� = 0, (47)

where

↔
KE = 〈↔

kE〉� = 1

|�|
∫

�

↔
kE dV . (48)

is the electro-permeability tensor.
Equation (48) describes the dimensionless effective electro-

permeability tensor as a function of the volume integral
of velocity over the entire computational domain, thereby
exhibiting a topographical sensitivity. Thus, the components of
the electro-permeability tensor can be obtained by evaluating
the v̄0

1 and v̄0
2 for the cases when the applied electric field is in

X1 and X2 direction, respectively.
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III. RESULTS AND DISCUSSIONS

In order to maximize the surface to volume ratio, which
augments transport characteristics, natural objects form self-
similar branched microstructures. Some of the examples from
the living world include plants, alveoli in lungs, or the
physiological passages in the circulatory system. Examples
from the inanimate nature include rivers, clouds, crystal
growth, and the natural porous structures. In general, fractals
can be used to describe these naturally occurring structures.
The porous passages encountered in natural world are often
fractals in nature. Inspired by this, we consider the porous
microstructures to be of fractal nature for the first part of
our study, where we delineate the basic steps that need to be
followed in order to calculate the permeability tensors. Next,
we will proceed forward with some in-depth analysis of the
electro-permeability tensor. In the first part of the study, for
proof concept, we will use simulated fractal porous structures.
The surface of the porous microstructure is generated using the
Mandelbrot set generator [46]. The Mandelbrot set generator
is created by using an iterative formula w → wn + C for a
given number of iterations where w and C are complex. We
start with w = 0 and C is initialized to each point in the
domain. Accordingly, as per the value of C, if the amplitude
of w at the end of iterations escapes to infinity, we denote
it by white (representing the liquid domain), or else it is
denoted by black (representing the solid domain). Different
Mandelbrot indices (n) lead to different microstructures with
varied geometrical forms. We consider microstructures with
five different values of n (3, 4, 5, 6, and 7), which represent
varying levels of y1-y2 symmetry (morphologies shown in
Fig. 7). In the next section, we consider a binary composite
porous media structure, where the two components have a
contrast in the ζ potential. In this part of the study, we will use
random autocorrelated periodic field generator to simulate a
topographically complicated porous structure. It is important
to mention here that to generate the Mandelbrot sets invoked
here, we have used 20 iterative cycles to generate the figures
with a grid resolution of 100 × 100 grids.

A. Evaluation of the permeability tensors

In this section, we briefly go through the steps that need to be
followed in order to evaluate the permeability tensors. In order

FIG. 4. Pressure-driven flow: Velocity field ( �̄v0
) for the particular

case of n = 4, fl = 0.75, for cases when the (a) applied pressure
gradient is along x1 or (b) applied pressure gradient is along x2.

to calculate the Darcy-permeability tensor, for pressure-driven
flow, we solve the microscopic transport equation (37) through
the unit cell subjected to a unit pressure gradient. A periodicity
condition for the velocity and the pressure fields across the unit
cell is also imposed. The velocity fields for the cases when the
pressure gradient is applied along x1 and x2 directions are
shown in Fig. 4(a) and Fig. 4(b), respectively for a particular
case of n = 4, fl = 0.75, where fl is the liquid fraction. Once
the distribution of the microscopic filtration velocity (�̄v0

) is
known, the Darcy-permeability tensor can be calculated using
Eqs. (38) and (43).

In order to calculate the electro-permeability tensor, for
electro-osmotic flow, we solve the microscopic transport
equations (45a)–(45d) through the unit cell subjected to unit
magnitude of the applied field. First, we solve the equation for
the applied and the induced potential fields using Eqs. (45c)

FIG. 5. Electro-osmotic flow: (a) Induced potential field (ψ̄0),
(b) applied potential field (φ̄0) when a field is applied along the
x1 direction, (c) applied potential field (φ̄0) when a field is applied
along the x2 direction, (d) velocity field ( �̄v0) when a field is
applied along the x1 direction, (e) velocity field ( �̄v0) when a field
is applied along the x1 direction. All the cases correspond to n = 4
and fl = 0.75.
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RVE RVE RVE RVE

FIG. 6. Comparison of the velocity profiles at the midplane of
two periodically repeated unit cells. Pressure-driven profile shows a
typical parabolic nature, whereas the electro-osmotic case shows a
typical plug-type profile.

