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We investigate the mixed-type vector solitons of the N -coupled mixed derivative nonlinear Schrödinger
(N -CMDNLS) equations from optical fibers. Mixed-type (m-bright-n-antidark or m-bright-n-dark) vector-soliton
solutions are derived via the Hirota method. Such vector solitons are found to be independent of the sign of cubic
nonlinearity in the N -CMDNLS equations, which is different from the case of the coupled nonlinear Schrödinger
equations. The parameter conditions for the shape-preserving and shape-changing collisions of the mixed-type
vector solitons are also given by an asymptotic analysis. As an example, the mixed-type vector-soliton collisions
in the 3-CMDNLS equations are graphically illustrated. Those results may be useful to the ultrashort-pulse
propagation in nonlinear fibers.
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I. INTRODUCTION

Vector-soliton propagation and collision properties have
been studied intensively due to their applications in optical
communication systems [1]. In contrast to scalar solitons,
vector solitons have multiple distinct polarization components
that can copropagate as one unit without splitting because
of the nonlinear effects [2,3]. One phenomenon associated
with the collisions of vector solitons is the energy exchange
among the components [4–7]. Due to such collision properties
and robustness against external perturbations, vector solitons
have been applied to the design of such devices as optical
switches, signal routers, and data storage [8,9]. So far, three
types of vector solitons have been found in the 2-coupled
nonlinear Schrödinger (2-CNLS) equations, i.e., the bright
vector solitons (both components are bright solitons), dark
vector solitons (both components are dark ones), and mixed-
type vector solitons (some components are bright while others
are dark) [10–14]. In addition, vector solitons of the 2-coupled
mixed derivative nonlinear Schrödinger (2-CMDNLS) equa-
tions have been studied because of their applications in the
femtosecond regime of birefringent optical fibers [15]. Bright,
dark, and antidark vector solitons of the 2-CMDNLS equations
have been obtained [16,17]. Here antidark solitons exist in
the form of a bright pulse on a nonzero continuous-wave
background [18].

However, studies on the mixed-type vector solitons for the
general N -CMDNLS equations have not yet been proposed.
In the present paper we investigate the N -CMDNLS equations
[19]

iqj,t + qj,xx + μ

⎡
⎣

⎛
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η=1

ρη|qη|2
⎞
⎠ qj

⎤
⎦

+ iγ

⎡
⎣

⎛
⎝ N∑

η=1

ρη|qη|2
⎞
⎠ qj

⎤
⎦

x

= 0 (j = 1, . . . ,N ), (1)
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where x and t are the normalized time and distance, re-
spectively, μ and γ are the real constants that denote the
measure of cubic nonlinear strength and derivative cubic
nonlinearity, ρl (l = 1, . . . ,N) can be either 1 or −1, and
qj represents the slowly varying complex envelopes for
the polarizations [19]. The last terms in Eq. (1) contain
the self-steepening effect, which plays an important role
in the ultrashort-pulse propagation in long optical fibers
[20,21]. Equation (1) has been found to possess integrability
in the sense of the scattering transform [19]. In the case of
γ = 0, Eq. (1) can be reduced to the N -CNLS equations,
which arise in optical fibers [21], biophysics [22], Bose-
Einstein condensates [23], and plasma physics [24]. When
μ = 0, Eq. (1) reduces to the N -coupled derivative nonlinear
Schrödinger (N -CDNLS) equations, which govern polarized
Alfvén waves in plasma physics [25]. Therefore, Eq. (1) can
be regarded as a combination of the N -CNLS and N -CDNLS
equations. The case N = 2 in Eq. (1) corresponds to the
2-CMDNLS equations for the two polarized components of
the electric field in birefringent optical fibers, which can
exhibit a complete or partial energy exchange in the collisions
of the bright vector solitons [16]. However, for the dark or
antidark vector solitons of the 2-CMDNLS equations, Ref. [17]
has shown that no energy transfer happens between the two
polarization components. More on the soliton collisions can
be seen, e.g., in Refs. [26,27].

The structure of this paper is arranged as follows. Although
the bilinear equations of the 2-CMDNLS equations have been
presented [16,17], more general ones of the N -CMDNLS
equations need to be given. In Sec. II, using the Hirota method
[28,29] and symbolic computation [30,31], the bilinear equa-
tions and mixed-type vector-soliton solutions of Eq. (1) are
obtained. A characteristic analysis of the mixed-type vector-
soliton solutions is presented in Sec. III. Parameter conditions
are derived to obtain different types of vector-soliton solutions.
More importantly, conditions for the shape-preserving and
shape-changing collisions of the mixed-type vector solitons
are given. Mixed-type vector-soliton collisions of the 3-
CMDNLS equations are illustrated in Sec. IV. Numerical
simulations of the mixed-type vector solitons are performed
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by virtue of the time-splitting spectral (TSS) method in
Sec. V. Finally, a summary and discussion are given in
Sec. VI.

