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Aging generates regular motions in weakly chaotic systems
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Using intermittent maps with infinite invariant measures, we investigate the universality of time-averaged
observables under aging conditions. According to Aaronson’s Darling-Kac theorem, in non-aged dynamical
systems with infinite invariant measures, the distribution of the normalized time averages of integrable functions
converges to the Mittag-Leffler distribution. This well known theorem holds when the start of observations
coincides with the start of the dynamical processes. Introducing a concept of the aging limit where the aging
time ta and the total measurement time t goes to infinity while the aging ratio ta/t is kept constant, we obtain a
novel distributional limit theorem of time-averaged observables integrable with respect to the infinite invariant
density. Applying the theorem to the Lyapunov exponent in intermittent maps, we find that regular motions and a
weakly chaotic behavior coexist in the aging limit. This mixed type of dynamics is controlled by the aging ratio
and hence is very different from the usual scenario of regular and chaotic motions in Hamiltonian systems. The
probability of finding regular motions in non-aged processes is zero, while in the aging regime it is finite and it
increases when system ages.
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I. INTRODUCTION

Aging is a concept describing slow relaxation phenomena
in spin glasses [1], interface fluctuations in liquid-crystal
turbulence [2], blinking quantum dots [3,4], and transports in
cells [5]. In nature dynamical processes may start at time −ta
long before the actual measurement of the process begins at
t = 0. In aging systems, statistical quantities measured in the
time interval [0,t] are crucially affected by the aging time
ta [6,7]. For example, the distribution of time-averaged mean
square displacement was considered in [7] using stochastic
tools relevant to diffusion of biomolecules in the cell. In con-
trast, for stationary and ergodic processes, statistical properties
of time-averaged observables do not depend on the aging time
ta if the measurement time is large enough (t → ∞). Here, we
introduce the aging limit where the aging time ta and the total
measurement time t goes to infinity while the ratio Ta ≡ ta/t

(the aging ratio) is kept constant. We proceed to show universal
statistical properties of time-averaged observables in a class
of dynamical systems, extending infinite ergodic theory [8] to
the aging regime.

Exponential separation of nearby trajectories, i.e., chaos, is
a feature found in many dynamical systems. In many generic
Hamiltonian systems, the phase space is either chaotic or
regular. A closer look at dynamics many times reveals a mixed
phase space. This means that parts of the trajectories are rather
regular, for example Kolmogorov-Arnold-Moser tori in phase
space, while others are chaotic [9]. Determining which type of
motion depends ultimately on the choice of initial conditions.
Here we investigate a completely new mechanism for dual
structure of dynamics. We show how, for a class of dynamical
systems possessing an infinite invariant measure, the dynamics
are generically split into regular and weakly chaotic motions.
This splitting is controlled by the age of the process, and hence
is completely different from usual scenarios.

*akimoto@z8.keio.jp

In weakly chaotic systems the separation of nearby trajecto-
ries is subexponential [10]. In many cases such systems have an
infinite invariant density [11], i.e., a non-normalizable density
(see details below). It is known that some dynamical systems
with infinite invariant measures show an aging behavior [12].
Here we consider a dynamical system whose evolution started
at time −ta with ta > 0, while an observation of the dynamical
process starts at time t = 0. Within the observation time (0,t)
an observer evaluates time averages of an observation function
and we are interested in the ergodic properties of these time
averages. From the viewpoint of dynamical systems, aging
means that a density at t = 0 strongly depends on the aging
time ta , even when the latter is long.

Let ρt (x; ta) be the density at time t for a process whose
aging time is ta . If a dynamical system has an invariant
probability measure, a smooth initial density ρ0(x; ta) con-
verges to the invariant density as ta → ∞, indicating that the
aging ratio does not affect statistical properties of time-average
observables. In contrast, in an infinite measure system, at the
start of the measurement t = 0 the density ρ0(x; ta) does not
converge to an invariant measure which is ta independent.
Namely, ρ0(x; ta) does not converge to an invariant density
absolutely continuous with respect to the Lebesgue measure
as ta → ∞.