and (45d) subjected to boundary condition given by Eqs. (45g)
and (45h). We apply a field of unit magnitude by setting φ̄0 = 0
and φ̄0 = −1 at the left and right boundaries of the unit cell
respectively. The distribution of the induced potential field (ψ̄0)
is shown in Fig. 5(a) for a particular case of n = 4, fl = 0.75.
The applied potential field (φ̄0) for cases when the field is
applied along the x1 and x2 directions is shown in Fig. 5(b) and
Fig. 5(c), respectively. Once the potential fields are known, we
solve the continuity and momentum equation (45a) and (45b)
subjected to boundary conditions 45(e) and 45(f). The velocity
fields for the cases when the field is applied along x1 and x2

directions are shown in Fig. 5(a) and Fig. 5(b), respectively.
The distribution of the microscopic filtration velocity (�̄v0

) is
then used to calculate the electro-permeability tensor using
Eqs. (46) and (48).

It is important to note that the nature of the velocity fields
for pressure-driven flow and electro-osmotic flow, shown in
Figs. 4(a) and 4(b) and Figs. 5(d) and 5(e), respectively, is
different as the nature of the flow-actuating mechanisms is
completely different. In order to highlight this, we compare the
velocity profiles at the midplanes of two periodic RVEs/REVs
(shown in Fig. 6) for a lower solid fraction case (fl = 0.98)
where the difference between the profiles is more pronounced.
For the case of pressure-driven flow, we obtain a parabolic
profile, typical to pressure driven flows, and for the electro-
osmotic case, we obtain a plug-type profile, which is typical
to such cases.

fl = 0.98

fl = 0.92

fl = 0.83

fl = 0.75

fl = 0.67

K11
K22

FIG. 7. (Color online) Variation of the tensor components of
the electro-permeability parameter as a function of the Mandelbrot
fractal index (n) for different liquid fractions. K11 and K22 represent
the principal components of the permeability tensor along the
coordinate directions. The curves depict a decreasing significance
of the Mandelbrot index especially at a lower solid fraction. Also, the
sphericity increases with increase in the Mandelbrot index.

B. The electro-permeability tensor

The Darcy-permeability tensor, arising in the case of the
pressure-driven flow, is well studied in the literature [49]. In
this section, we thus focus on some in-depth study of the
electro-permeability tensor. Figure 7 depicts the variation of
the two components of the electro-permeability tensor as a
function of the Mandelbrot fractal index for the five different
volume fractions (fl = 0.98, 0.92, 0.83, 0.75, and 0.67).
It can be seen that for higher liquid fraction values, one
obtains a higher value of the permeability tensor components
as compared to the ones with lower liquid fraction as the
resistance to flow decreases with a decrease in the solid fraction
(or equivalently with increase in liquid fraction). Moreover,
the two diagonal components of the electro-permeability
tensor show a large difference at low Mandelbrot index,
which decreases to a large extent as the Mandelbrot index
is progressively increased. This is because, as the Mandelbrot
index is increased, the sphericity of the microstructure tends
to increase, and with a successive increase in Mandelbrot
index, n, the morphology tends toward a circle by losing the
y1-y2 distinctness. This fact is reflected by the decrease in
the difference between the diagonal components of the tensor.
In the case where the solid fraction is small, we may note
that the differences between the two components decreases
further because the flow characteristics become insensitive
to the details in the topography at low solid fractions. As
the liquid fraction is increased, the values of the permeability
increase in a more or less linear fashion and as the Mandelbrot
index increases, all the values tend to crowd toward a limit
because of the combined effect of the decreasing sensitivity of
the flow structures toward details of the microstructure (with
increase in liquid fraction) and increasing sphericity of the
microstructures (with increase in n). In essence, this figure
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captures the topographical and solid fraction sensitivity of the
electro-permeability tensor.

Next, as an illustrative case study, we consider the case of
a composite porous medium. We characterize the composite
porous medium in terms of a partition fraction (PF), which is
basically the ratio of the solid fractions of porous media having
dimensionless ζ potentials of ζ̄1 and ζ̄2, respectively. Having
established the topographic and volume fraction sensitivity of
the electro-permeability tensor, we now focus our attention to
establish the role of ζ potential contrast and partition fraction
on the electro-permeability. In doing so, we consider a constant
solid fraction, vary the PF, and take ζ̄1/ζ̄2 = 10. The periodic
porous medium is generated by a random, auto-correlated
periodic field generator as depicted in Fig. 8(a).