II. MIXED-TYPE VECTOR-SOLITON SOLUTIONS
OF EQ. (1)

Soliton solutions, in particular multisoliton solutions, can
be derived through the truncated formal perturbation expan-
sion at different levels in bilinear equations [32,33]. In this
section we use the Hirota method to obtain the m-bright-n-dark
or m-bright-n-antidark (m + n = N ) vector-soliton solutions
of Eq. (1).

By introducing the gauge transformation

qj = uj exp

⎡
⎣− iγ

2

∫ ⎛
⎝ N∑

η=1

ρη|uη|2
⎞
⎠ dx

⎤
⎦ (j = 1, . . . ,N),

(2)

we transform Eq. (1) into the form

iuj,t + uj,xx + μ

⎡
⎣

⎛
⎝ N∑

η=1

ρη|uη|2
⎞
⎠ uj

⎤
⎦

+ iγ

⎛
⎝ N∑

η=1

ρηuη,xu
∗
η

⎞
⎠ uj = 0 (j = 1, . . . ,N ), (3)

where the asterisk denotes the complex conjugate. Through
the rational dependent-variable transformations

us = gs

f
(s = 1,2, . . . ,m), (4a)

um+l = hl

f
(l = 1,2, . . . ,n), (4b)

where gs(x,t) (s = 1, . . . ,m), hl(x,t) (l = 1, . . . ,n), and
f (x,t) are all complex functions to be determined, Eq. (3)
can be bilinearized as

(
iDt + D2

x − λ
)
(gs · f ) = 0 (s = 1, . . . ,m), (5)

(
iDt + D2

x − λ
)
(hl · f ) = 0 (l = 1, . . . ,n), (6)

Dx(f ∗ · f ) = − iγ

2

(
m∑

s=1

ρs |gs |2 +
n∑

l=1

ρm+l|hl|2
)

, (7)

(
D2

x − λ
)
(f ∗ · f )

= μ

(
m∑

s=1

ρs |gs |2 +
n∑

l=1

ρm+l|hl|2
)

− iγ

2

[
m∑

s=1

ρsDx(g∗
s · gs) +

n∑
l=1

ρm+lDx(h∗
l · hl)

]
, (8)

where λ is a real constant to be determined, and the bilinear
operators Dt and Dx are defined by [32]

Dm
x Dn

t (f · g)

=
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂t
− ∂

∂t ′

)n

f (x,t)g(x ′,t ′)
∣∣
x ′=x,t ′=t

,

with x ′ and t ′ as the formal variables. Note that Eq. (1) can be
obtained from Eqs. (5)–(8) with the choice of qj = ujf

∗/f
(j = 1, . . . ,N) due to the gauge equivalence between Eqs. (1)
and (3). Then Eqs. (5)–(8) can also be seen as the bilinear
equations of Eq. (1). Moreover, Eqs. (5)–(8) are more general
than those obtained in Ref. [16] because they can reduce to
the bilinear equations of the N -CNLS equations in the case of
γ = 0 and f being a real function.

In order to obtain the m-bright-n-dark or m-bright-n-
antidark vector-soliton solutions of Eq. (1), we expand gs

(s = 1, . . . ,m), hl (l = 1, . . . ,n), and f with respect to a
formal expansion parameter ε as follows:

gs = εg(1)
s + ε3g(3)

s + ε5g(5)
s + · · · (s = 1, . . . ,m), (9)

hl = h
(0)
l

(
1 + ε2h

(2)
l + ε4h

(4)
l + · · · ) (l = 1, . . . ,n), (10)

f = f (0)(1 + ε2f (2) + ε4f (4) + · · · ), (11)

where g(J )
s (J = 1,3,5, . . .), h

(L)
l , and f (L) (L = 0,2,4, . . .)

are all complex functions to be determined. Substituting
expansions (9)–(11) into Eqs. (5)–(8) and truncating the
perturbation expansion at different levels, we obtain the
mixed-type vector one-soliton and multisoliton solutions of
Eq. (1) (see the Appendix).

III. ANALYSIS OF THE MIXED-TYPE
VECTOR-SOLITON SOLUTIONS

A. Quantitative analysis of solutions (A7)

It is noted that solution (A7a) can present only one
type of soliton solution, i.e., a bright-soliton solution, while
solution (A7b) can be a dark- or antidark-soliton solution under
different parameter conditions. From solution (A7b) we can
see that the sign of �1 (�1 = σ1 + σ ∗

1 − 
l,1 − 
∗
l,1) deter-

mines the type of soliton solution. For �1 > 0, solution (A7b)
is a dark-soliton solution, while it will take the form of an
antidark-soliton solution in the case of �1 < 0.