In the mathematical literature, a transformation T is
called ergodic if μ(A) = 0 or μ(Ac) = 0 for all invariant
sets A = T −1A, where Ac is the complement of A and μ

is an invariant measure, which satisfies μ(B) = μ(T −1B)
for every measurable set B in the dynamical system. This
definition is applicable even when the invariant measure μ

cannot be normalized (infinite invariant measure). Birkhoff’s
ergodic theorem states that the time averages of integrable
functions converge to constant values (ensemble averages) for
almost all initial conditions if the dynamical system has an
absolutely continuous invariant probability measure [13]. If an
invariant measure cannot be normalized,

∑t−1
k=0 f (xk)/tα does

not converge to a nontrivial constant (�= 0 and ±∞) where
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0 < α < 1. Instead it remains random (see details below).
Here f (x) is an integrable function with respect to an invariant
measure, and {xk}k=0,... is a trajectory. Aaronson’s Darling-Kac
(ADK) theorem [14,15] gives the distribution of such sums
along a path. In particular (for ta = 0), for integrable functions
there exists a sequence |at | ∝ tα such that

Pr

(
1

at

t−1∑
k=0

f (xk) < x

)
→

∫ x

0
dα(ξ )dξ as n → ∞, (1)

where dα(x) is the Mittag-Leffler density of order α [8].
In other words,

∑t−1
k=0 f (xk)/tα depends strongly on an

initial position but its distribution converges to a universal
distribution for almost all smooth initial densities. Here we
investigate ergodic theory under the conditions of aging. We
show large differences from the ADK theorem in the aging
regime where both ta and t are large, and propose a limit
theorem describing distributions of

∑t
k=0 f (xk)/tα .

Recently, it was shown that infinite ergodic theory plays an
important role in elucidating an intrinsic randomness of time-
averaged observables in dichotomous processes modeling
blinking quantum dots [16] and anomalous diffusion [17,18].
Since aging appears in infinite measure dynamical systems, it
is an interesting and important problem to clarify whether
distributional behaviors of time-averaged observables are
affected by the aging ratio. Here, we provide the evidence that
the aging limit, where t → ∞ and ta → ∞ but their ratio Ta ≡
ta/t remaining finite, plays a crucial role in characterizing
behaviors of time-averaged observables. In particular, we
show that the distribution of sums of integrable functions is
determined by the aging ratio Ta for weakly chaotic systems
with an indifferent fixed point.

II. AGING DYNAMICAL SYSTEMS

We consider maps T : [0,1] → [0,1] which satisfy the
following conditions for some γ1 ∈ (0,1): (i) the restrictions
T : (0,γ1) → (0,1) and T : (γ1,1) → (0,1) are C2 and onto,
and have C2-extensions to the respective closed intervals; (ii)
T ′(x) > 1 on (0,γ1] ∪ [γ1,1]; T ′(0) = 1; and (iii) T (x) − x

is regularly varying at zero with index 1 + 1/α, T (x) − x ∼
a0x

1+1/α (α > 0). We note that the map has only one indiffer-
ent fixed point. These maps are related to number theory [19],
intermittency [20–22], and anomalous diffusions [23–26]. One
of the best known examples is the Pomeau-Manneville map
[20,21]:

xt+1 = T (xt ) = xt + x
1+1/α
t mod 1. (2)

In what follows, we use the map (2) for numerical simulations.
This famous map has an indifferent fixed point at x = 0 and
hence a trajectory is trapped in its vicinity, escapes slowly,
and then is reinjected back. According to Thaler’s estimation
[27], an invariant density ρ̃(x) is given by ρ̃(x) ∼ h̃(x)x−1/α

for x ∈ (0,1], where h̃(x) is a positive bounded continuous
function on [0,1]. Notice that when α < 1 this invariant
density cannot be normalized, due to its divergence close to
x = 0. Since ρ̃(x) is non-normalizable, it is determined up
to a multiplicative constant, whereas we use Eq. (27) as a
specific invariant density. In what follows, we consider an
infinite measure system (0 < α < 1). In aging systems, the