Figure 8(b) depicts the tensor components for a composite
porous media. It is seen that for a randomly generated
periodic porous media, the diagonal components of the
electro-permeability tensor dominate, whereas the offdiagonal
components (cross-components) have relatively lower values.
It may be noted that when there is a ζ contrast existing
between the two constituents, the permeability values are
larger than the case where the entire medium has a single
constituent having a fixed ζ potential at the respective shear
planes. As the relative fraction of the component having a
higher ζ potential increases, there is an increase in the overall
permeability of all the porous structure. In Fig. 8(b) we
have also plotted the Darcy-permeability tensor components
in order to compare it with the electro-permeability tensor.
It is important to note that the Darcy-permeability tensor
components are around two orders of magnitude lower than
the electro-permeability tensor components. The difference in
the orders is due to the fact that the unit magnitudes of the
pressure gradient and unit magnitude of the electric field give
rise to a different distribution of the microscopic velocity in the
cell and accordingly different effective macroscopic transport
features.

This exercise is endeavored toward establishing the sen-
sitivity of the permeability tensor to the topology, volume
fraction, and partition fraction of the microstructure and
contrast in ζ potential. Changes in any of these will lead
to a change in the tensor components. The mathematical
framework and the analysis outlined here are, however, generic
and can effectively be utilized to obtain computationally
efficient means of characterizing electro-osmotic transport
through porous media.

IV. CONCLUSIONS

Through a comprehensive analysis of electro-osmosis in
porous media having complicated topology, we have derived
the expression for the electro-permeability tensor, which is
shown to be a function of the surface topography along with
the solid fraction. We have numerically derived the various
components of the electro-permeability tensor for different
representative volume elements having fractal boundaries, for
establishing the proof of our concept. For illustration, we have
considered the case of composite porous media in which the
two components have markedly different ζ potentials. We
have thus established the sensitivity of the electro-permeability
tensor on morphology, solid fraction, partition fraction of the

Component 1 

Component 2 

Flow Passage 

A

B

C

PF
PF
PF
PF

(a)

(b)

FIG. 8. (a) The randomly generated periodic morphology used
in the simulation. The dark gray denotes the solid fraction having
ζ̄ = −1 and the light gray portion denotes the solid fraction having
ζ̄ = −10. The white region denotes the flow passages. (b) Variation
of the electro-permeability tensor values as a function of the partition
fraction and the contrast in the ζ potential. The triangle marker
represents the case where the partition fraction is 0.77 and the ζ

contrast ratio is 1. The circle marker represents the case where the
partition fraction is 0.77 and the ζ contrast is 10. The square marker
represents the case where the partition fraction is 1.53 and the ζ

contrast is 10. The diamond marker represents the case where the
partition fraction is 2.30 and the ζ contrast is 10. The inverted triangle
marker represents the Darcy-permeability tensor components. The
figure depicts that the Darcy tensor components are much lower than
the electro-permeability tensor components. Also, with an increase
in ζ potential contrast, the electro-permeability increases.

phases (i.e., the ratio of solid fractions of the two phases
having the two different ζ potential values), and the ζ potential
contrast.

Implications of the formalism reported here are immense.
This is in accordance with the fact that electro-osmotic flows
through topographically complicated porous medium are of
significant importance to research community. The functional
dependence of the effective transport features of such flows
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on the topology, solid fraction, and partition fraction of
the microstructure and the contrast in ζ potential were not
clearly understood and rigorously quantified until now. The
developed mathematical framework, in that perspective, may
be immensely helpful for devising a computationally fast
and inexpensive way of accurately characterizing the electro-
osmotic flows in porous media of complicated topography,

without necessitating direct numerical simulation of the
underlying transport phenomena over the entire flow domain.