After calculation of �1 with k1 = k1R + ik1I (the suffixes
R and I denote the real and imaginary parts), we have

�1 = (−8k1I γ + 4μ + 3γ 2�)
∑m

s=1 ρs |χs,1|2
8
(
k2

1R + k2
1I

) + �(−8k1I γ + 4μ + 3γ 2�)
. (12)

It is found that ρη (η = 1, . . . ,m) is not the determinate factor
for the sign of

∑m
s=1 ρs |χs,1|2. As a result we assume ρη = 1

(η = 1, . . . ,m) and γ > 0 (for other cases, the analysis can be
performed in a similar way). Then solution (A7b) can exhibit
two types of soliton solutions under the following parameter
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conditions: For μ� <
−8k2

1R−�2γ 2

4 ,

antidark-soliton solutions : k1I >
3�γ 2 + 4μ

8γ
, k1I <


1

4
or k1I >


2

4
, (13)

dark-soliton solutions :
k1I <

3�γ 2 + 4μ

8γ
, k1I <


1

4
or k1I >


2

4

k1I >
3�γ 2 + 4μ

8γ
,


1

4
< k1I <


2

4
,

(14)

with


1 = 2�γ −
√

2
√

�, 
2 = 2�γ +
√

2
√

�,

� = −8k2
1R − �2γ 2 − 4�μ,

and for μ� >
−8k2

1R−�2γ 2

4 ,

antidark-soliton solutions : k1I >
3�γ 2 + 4μ

8γ
, (15)

dark-soliton solutions : k1I <
3�γ 2 + 4μ

8γ
, (16)

where k1R represents a half-wave number, k1I correlates with
the velocity of the vector soliton, and ρm+l (l = 1, . . . ,n) is the
sign of nonlinearity. Therefore, with the choices of parameters
under conditions (13)–(16), solutions (A7) can describe the
propagation of m-bright-n-antidark or m-bright-n-dark (m +
n = N ) vector solitons.

For the CNLS equations, the sign of the nonlinear coeffi-
cients determines whether the model is focusing, defocusing,
or mixed type [10]. As shown in Refs. [10–14], the bright-dark
vector solitons exist only in the CNLS equations with all
the nonlinearities being defocusing or mixed focusing and
defocusing. Whether the case of Eq. (1) is similar to that
of the CNLS equations needs further analysis. Based on
the above analysis, bright solitons in the qs (s = 1, . . . ,m)
component can be described by solution (A7a) with any choice
of ρη (η = 1, . . . ,m). Under conditions (13) and (14), to
describe the dark-antidark solitons in the qm+l (l = 1, . . . ,n)
component, we must require the cubic nonlinear coefficient
μρm+l (l = 1, . . . ,n) to be negative when n = 1. However,
under conditions (15) and (16), the sign of μρm+l (l = 1, . . . ,n

and n � 1) can be arbitrary and does not affect the types of
solitons. Therefore, the mixed-type vector solitons of Eq. (1)
can be obtained for any kind of combination of nonlinearities,
which is different from that of the CNLS equations [10,13].

In addition, the propagation characters of solitons can be
measured by the velocity, width, amplitude, and initial phase
of the envelopes. From solutions (A7), we find that solitons
in the qs (s = 1, . . . ,m) and qm+l (l = 1, . . . ,n) components
have the same velocity, width, and initial phase, which
are, respectively, 2k1I − �γ/2, 1/(2c1), and − ln |σ1|/(2c1).
The amplitudes of solitons in the qs (s = 1, . . . ,m) com-
ponent can be expressed as As = |χs,1|/

√
σ1 + σ ∗

1 + 2|σ1|,
while the amplitude or depth (corresponding to the an-
tidark or dark soliton, respectively) of solitons in the
qm+l (l = 1, . . . ,n) component can be described by Am+l =
|αl|

√
(σ1 + σ ∗

1 − 
l,1 − 
∗
l,1)/(σ1 + σ ∗

1 + 2|σ1|).

B. Asymptotic analysis of solutions (A9)

In the following, we will make the appropriate asymptotic
analysis on Solutions (A9) to reveal the dynamics of shape-
preserving and shape-changing collisions of solitons among N

components (see Appendix). Comparing expressions (A10b)
and (A12b), and (A11b) and (A13b), we find that the physical
quantities of solitons in the qm+l (l = 1, . . . ,n) component do
not change before and after collision except for a small phase
shift. This means that the collisions between two solitons are
all shape preserving and there is no energy transfer in the last
n components, which also indicates that there is no energy
exchange between the solitons in the qs (s = 1, . . . ,m) and
qm+l (l = 1, . . . ,n) components. However, comparing expres-
sions (A10a) and (A12a), and (A11a) and (A13a), it can be
found that the energy exchange exists among the solitons in the
first m components during the interacting process. Specifically,
if χs1,2/χs1,1 = χs2,2/χs2,1 (s1 �= s2, 1 � s1, and s2 � m), the
collisions between two solitons in the first m components
will be shape preserving. On the contrary, the shape-changing
collisions between two solitons with energy transfer in the first
m components will take place under the condition χs1,2/χs1,1 �=
χs2,2/χs2,1 (s1 �= s2, and 1 � s1, s2 � m).