FIG. 1. (Color online) Schematic view of an aging process in
the map (2) (α = 0.8). A trajectory is given by a solid line while
renewals, xt � γ1, i.e., σ (xt ) = 1, are depicted as crosses on the time
axis. t = 0 is the time at which a measurement starts.

dynamics start at time −ta before the measurement is started
at t = 0, where ta is called the aging time (see Fig. 1). For
our numerical simulation we assume that initial points at time
−ta are uniformly distributed on [0,1]. If the initial density is
absolutely continuous with respect to the Lebesgue measure,
the choice of the initial density does not affect our results.
This is because all scaled densities at time −ta converge to
an invariant density at the start of the measurement t = 0,
provided that densities are Riemann-integrable functions and
ta → ∞ [28,29] (see also Appendix A). Notice that the density
at t = 0, ρ0(x; ta), is given by the density at time ta starting
with the same initial density (e.g., uniform density) at t = 0,
namely ρta (x; 0) = ρ0(x,ta).

III. RENEWAL PROCESSES

Renewal processes are point processes where interevent
times of points are independent and identically dis-
tributed (IID) random variables [30]. Therefore, renewal
processes are characterized by the distribution of interevent
times of renewals. Let us consider the following observation
function

σ (x) =
{

0 (x < γ1),

1 (x � γ1),
(3)

where γ1 < 1 attains T (γ1) = 1. We call the state σ = 0 the
laminar phase while σ = 1 is the chaotic phase. In the chaotic
phase, trajectories xt show usual chaotic behavior because
of the condition (ii). Moreover, the jump transformation
T n(x) on x ∈ [γ1,1], which is a transformation restricted to
[γ1,1], has an absolutely continuous invariant probability
measure whereas the original map T does not, where n(x) ≡
min{k � 1:T k(x) ∈ [γ1,1]} [27]. With the aid of these chaotic
properties in the jump transformation, trajectories σt = σ (xt )
can be regarded as a renewal process because the interevent
times between the events σ (xt ) = 1 are considered to be IID
random variables. The probability density function (PDF) of
the interevent times (or residence times of laminar phase) is
given by [23]

ψ(τ ) ∼ αAατ−1−α, τ → ∞, (4)
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where the exponent α describing the power-law tail of the PDF
ψ(τ ) is controlled by the nonlinearity of the map in the vicinity
of the indifferent fixed. A is a constant, which depends on the
map.

Let Nt be the number of renewals in the time interval (0,t)
for a process which started on −ta , and with IID interevent
times according to Eq. (4). In non-aged renewal theory,
ta = 0, the distribution of the number of jumps Nt/tα obeys
the Mittag-Leffler distribution of order α (<1) [31]. Here, we
review a derivation of the distribution and extend it to the
aging regime [32]. Let Sn be the sum of the interevent times
(Sn = τ1 + · · · + τn), then we have the following relation:

Pr(Nt < n) = Pr(Sn > t). (5)

We notice that the interevent time PDF (4) belongs to the
domain of attraction of stable laws [31]. In what follows, we
use the notation Pr(·; 0) for non-aged processes, and Pr(·; ta) for
aged processes. By the generalized central limit theorem [31]
and setting n = tαx, we have

Pr(Nt/tα < x; 0) = Pr(Sn/n1/α > x−1/α; 0) (6)

→
∫ ∞

x−1/α

lα(y)dy as t → ∞, (7)

where lα(x) is the one-sided stable density with index α, which
depends on A, and its Laplace transform is given by∫ ∞

0
lα(x)e−sxdx = exp[−	(1 − α)(As)α]. (8)

Let τF be the forward recurrence time, that is the time
between the start of an observation t = 0 and the first
renewal event (see Fig. 1). The PDF ψ0(τF ; ta) of the forward
recurrence time is different from ψ(τ ), Eq. (4). According
to [32,33], the double Laplace transform of ψ0(τF ; ta),