APPENDIX: ROLE OF INERTIA: NONLINEAR
CONTRIBUTION TO THE PERMEABILITY TENSOR

When the Reynolds number is small, typically much less
than 1, the contribution from the inertia forces is ignored and
the macroscopic pressure gradient is balanced by the leading
order viscous and the electrical body forces. However, when
the Reynolds number is appreciable, the inertia forces start to
significantly contribute to the dynamics, and we can no longer
neglect the inertia term. This is achieved through a new choice
of the parameters as a = 0, b = −1, s = −2, e = 0, and q =
1. With this choice of parameters, we subsequently analyze the
successive orders of the governing transport equations. The
boundary value problem describing the microscopic transport
through the representative volume element is given as

∇̄yi
v̄0

i ( �̄x, �̄y) = 0 in Yf , (A1a)

Rev̄0
k ( �̄x, �̄y)∇̄yk

v̄0
i ( �̄x, �̄y)

= −∇̄xi
p̄0( �̄x) − ∇̄yi

p̄1( �̄x, �̄y) + ∇̄yk
∇̄yk

v̄0
i ( �̄x, �̄y)

+∇̄yk
∇̄yk

ψ̄0( �̄x, �̄y)∇̄yi
φ̄0( �̄x, �̄y) in Yf , (A1b)

∇̄yi
∇̄yi

φ̄0( �̄x, �̄y) = 0 in Yf , (A1c)

∇̄yi
∇̄yi

ψ̄0( �̄x, �̄y) = A2

ζ̄
sinh{ζ̄ [ψ̄0( �̄x, �̄y)]} in Yf , (A1d)

ψ̄0( �̄x, �̄y) = 1 at �f s, (A1e)

�̄v( �̄x, �̄y) = 0 at �f s, (A1f)

∂nφ̄0( �̄x, �̄y) = 0 at �f s, (A1g)
and

v̄0
i ( �̄x, �̄y) (A1h)

is Y -periodic. While calculating the permeability tensor, we
drive the flow using the unit magnitude of a dimensionless
pressure gradient applied across the unit cell in the case
of the pressure-driven flow or unit strength of the electric
field in the case of electro-osmotic flow. The momentum
equation can, thus, safely be decoupled from the rest of
the equations where the other equations have already been
solved and the distribution of the field variables φ̄0 and
ψ̄0 is known, which can then be used to compute the
momentum source while solving the continuity and momen-
tum equations. Accordingly, in our subsequent analysis we
consider the momentum equation in its generic form given

as

∇̄yi
v̄0

i ( �̄x, �̄y) = 0 in Yf , (A2a)

Rev̄0
k ( �̄x, �̄y)∇̄yk

v̄0
i ( �̄x, �̄y)

= −∇̄yi
p̄1( �̄x, �̄y) + ∇̄yk

∇̄yk
v̄0

i ( �̄x, �̄y) + Svi
( �̄x, �̄y) in Yf ,

(A2b)

�̄vi = 0 at �f s, (A2c)
and

v̄0
i ( �̄x, �̄y) (A2d)

is Y -periodic, where Svi
= −∇̄xi

p̄0( �̄x) for a pressure-driven
flow and Svi

= ∇̄yk
∇̄yk

ψ̄0( �̄x, �̄y)∇̄yi
φ̄0( �̄x, �̄y) for an electro-

osmotic flow.
In order to solve the microscopic boundary value problem

on the unit cell, we split the microscopic velocity of the fluid
v̄ε into two components [49,50]:

v̄ε( �̄x, �̄y) = 〈v̄( �̄x)〉 + ˜̄v( �̄x, �̄y), (A3)

where 〈v̄〉 is the average microscopic velocity defined as
〈v̄( �̄x)〉 = 1

|Yf |
∫
Yf

v̄( �̄x, �̄y)dȳ.

In the present case, we assume v̄0( �̄x, �̄y) to be large, yet
representing laminar flow by letting 〈v̄〉0( �̄x) · ∇̄yk

v̄0
i ( �̄x, �̄y) be

possibly large with respect to ˜̄v0( �̄x, �̄y) · ∇̄yk
v̄0

i ( �̄x, �̄y).
Therefore the inertial nonlinear term is linearized as

follows:

Rev̄0
k ( �̄x, �̄y) · ∇̄yk

v̄0
i ( �̄x, �̄y) ∼= Re

〈
v̄0

k ( �̄x)
〉 · ∇̄yk

v̄0
i ( �̄x, �̄y). (A4)

Therefore Eq. (A2) along with Eq. (A4) gives the boundary
value problem as

∇̄yi
v̄0

i ( �̄x, �̄y) = 0 in Yf , (A5a)

Re
〈
v̄0

k ( �̄x)
〉∇̄yk

v̄0
i ( �̄x, �̄y) = −∇̄yi

p̄1( �̄x, �̄y) + ∇̄yk
∇̄yk

v̄0
i ( �̄x, �̄y)