IV. MIXED-TYPE VECTOR-SOLITON COLLISIONS

For simplicity, we will consider the set of 3-CMDNLS
equations by taking N = 3 in Eq. (1), i.e.,

iq1,t + q1,xx + μ[(|q1|2 + |q2|2 + |q3|2)q1]

+ iγ [(|q1|2 + |q2|2 + |q3|2)q1]x = 0, (17a)

iq2,t + q2,xx + μ[(|q1|2 + |q2|2 + |q3|2)q2]

+ iγ [(|q1|2 + |q2|2 + |q3|2)q2]x = 0, (17b)

iq3,t + q3,xx + μ[(|q1|2 + |q2|2 + |q3|2)q3]

+ iγ [(|q1|2 + |q2|2 + |q3|2)q3]x = 0, (17c)

with ρη = 1 (η = 1, . . . ,N). In the following, we will graph-
ically analyze the collisions between two vector solitons and
the energy transfer among three components.

A. Case m = 2 and n = 1

If we take m = 2 and n = 1 in solutions (A9), the
two-bright-one-dark or two-bright-one-antidark vector-soliton
solutions of Eq. (17) will be obtained. From the analysis
in Sec. III, it can be found that the conditions for the
shape-preserving and shape-changing collisions between two
solitons in the qs (s = 1,2) component and conditions for

032914-3



LI, XIAO, LIU, WANG, QIN, AND TIAN PHYSICAL REVIEW E 87, 032914 (2013)

TABLE I. Six types of mixed-type vector-soliton collisions.

�����������q1 , q2

q3 Antidark-antidark shape-preserving Dark-antidark shape-preserving Dark-dark shape-preserving
soliton collision soliton collision soliton collision

Bright-bright
shape-preserving case (a) case (b) case (c)
soliton collision
Bright-bright
shape-changing case (d) case (e) case (f)
soliton collision

the dark or antidark soliton in the q3 component are mutually
independent. Therefore, we can have six types of mixed-type
vector-soliton collisions (see Table I).

Here we show graphically cases (a), (e), and (f) from Table I.
If we choose χ1,2/χ1,1 = χ2,2/χ2,1 and make k1 and k2 both
satisfy condition (13), we will obtain case (a) as shown in
Fig. 1. It can be seen that two vector solitons pass through each
other without any change in shape except for small shifts. This
elastic collision is not affected by the appearance of antidark
solitons in the third component. In order to obtain the shape-
changing collision of two bright solitons in the qs (s = 1,2)
component and the shape-preserving collision of two dark
solitons in the q3 component, we take χ1,2/χ1,1 �= χ2,2/χ2,1

and kj (j = 1,2) under condition (14), as shown in Fig. 2. If
we set χ22 = 0, then the amplitude of the right soliton in the q2

component will become zero, which means that it transfers all
the energy to the soliton in the q1 component after the collision,
as seen in Fig. 3. Then the amplitude of the soliton in the q1

component will increase. This phenomenon might be used to
realize the information transfer through the energy switching
between the polarization components [34]. More importantly,
it may be applied to the all-optical switching based on the
cross-phase modulation between a signal (one vector soliton)
and a control pulse (the other vector soliton) [35].

B. Case m = 1 and n = 2

Choosing m = 1 and n = 2 in solutions (A9), we can
obtain the one-bright-two-dark or one-bright-two-antidark
vector-soliton solutions of Eq. (17). According to the analysis
in Sec. III, there is no energy exchange among those three
components. If we choose both k1 and k2 under condition (13),
the case of the shape-preserving bright-bright soliton collision
in the q1 component and the shape-preserving antidark-
antidark soliton collision in the ql (l = 2,3) component will

be obtained, as seen in Fig. 4. Similarly, the case of the shape-
preserving bright-bright soliton collision in the q1 component
and the shape-preserving antidark-dark soliton collision in the
ql (l = 2,3) component can be derived with k1 and k2 under
conditions (13) and (14), respectively (see Fig. 5). Figure 6
displays the shape-preserving soliton collisions among three
components with a bright-bright soliton collision in the q1

component and a dark-dark soliton collision in the ql (l =
2,3) component, with the choice of both k1 and k2 under
condition (14).

V. NUMERICAL SIMULATIONS OF THE MIXED-TYPE
VECTOR-SOLITON SOLUTIONS

To support the analytic results of the mixed-type vector
solitons and analyze the stability of solutions, we perform
the numerical simulations in the MATLAB environment by
means of the TSS method, which can be regarded as a
combination of the time-splitting discretization and Fourier
spectral methods [36,37]. Such a method was first used to study
the nonlinear Schrödinger equation in the semiclassical regime
[36,37]. Moreover, it has been shown to be unconditionally
stable, time reversible, and time-transverse invariant for the
Gross-Pitaevskii equation [38].