ψ̂0(s,sa) ≡
∫ ∞

0

∫ ∞

0
ψ0(τF ,ta)e−tasa−τF sdτF dta, (9)

is, in the small sa and s limit, given by

ψ̂0(s,sa) ∼ sα
a − sα

sα
a (sa − s)

. (10)

Furthermore, by Dynkin’s limit theorem [34], the limit PDF
(ta → ∞) reads

ψ0(τF ; ta) ∼ sin(πα)

π

tαa

(τF )α(ta + τF )
. (11)

The probability of Nt = 0 is given by
∫ ∞
t

ψ0(τF ; ta)dτF , while,
for Nt � 1, the probability Pr(Nt < n; ta) is represented by the
convolution of ψ0(τF ; ta) and Pr(Nτ < n − 1; 0):

Pr(Nt/tα < x; ta)

= 1 − mα(Ta) +
∫ t

0
Pr(Nt−τF

< xtα − 1; 0)ψ0(τF ; ta)dτF ,

(12)

where mα(Ta) ≡ ∫ t

0 ψ0(τF ; ta)dτF , which is represented by the
incomplete beta function,

mα(Ta) = sin(πα)

π
B

(
1

Ta + 1
; 1 − α,α

)
. (13)

The 1 − mα(Ta) term in Eq. (12) describes trajectories with
no renewal events in (0,t), or in the context of dynamics of
maps trajectories which did not escape from the vicinity of an
indifferent fixed point in the observation interval. We note that
Ta is the aging ratio, defined in the Introduction. Similar to the
calculation of the probability of Nt/tα in non-aged renewal
processes, we have

Pr(Nt/tα < x; ta)

∼= 1 − mα(Ta) +
∫ t

0
Pr

(
Sn

n1/α
>

t − τ

n1/α
; 0

)
ψ0(τ ; ta)dτ

→ 1 − mα(Ta) +
∫ t

0
ψ0(τ ; ta)

∫ ∞

t−τ

x1/α t

lα(y)dy dτ, (14)

for t → ∞. As a result, the PDF pα(ξ ; Ta) of ξ ≡ Nt/tα in
the aging limit, ta/t → Ta (t,ta → ∞), is written as

pα(ξ ; Ta) = δ(ξ )[1 − mα(Ta)] + sin(πα)

παξ 1+1/α

×
∫ 1/Ta

0

1 − Tay

yα(1 + y)
lα

(
1 − Tay

ξ 1/α

)
dy. (15)

This result is consistent with [7,32]. We note that the
distribution depends on Ta even when the total measurement
time goes to infinity. For Ta → 0 (non-aging limit), pα(ξ ; Ta)
converges to the Mittag-Leffler density as expected.

One can show that the mean 〈Nt 〉 [7] is

〈Nt 〉 = {(t + ta)/A}α
	(α)

B

(
1

Ta + 1
; 1,α

)
. (16)

It will soon be useful to define a normalized variable χ = Nt/

〈Nt 〉. Using Eq. (15) and CA ≡ tα/〈Nt 〉, we have

Pα(χ ; Ta) = 1

CA

pα(χ/CA; Ta). (17)

We note that PDF Pα(χ ; Ta) has the advantage of being A

independent [PDF pα(ξ ; Ta) depends on A].

IV. RESULTS

A. Distributional limit theorem in the aging limit

The distributional limit theorem (14) in aging renewal
processes implies that the properly scaled sum of σ (xk)
converges in distribution:

Pr

(
1

tα

t−1∑
k=0

σ (xk) < x; ta

)
= Pr(Nt/tα < x; ta) (18)

→
∫ x

0
pα(ξ ; Ta)dξ. (19)

Because σ (x) is an integrable function with respect to
an invariant measure, this distributional limit theorem is
a generalization of ADK theorem (1). By Hopf’s ergodic
theorem [35], the ratio of the sums of arbitrary integrable
observation functions f (x) and σ (x) converges to a constant
for almost all initial points:∑n

k=0 f (xk)∑n
k=0 σ (xk)