+ Svi
( �̄x, �̄y) in Yf , (A5b)

v̄0
i ( �̄x, �̄y) = 0 in Yf , (A5c)

and
v̄0

i ( �̄x, �̄y) (A5d)

is Y -periodic. In order to keep track of the linear component of
the permeability tensor, the first term of the velocity expansion
and the second term of the pressure one are split as [49,50]

v̄0( �̄x, �̄y) = v̄α( �̄x, �̄y) + v̄β( �̄x, �̄y,〈v̄0〉), (A6)

and

∇̄yp̄
1( �̄x, �̄y) = ∇̄yp̄

1
α( �̄x, �̄y) + ∇̄yp̄

1
β( �̄x, �̄y). (A7)

Introducing Eq. (A6) and Eq. (A7) in the momentum equation,
we obtain the governing transport equations for the velocity
fields v̄α( �̄x, �̄y) and v̄β( �̄x, �̄y,〈v̄0〉) respectively as

0 = −∇̄yi
p̄1

α( �̄x, �̄y) + ∇̄yk
∇̄yk

v̄α
i ( �̄x, �̄y) + Svi

( �̄x, �̄y), (A8)

Re
〈
v̄0

k

〉
(x̄)∇̄yk

v̄
β

i ( �̄x, �̄y,〈v̄0〉)
= −∇̄yi

p̄1
β(x̄,ȳ) + ∇̄yk

∇̄yk
v̄

β

i ( �̄x, �̄y,〈v̄0〉)
− Re

〈
v̄0

k ( �̄x)
〉∇̄yk

v̄α
i ( �̄x, �̄y). (A9)
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The solution of Eq. (A8) is of the form

v̄α
i ( �̄x, �̄y) = kij ( �̄y)Qj ( �̄x), (A10)

where Qj = −∇̄xi
p̄0 for pressure-driven flow and Qj = Ej

for electro-osmotic flow.
Therefore Eq. (A6) must satisfy

Re
〈
v̄0

k ( �̄x)
〉∇̄yk

v̄
β

i ( �̄x, �̄y,〈v̄0〉)
= −∇̄yi

p̄1
β( �̄x, �̄y) + ∇̄yk

∇̄yk
v̄

β

i ( �̄x, �̄y,〈v̄0〉)
− Re

〈
v̄0

k

〉
( �̄x)Qj ( �̄x)∇̄yk

kij ( �̄y). (A11)

Per analogy to solution (A10), there exists a solution for the
microscopic periodic field v̄β( �̄x, �̄y,〈v̄0〉) which satisfies

v̄
β

i ( �̄x, �̄y,〈v̄0〉) = hij ( �̄y,〈v̄0〉)Qj ( �̄x). (A12)

Integrating the ε0 term of the incompressible continuity
equation over the period, we get

1

|�|
∫

�

∇̄y �v1 dV + 1

|�|
∫

�

∇̄x �v0 dV

= 1

|�|
∫

�

∇̄y �v1 dV + 1

|�|
∫

�

∇̄x(�vα + �vβ) dV = 0.

(A13)

Due to periodicity and the boundary conditions, we get∫
�

∇̄y �v1 dV =
∫

∂�

�v1 · n̂ dS = 0. (A14)

Therefore, Eq. (A13) becomes

1

|�|
∫

�

∇̄x(�vα + �vβ) dV = ∇̄x · 1

|�|
[∫

�

�vαdV +
∫

�

�vβ dV

]

= ∇̄x[〈�vα〉� + 〈�vβ〉�] = 0, (A15)

where 〈·〉� = 1
|�|

∫
�

· dV .
From Eqs. (A7), (A9), and (A12), we get the first order

macroscopic behavior as

〈v0〉� = − ↔
K∇̄xp

0, (A16)

where
↔
K = 〈↔

k〉� + 〈↔
h〉�(〈�v0〉) is the up-scaled permeability

tensor where the second term is the correction arising due
to the incorporation of the nonlinear contribution due to the
presence of the inertial effects. The up-scaled permeability
tensor is a function of the morphology, liquid fraction, and
mean macroscopic velocity in the computational cell, which
in turn is a function of the flow Reynolds number and vanishes
for low Reynolds number flows.
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