As for Eq. (1), we choose qς (ς = 1,2; m = 1; and N = 2)
in solutions (A7) at t = 0 as the initial pulses

q1(x,0)

= |χ1,1|exp(i�1)√
σ1 + σ ∗

1 + 2|σ1| cosh [(k∗
1 + k1)x + ln |σ1|]

, (18a)

q2(x,0)

=|α1|
√

1 − σ1 + σ ∗
1 − 
1,1 − 
∗

1,1

σ1 + σ ∗
1 + 2|σ1| cosh [(k∗

1 + k1)x + ln |σ1|]
× exp(i�2), (18b)
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FIG. 1. (Color online) Shape-preserving collisions of two bright solitons in the q1 and q2 components and shape-preserving collision of
two antidark solitons in the q3 component via solutions (A9). The parameters are γ = 2, μ = −5, α1 = 2, k1 = 1 + 1.8i, k2 = 1 + 2.1i,
χ11 = χ21 = 1, and χ12 = χ22 = 2.
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FIG. 2. (Color online) Shape-changing collision of two bright solitons in the q1 and q2 components and shape-preserving collision of two
dark solitons in the q3 component via solutions (A9). The parameters are γ = 1, μ = −2, α1 = 2, k1 = 1 + 1.5i, k2 = 1 − 1.5i, χ11 = χ21 = 1,
χ12 = 2 + i, and χ22 = 1.5 − i.
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FIG. 3. (Color online) Shape-changing collision of two bright solitons in the q1 and q2 components and shape-preserving collision of one
dark and one antidark soliton in the q3 component via solutions (A9). The parameters are γ = 1, μ = −2, α1 = 2, k1 = 2 + 1.5i, k2 = 2 − 1.8i,
χ11 = χ21 = 1, χ12 = 1 + i, and χ22 = 0.
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FIG. 4. (Color online) Shape-preserving collisions of two bright solitons in the q1 component and shape-preserving collision of two antidark
solitons in the q2 and q3 components via solutions (A9). The parameters are γ = 2, μ = −6, α1 = 1, α2 = 2, k1 = 1 + 2.3i, k2 = 1 + 2.65i,
χ11 = 1, and χ12 = 2.
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FIG. 5. (Color online) Shape-preserving collisions of two bright solitons in the q1 component and shape-preserving collision of one dark
and one antidark soliton in the q2 and q3 components via solutions (A9). The parameters are γ = 2, μ = −6, α1 = 1, α2 = 2, k1 = 1 + 3i,
k2 = 1 + 1.5i, χ11 = 1, and χ12 = 2.
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FIG. 6. (Color online) Shape-preserving collisions of two bright solitons in the q1 component and shape-preserving collision of two dark
solitons in the q2 and q3 components via solutions (A9). The parameters are γ = 2, μ = −6, α1 = 1, α2 = 2, k1 = 1 + i, k2 = 1 − 2i, χ11 = 1,
and χ12 = 2.
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where

� = α2
1ρ2, b = −1

4
γ�, 
1,1 = −k1σ1

k∗
1

, σ1 = |k1|2ρ1|χ1,1|2(4ik1γ + 4μ + 3γ 2�)

(k1 + k∗
1 )2[k∗

1 (8k1 − 4iγ�) + �(4ik1γ + 4μ + 3γ 2�)]
,

�1 = i(k∗
1 − k1)x

2
+ 3bx − i

2
ln

χ1,1[1 + σ ∗
1 exp(k∗

1x + k1x)]3

χ∗
1,1[1 + σ1exp(k∗

1x + k1x)]3
,

�2 = 3bx − i

2
ln

[1 + 
1,1exp(k∗
1x + k1x)][1 + σ ∗

1 exp(k∗
1x + k1x)]3

[1 + 
∗
1,1exp(k∗

1x + k1x)][1 + σ1exp(k∗
1x + k1x)]3

.

The finite computational region of x is chosen as [a,b] and
the corresponding boundary conditions are qς (a,t) = qς (b,t)
(ς = 1,2) for t � 0. The mesh grid points can be given as
follows:

xj = a + jdx, tτ = τdt,

j = 0,1, . . . ,M, τ = 0,1,2, . . . , (19)

where dx and dt are, respectively, the steps along the axes of
x and t and M is an integer. Then we solve Eq. (1) in two
steps from t = tτ to tτ+1. The first step is solving the linear
equations

iq1,t + q1,xx = 0, (20a)

iq2,t + q2,xx = 0 (20b)

by means of the discrete Fourier spectral method and the exact
integral in t , which leads to the results

Qτ+1
1,j = F−1

1,j

[
exp(−iω2dt)Fω

[
Qτ

1,j

]]
, (21a)

Qτ+1
2,j = F−1

2,j

[
exp(−iω2dt)Fω

[
Qτ

2,j

]]
, (21b)

in which Qτ
ς,j (ς = 1,2) denotes the approximation to

qς (xj ,tτ ) (ς = 1,2) and ω is the frequency in the field of

FIG. 7. Numerical simulations of the propagations of the initial pulses qj (x,0) (j = 1,2). Here we choose a = 20, b = −20, dt = 0.001,
and M = 210 and the iteration times are 1000. (a) The initial pulse is a bright-dark vector soliton with γ = 1, μ = −2.5, α1 = χ11 = 1, and
k1 = 1 + 0.6i. (b) The initial pulse is a bright-antidark vector soliton with γ = 1, μ = −2.5, α1 = χ11 = 1, and k1 = 1 − 0.5i.

Fourier. In the second step we handle the sets of equations
associated with the nonlinear parts

iq1,t + μ[(|q1|2 + |q2|2)q1] + iγ [(|q1|2 + |q2|2)q1]x = 0,

(22a)

iq2,t + μ[(|q1|2 + |q2|2)q2] + iγ [(|q1|2 + |q2|2)q2]x = 0.