→
∫ 1

0 f dμ∫ 1
0 σdμ

as n → ∞, (20)
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where μ is an absolutely continuous invariant measure.
Therefore, we have the following proposition. In the aging
limit ta/t → Ta as ta and t → ∞, for all integrable functions
f (x) with respect to an invariant measure μ, the properly
scaled sum of f (x) converges in distribution:

Pr

(
CA

Cf tα

t−1∑
k=0

f (xk) < x; ta

)
→

∫ x

0
Pα(χ ; Ta)dχ, (21)

where Cf = ∫ 1
0 f dμ/μ([γ1,1]). We note that the distribution

depends on the aging ratio Ta and α.

B. From Dynkin’s limit theorem to evolution of density

Here, we give an explicit representation of the density at
t = 0 in aging processes. In aging renewal processes, the
probability that there is no renewal until time t is given by∫ ∞
t

ψ0(τF ; ta)dτF . The corresponding probability in the map
(2) is the probability that trajectories do not escape from
the interval [0,γ1), which is given by

∫ γt

0 ρta (x; 0)dx, where
T t (γt ) = 1 for γt < 1. Using a continuous approximation,
T ′(γt ) ∼ T (γt )−T (γt+1)

γt−γt+1
, near x ∼= 0 and T (γt ) = γt−1, we have

γt−1 − γt

γt − γt+1
− 1 ∼ a0

(
1 + 1

α

)
γ

1/α
t . (22)

It follows that γt ∼ αα(a0t)−α (the rigorous proof is given
in [27]). Therefore, we have the following relation:∫ αα (a0t)−α

0
ρta (x; 0)dx ∼

∫ ∞

t

ψ0(τF ; ta)dτF . (23)

Differentiating both sides of (23) with respect to t and using
(11), we have

ρta (ααa−α
0 t−α; 0)

αα+1

aα
0 tα+1

∼ sin(πα)

π

tαa

tα(ta + t)
. (24)

As a result, we obtain the density at t = 0 in the aging process:

ρ0(x; ta) = ρta (x; 0) ∼ C
1

1 + a0tax1/α/α
(25)

for x  1. The constant C is the normalization constant which
depends on ta , for ta � 1:

C =
(∫ 1

0

1

1 + a0tax1/α/α
dx

)−1

∼ sin(πα)

πα

(
a0ta

α

)α

.

(26)

Surprisingly, evolutions of the density are in good agreement
with the above estimation even for a small number of
iterations and on whole space [0,1] (see Fig. 2). The density
cannot converge to an absolutely continuous invariant density
(equilibrium density) and will converge to the delta function
δ(x) as ta goes to infinity. This is a direct evidence of aging in
dynamical systems.

As shown by Thaler [28], a scaled density converges to an
infinite invariant density ρ̃(x) (see Appendix A):

lim
ta→∞ t1−α

a ρ0(x; ta) = ρ̃(x) (27)

FIG. 2. (Color online) Densities at the start of the measurement
t = 0 with different aging times ta = 10,103, and 105 (α = 0.8).
Symbols with lines are the results of numerical simulations. Dashed
curves are the theoretical curves without fitting parameters. For all
aging times ta , the densities are in excellent agreement with the theory.

and

ρ̃(x) ∼ sin(πα)

πα

(
a0

α

)α−1

x−1/α (x → 0). (28)

We note that ct1−α
a ρ0(x; ta) → cρ̃(x) (ta → ∞) is also an

invariant density (c > 0). While we use c = 1, the choice of a
multiplicative constant does not affect our results.