(22b)

The derivative parts with respect to x are also treated via
the Fourier method and Eqs. (22) are replaced by

Q1,j t − iμ(|Q1,j |2 + |Q2,j |2)Q1,j + γF−1
1,j

× [exp(iωdt)Fω[(|Q1,j |2 + |Q2,j |2)Q1,j ]] = 0, (23a)

Q2,j t − iμ(|Q1,j |2 + |Q2,j |2)Q2,j + γF−1
1,j

× [exp(iωdt)Fω[(|Q1,j |2 + |Q2,j |2)Q2,j ]] = 0. (23b)

Instead of using the direct integral in t , we adopt a
fourth-order Runge-Kutta method [39] to obtain the recursion
relationship between Qτ

ς,j and Qτ+1
ς,j (ς = 1,2). Combining

the splitting steps via the standard second-order splitting, we
can simulate the propagation of the mixed-type vector solitons
for Eq. (1) with the specific choices of parameters.
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When we choose the parameters in solutions (18) under
conditions (14), the input initial pulse will be a bright-dark
vector soliton. Through the above simulation method we find
that the bright-dark vector soliton can propagate stably, as
seen in Fig. 7(a). Although some small oscillations arise in the
background of the dark soliton, the intensity and width have
almost no changes as the distance evolves. Similarly, when the
initial pulse is chosen as a bright-antidark vector soliton with
the parameters in solutions (18) satisfying conditions (13),
the stable propagation of bright-antidark vector soliton can
be obtained as seen in Fig. 7(b). If we introduce a white
noise (0.1 random [1,M]) in the initial phases and choose
the same parameters as those in Fig. 7, the pulses can also
propagate stably. Therefore, the mixed-type vector solitons
for Eq. (1) could resist the initial white noise perturbation and
can be realized through the numerical simulations. In order
to obtain general conclusions about the soliton stability, one
would need to conduct a number of numerical simulations
with respect to other initial perturbations using an advanced
numerical method.

VI. CONCLUSION

In this paper we have studied the mixed-type vector
solitons in Eq. (1) that arise in optical fibers. Via the Hirota
method, we have constructed general bilinear equations of
Eq. (1) in expressions (5)–(8). Mixed-type (m-bright-n-dark
or m-bright-n-antidark) vector one- and two-soliton solutions
in expressions (A7) and (A9) have been derived from bilinear
equations (5)–(8). An asymptotic analysis of solutions (A9)
has also been made to better understand the behaviors of
vector solitons before and after collision. In addition, we have
graphically analyzed the mixed-type vector-soliton collisions
of Eq. (1) with N = 3 and displayed the shape-preserving
and shape-changing collisions of mixed-type vector solitons.
Finally, a numerical simulation has been performed to support
the analytic mixed-type vector-soliton solutions. Attention
should be paid to the following aspects.

(i) Bilinear equations (5)–(8) of Eq. (1) are more general
than those in Refs. [16,17]. Moreover, solutions (A7) can
describe two types of vector solitons (m-bright–n-antidark and
m-bright–n-dark vector solitons) under conditions (13)–(16).

(ii) Through the asymptotic analysis of solutions (A9), we
have obtained the conditions for the shape-preserving and
shape-changing (along with the energy redistribution among
the components) collisions of the mixed-type vector solitons in
Sec. III B. As a special case, collisions of two two-bright-one-
dark or two-bright-one-antidark vector solitons (see Figs. 1–
3) and two one-bright-two-dark or one-bright-two-antidark
vector solitons (see Figs. 4–6) have been studied. These studies
might be of certain value in information transfer and all-optical
switching.

(iii) As suggested in previous studies (see, e.g., Refs.
[10–13]), the bright-dark vector solitons exist only in the mixed
or defocusing CNLS equations, which usually describe the
propagation of picosecond pulses in optical fibers. However,
because of the introduction of the higher-order nonlinear
terms, the mixed-type vector solitons have nothing to do
with the sign of cubic nonlinearity μρη (η = 1, . . . ,N) and
can be used as femtosecond pulses in optical fibers. We

note that Ref. [14] has numerically discussed the dynamics
of interacting dark-bright two-dimensional vector solitons,
which can form the bound states to describe the atomic
soliton molecules in quasi-two-dimensional immiscible Bose-
Einstein condensates. Our analytical results on the mixed-type
vector solitons in the CMDNLS equations could also be
extended to the two-dimensional case and used to form the
mixed-type vector-soliton bound states in the femtosecond
regime of birefringent optical fibers.
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APPENDIX

1. Mixed-type vector one-soliton solutions of Eq. (1)

To obtain the mixed-type vector one-soliton solutions of
Eq. (1), we terminate the power series expansions as

gs = εg(1)
s (s = 1, . . . ,m), (A1)

hl = h
(0)
l

(
1 + ε2h

(2)
l

)
(l = 1, . . . ,n), (A2)

f = f (0)
(
1 + ε2f (2)