By the change of variable x = ααy/(a0ta)α , the scaled
density q(y) = ααρ0(ααa−α

0 t−α
a y; ta)/(a0ta)α gives a master

curve:

q(y) = sin(πα)

πα

1

1 + y1/α
. (29)

This result is consistent with a rigorous result in general in-
termittent maps by Thaler [29]. Figure 3 shows a convergence
of the scaled density to the master curve. We note that the
master curve does not depend on details of the map except

FIG. 3. (Color online) Scaled density (α = 0.6). Symbols with
lines are the results of numerical simulations. The dashed curve is
the master curve, Eq. (29), for α = 0.6. Scaled densities approach the
master curve as ta → ∞.
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near the fixed point x = 0, and also appears in the evolution
of Riemann-integrable functions [29].

C. Dynamical instability

To investigate an effect of the aging on the dynamical
instability, we consider the Lyapunov exponent. In general,
weakly chaotic systems with infinite invariant measures have
zero Lyapunov exponent [10,11,36,37]. However, these dy-
namical instabilities are known as a subexponential instability
quantified by the generalized Lyapunov exponent α [11,37],
which is defined as the average of the normalized Lyapunov
exponent, α ≡ 〈λα〉, where 〈·〉 is an average with respect to
an initial density and

λα ≡ lim
t→∞

1

tα

t−1∑
k=0

ln |T ′(xk)| (ta = 0). (30)

In non-aged systems, α does not depend on an initial density
with the aid of ADK theorem. To investigate an effect of aging,
we consider the generalized Lyapunov exponent in the aging
limit ta/t → Ta , α(Ta) ≡ 〈λα(Ta)〉, where

λα(Ta) ≡ lim
t→∞

1

tα

t−1∑
k=0

ln |T ′(xk)| (ta/t → Ta). (31)

The aging generalized Lyapunov exponent is represented as

α(Ta) ∼= 1

tα

∫ t

0

∫ 1

0
g(x)ρt ′ (x; ta)dx dt ′, (32)

where g(x) = ln |T ′(x)|. Using the infinite invariant density
ρ̃(x) defined by Eq. (27), we obtain

α(Ta) ∼= (t + ta)α − tαa

αtα

∫ 1

0
g(x)ρ̃(x)dx (33)

for t � 1 and ta � 1 with Ta fixed. According to ADK the-
orem, the non-aging generalized Lyapunov exponent (ta = 0)
is given by [37]

α(Ta = 0) = 1

α

∫ 1

0
g(x)ρ̃(x)dx. (34)

In the aging limit, this relation is generalized as

α(Ta) = (1 + Ta)α − T α
a

α

∫ 1

0
g(x)ρ̃(x)dx. (35)

From Eq. (35) we see a novel relation between the separation
under aging conditions and separation in the absence of aging:

α(Ta)/α(0) = (1 + Ta)α − (Ta)α. (36)

This relation implies that knowledge of the separation in the
non-aged case (e.g., numerically or analytically) is all that
is needed to predict the separation under aging conditions.
In the Conclusion section below we briefly explain why
such relations are general beyond the observable under
investigation. This aging effect on the generalized Lyapunov
exponent has been confirmed numerically (Fig. 4). The result
means that the dynamical instability becomes weak as the
system ages. The 1/α factor on the right-hand side of Eq. (35)
is obviously related to our working definition of the invariant
density, Eq. (27).

FIG. 4. (Color online) Generalized Lyapunov exponent as a
function of the aging ratio Ta (α = 0.8, 0.5, and 0.2). Different
symbols are the results of numerical simulations for different α, where
the total measurement time t is fixed as 106. Curves are theoretical
ones without fitting parameter [α(Ta = 0) is obtained numerically].
Aging strongly affects the dynamical instability when the aging time
ta is larger than the measurement time t .