)
(m + n = N ) (A3)

and assume that

g(1)
s = χs,1 exp(θ1) (s = 1, . . . ,m), (A4)

h
(0)
l = αl exp(−ialt),

h
(2)
l = 
l,1 exp(θ1 + θ∗

1 ) (l = 1, . . . ,n), (A5)

f (0) = exp(−ibx),

f (2) = σ1 exp(θ1 + θ∗
1 ) with θ1 = k1x + w1t, (A6)

where αl (l = 1, . . . ,n) is a real constant; χs,1 (s = 1, . . . ,m)
and k1 are complex constants; al (l = 1, . . . ,n) and b are both
real constants to be determined; and 
l,1 (l = 1, . . . ,n), σ1,
and w1 are complex constants to be determined. Substituting
expressions (A4)–(A6) into Eqs. (5)–(8), we have

λ = −1

4

n∑
l=1

α2
l ρm+l

(
4μ + γ 2

n∑
l=1

α2
l ρm+l

)
.

Without loss of generality we set ε = 1 and derive the
mixed-type vector one-soliton solutions of Eq. (1) as
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follows:

qs = |χs,1|exp(i�s)√
σ1 + σ ∗

1 + 2|σ1| cosh (θ1 + θ∗
1 + ln |σ1|)

(s = 1, . . . ,m), (A7a)

qm+l = |αl|
√

1 − σ1 + σ ∗
1 − 
l,1 − 
∗

l,1

σ1 + σ ∗
1 + 2|σ1| cosh (θ1 + θ∗

1 + ln |σ1|) exp(i�m+l) (l = 1, . . . ,n), (A7b)

where

� =
n∑

l=1

α2
l ρm+l , al = − 1

16
�(16μ + 3γ 2�), b = −1

4
γ�,

σ1 = |k1|2
∑m

s=1 ρs |χs,1|2(4ik1γ + 4μ + 3γ 2�)

(k1 + k∗
1 )2[k∗

1 (8k1 − 4iγ�) + �(4ik1γ + 4μ + 3γ 2�)]
,


l,1 = −k1σ1

k∗
1

, w1 = ik2
1 + 1

16
�(8k1γ + 16iμ + 3iγ 2�),

�s = i(θ∗
1 − θ1)

2
+ 3bx − i

2
ln

χs,1[1 + σ ∗
1 exp(θ1 + θ∗

1 )]3

χ∗
s,1[1 + σ1exp(θ1 + θ∗

1 )]3
, m + n = N,

�m+l = −alt + 3bx − i

2
ln

[1 + 
l,1exp(θ1 + θ∗
1 )][1 + σ ∗

1 exp(θ1 + θ∗
1 )]3

[1 + 
∗
l,1exp(θ1 + θ∗

1 )][1 + σ1exp(θ1 + θ∗
1 )]3

.

2. Mixed-type vector two-soliton solutions of Eq. (1)

Similar to the procedure above, substituting the expansions of gs (s = 1, . . . ,m), hl (m = 1, . . . ,n), and f as

gs = εg(1)
s + ε3g(3)

s (s = 1, . . . ,m), (A8a)

hl = h
(0)
l

(
1 + ε2h

(2)
l + ε4h

(4)
l

)
(l = 1, . . . ,n), (A8b)

f = f (0)(1 + ε2f (2) + ε4f (4)) (m + n = N ) (A8c)

into Eqs. (5)–(8), we get the mixed-type vector two-soliton solutions of Eq. (1)

qs = �[χs,1 exp(θ1) + χs,2 exp(θ2) + χs,3 exp(θ1 + θ∗
1 + θ2) + χs,4 exp(θ2 + θ∗

2 + θ1)], (A9a)

qm+l = �αl exp(−ialz)[1 + 
l,1 exp(θ1 + θ∗
1 ) + 
l,2 exp(θ2 + θ∗

2 ) + 
l,3 exp(θ1 + θ∗
2 )

+ 
l,4 exp(θ2 + θ∗
1 ) + 
l,5 exp(θ1 + θ2 + θ∗

1 + θ∗
2 )], (A9b)

with

θ1 = k1x + w1t, w1 = ik2
1 + 1

16
�(8k1γ + 16iμ + 3iγ 2�),

θ2 = k2x + w2t, w2 = ik2
2 + 1

16
�(8k2γ + 16iμ + 3iγ 2�),

χs,3 = − (k1 − k2)[k1σ1χs,2 − k2σ4χs,1 + k∗
1 (χs,2σ1 − χs,1σ4)]

(k1 + k∗
1 )(k2 + k∗

1 )
,

χs,4 = − (k1 − k2)[−k2σ2χs,1 + k1σ3χs,2 − k∗
2 (σ2χs,1 − σ3χs,2)]

(k1 + k∗
2 )(k2 + k∗

2 )
,

σ1 = |k1|2
∑m

s=1 ρs |χs,1|2(4ik1γ + 4μ + 3γ 2�)

(k1 + k∗
1 )2[k∗

1 (8k1 − 4iγ�) + �(4ik1γ + 4μ + 3γ 2�)]
,

σ2 = |k2|2
∑m

s=1 ρs |χs,2|2(4ik2γ + 4μ + 3γ 2�)