Using the distributional limit theorem (21), we obtain
the PDF of the normalized Lyapunov exponent χ = λα(Ta)/
α(Ta), given by the PDF (17), Pα(χ ; Ta). As shown in Fig. 5,
the PDF does not depend on the measurement time t if the
aging ratio Ta is fixed. Further, the strength of the delta
peak at χ = 0 increases as the aging ratio Ta is made larger
(see Fig. 5). This delta peak corresponds to trajectories that

FIG. 5. (Color online) Probability density function P (χ ; Ta) of
the normalized Lyapunov exponent (Ta = 0.1 and 1, t = 105 and
106, and α = 0.5). Symbols with lines are the results of numerical
simulations. Solid curves are the theoretical ones calculated by a
numerical integration of the convolution in (15) using the stable
density with index 1/2, i.e., l1/2(x) = c1 exp[−c2

1/(2x)]/
√

2πx3,
where c1 is a scaling parameter depending on Ta . The probability
of finding regular motions is increased when the system ages. Almost
all trajectories to the left of the red line exhibit regular motions (RMs)
while trajectories to the right are weakly chaotic motions (WCMs),
where the value of the red line (χ = 0.05) represents the bin size of
the PDF with histogram (the bin is needed to graphically represent
a delta function). Theory is in good agreement with the numerical
results including the delta distribution.
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do not escape from [0,γ1] until time t , which weakens the
dynamical instability. These trajectories are regular rather than
chaotic (not even weakly chaotic). In fact, these trajectories
can be treated by a continuous approximation. For xt

∼= 0, we
use an ordinary differential equation [21,23] to describe the
dynamics:

dxt

dt
= a0x

1+1/α
t (xt

∼= 0). (37)

The solution of this continuous approximation is given by

xt = x0
(
1 − α−1x

1/α

0 a0t
)−α

(38)

for xt  1 or t  αx
−1/α

0 /a0. The difference of nearby
trajectories xt and x ′

t such that x0 and x ′
0 = x0 + δx (δx  x0)

is described as

|xt − x ′
t | ∼= δx

[
1 + x

1/α

0 (1 + α−1)a0t
]
. (39)

In the aging limit, these regular motions appear even when
time t goes to infinity. Therefore, in aging dynamical systems,
regular motions (RMs) and weak chaotic motions (WCMs)
intrinsically coexist in the aging limit. This implies that when
Ta � 1 a large fraction of particles are located close to the
indifferent fixed point and hence their motion is regular.

V. DISCUSSION

We have shown the distribution of sums of integrable
functions in the aging limit, which is a generalization of
Aaronson’s Darling-Kac theorem. Although we use intermit-
tent maps, this generalization will be valid for all weakly
chaotic maps with infinite invariant measures (more precisely,
a conservative, ergodic, measure preserving transformation)
because aging in dynamical systems implies that the density
does not converges to an equilibrium density even when time
goes to infinity (nonequilibrium nonstationary density). Using
numerical simulations, we confirmed the distributional aging
limit theorem in the Boole transformation [8] (not shown).

VI. CONCLUSION

The aging ratio Ta plays an important role in characterizing
aging systems. In the aging limit, the distribution of sums of
integrable observables converges to a universal distribution,
which is determined by the aging ratio Ta and the exponent
α of infinite invariant measures in dynamical systems. The
mathematical basis of this universal distribution is both the
generalized central limit theorem and Dynkin’s theorem for
the forward recurrence time. We have also shown how to use
the infinite invariant density to calculate statistical averages
such as the measure of separation α within the aging regime.
From Eq. (35) we have a novel relation under aging conditions
(36). Thus, knowledge of the non-aging observable (0) via
measurement or with the infinite invariant density is sufficient
for the determination of the aged observable (Ta). Similar
relations between aged and non-aged averages hold for a large
class of observation functions which are integrable with respect
to the infinite invariant density. Thus the infinite invariant
density plays an important role for determination of ergodic
properties of aging processes.

We have found that the dynamical instability is clearly
divided into two different instabilities, i.e., regular motions
and weakly chaotic motions, in the aging limit. Coexis-
tence of regular and chaotic motions is reminiscent of
generic Hamiltonian systems. However, the meaning of the
coexistence is completely different. In aging dynamical sys-
tems, the probability of finding regular motions is increased
according to the aging ratio Ta , whereas regular and chaotic
phase spaces do not depend on Ta in generic Hamiltonian
systems.
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APPENDIX A: DERIVATION OF EQS. (27) AND (28)
BY THALER’S THEOREM

In [28], Thaler showed that, for all Riemann-integrable
functions u(x) on [0,1],

wnP
nu(x) →

(
1

	(α)	(2 − α)

∫ 1

0
u(x)dx

)
h(x), (A1)

uniformly on compact subsets of (0,1] as n → ∞, where wn

is the wandering rate, P is the Perron-Frobenius operator,
and h(x) is an invariant density. The wandering rate wn is
defined using the invariant measure μ corresponding to h(x),
i.e., μ([0,x]) = ∫ x

0 h(y)dy,

wn(T ) ≡ μ

(
n−1⋃
k=0

T −k([γ1,1])

)
. (A2)

Note that the wandering rate depends on μ or h(x). It is known
that the wandering rate for the map (2) and an invariant density
h(x) = h̃(x)x−1/α is given by

wn ∼ h̃(0)
α

1 − α
αα−1a1−α

0 n1−α. (A3)

Because an initial density is a Riemann-integrable function, the
left-hand side of Eq. (A1) is a scaled density ρ(x,n) at time n

if u(x) = ρ0(x). It follows that a scaled density converges to
an invariant density as n → ∞. Applying Thaler’s theorem to
the map (2) and u(x) = ρ0(x), we have

n1−αρ0(x,n) → sin πα

π
α−αaα−1

0

h̃(x)

h̃(0)
x−1/α, (A4)

as n → ∞. Our notation in the text for infinite invariant
density, namely the right-hand side, is equal to ρ̃(x). For x → 0
and n → ∞,

n1−αρ0(x,n) ∼ sin πα

πα

(
a0

α

)α−1

x−1/α. (A5)

Therefore, Eqs. (27) and (28) are derived by Thaler’s theorem.
We note that the right-hand sides of Eqs. (27) and (28) do not
depend on ρ0(x) if it is a Riemann-integrable function (not the
delta function).
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APPENDIX B: ANOTHER REPRESENTATION OF THE
AGING DISTRIBUTIONAL LIMIT THEOREM

We presented a main result, the distributional limit theorem
under aging conditions, by Eq. (21). Here, we give another
representation of the aging distributional limit theorem using a
specific invariant measure. Because the constant Cf in Eq. (21)
does not depend on the multiplicative constant of an invariant
measure μ, one can choose the constant.

However, the constant CA should be represented by a
specific invariant measure. For all integrable observation
functions f (x), the ensemble average of

∑t−1
k=0 f (xk)/tα

can be represented by a specific invariant measure denoted
by μ′:

〈
1

tα

t−1∑
k=0

f (xk)

〉
→

∫ 1

0
f (x)dμ′ as t → ∞. (B1)

We note that the specific invariant measure μ′ does not depend
on an observation function f (x). This is a result from the ADK
theorem, whereas the return sequence is used to represent the

distributional limit theorem without specifying an invariant
measure in the ADK theorem [8]. In other words, an invariant
measure in Eq. (B1) is specified because the return sequence
is fixed as tα . Because σ (x) is an integrable function with
respect to an invariant measure, the ensemble average of∑t−1

k=0 σ (xk)/tα , which is 〈Nt 〉/tα , converges to the constant∫ 1
0 σ (x)dμ′. It follows that one can represent the constant

CA = tα/〈Nt 〉 by the specific invariant measure μ′, i.e.,
C−1

A = ∫ 1
0 σ (x)dμ′ = μ′([γ1,1]). If we choose an invariant

measure such that μ′([γ1,1]) = C−1
A , the aging distributional

limit theorem (21) can be represented by

Pr

(
1

tα

t−1∑
k=0

f (xk) < x; ta

)
→

∫ x/
∫ 1

0 f dμ′

0
Pα(χ ; Ta)dχ.

(B2)

We note that the specific invariant density dμ/dx is given by
ρ̃(x)/α because the ensemble average of

∑t−1
k=0 ln T ′(xk)/tα ,

i.e., the generalized Lyapunov exponent, is represented by
Eq. (34).
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