(k2 + k∗
2 )2[k∗

2 (8k2 − 4iγ�) + �(4ik2γ + 4μ + 3γ 2�)]
,

σ3 = k1k
∗
2

∑m
s=1 ρsχs,1χ

∗
s,2(4ik1γ + 4μ + 3γ 2�)

(k1 + k∗
2 )2[k∗

2 (8k1 − 4iγ�) + �(4ik1γ + 4μ + 3γ 2�)]
,
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σ4 = k2k
∗
1

∑m
s=1 ρsχs,2χ

∗
s,1(4ik2γ + 4μ + 3γ 2�)

(k2 + k∗
1 )2[k∗

1 (8k2 − 4iγ�) + �(4ik2γ + 4μ + 3γ 2�)]
,

σ5 = − (k∗
1 − k∗

2 )[k2(σ3χs,3 − σ1χs,4) + σ3χs,3k
∗
1 − σ1χs,4k

∗
2 ]

χs,1(k2 + k∗
1 )(k2 + k∗

2 )
,


l,1 = −k1σ1

k∗
1

, 
l,2 = −k2σ2

k∗
2

, 
l,3 = −k1σ3

k∗
2

, 
l,4 = −k2σ4

k∗
1

, 
l,5 = k1k2σ5

k∗
1k

∗
2

,

� = exp(ibx)[1 + σ ∗
1 exp(θ1 + θ∗

1 ) + σ ∗
2 exp(θ2 + θ∗

2 ) + σ ∗
3 exp(θ1 + θ∗

2 ) + σ ∗
4 exp(θ2 + θ∗

1 )

+ σ ∗
5 exp(θ1 + θ2 + θ∗

1 + θ∗
2 )]/{exp(−ibx)[1 + σ1 exp(θ1 + θ∗

1 ) + σ2 exp(θ2 + θ∗
2 )

+ σ3 exp(θ1 + θ∗
2 ) + σ4 exp(θ2 + θ∗

1 ) + σ5 exp(θ1 + θ2 + θ∗
1 + θ∗

2 )]}2

(s = 1, . . . ,m; l = 1, . . . ,n).

3. Asymptotic analysis of solutions (A9)

The asymptotic expressions of vector solitons before and after collisions can be given as follows: For S1− (θ1 + θ∗
1 ∼ 0,

θ2 + θ∗
2 → −∞),

qs → S1−
s = |χs,1|exp(i�−

1,s)√
σ1 + σ ∗

1 + 2|σ1| cosh (θ1 + θ∗
1 + ln |σ1|)

, (A10a)

qm+l → S1−
m+l = |αl|

√
1 − σ1 + σ ∗

1 − 
l,1 − 
∗
l,1

σ1 + σ ∗
1 + 2|σ1| cosh (θ1 + θ∗

1 + ln |σ1|) exp(i�−
1,m+l)

(s = 1, . . . ,m; l = 1, . . . ,n), (A10b)

with

�−
1,s = i(θ∗

1 − θ1)

2
+ 3bx − i

2
ln

χs,1[1 + σ ∗
1 exp(θ1 + θ∗

1 )]3

χ∗
s,1[1 + σ1exp(θ1 + θ∗

1 )]3
,

�−
1,m+l = −alt + 3bx − i

2
ln

[1 + 
l,1exp(θ1 + θ∗
1 )][1 + σ ∗

1 exp(θ1 + θ∗
1 )]3

[1 + 
∗
l,1exp(θ1 + θ∗

1 )][1 + σ1exp(θ1 + θ∗
1 )]3

;

for S2−(θ2 + θ∗
2 ∼ 0,θ1 + θ∗

1 → ∞),

qs → S2−
s =

∣∣χs,3

σ1

∣∣exp(i�−
2,s)√

σ5
σ1

+ σ ∗
5

σ ∗
1

+ 2
∣∣ σ5
σ1

∣∣ cosh
(
θ2 + θ∗

2 + ln
∣∣ σ5
σ1

∣∣) , (A11a)

qm+l → S2−
m+l =

∣∣∣∣αl
l,1

σ1

∣∣∣∣
√√√√√1 −

σ5
σ1

+ σ ∗
5

σ ∗
1

− 
l,5


l,1
− 
∗

l,5


∗
l,1

σ5
σ1

+ σ ∗
5

σ ∗
1

+ 2
∣∣ σ5
σ1

∣∣ cosh
(
θ2 + θ∗

2 + ln
∣∣ σ5
σ1

∣∣) exp(i�−
2,m+l)

(s = 1, . . . ,m; l = 1, . . . ,n), (A11b)

with

�−
2,s = i(θ∗

2 − θ2)

2
+ 3bx − i

2
ln

χs,3[σ ∗
1 + σ ∗

5 exp(θ2 + θ∗
2 )]3

χ∗
s,3[σ1 + σ5exp(θ2 + θ∗

2 )]3
,

�−
2,m+l = −alt + 3bx − i

2
ln

[
l,1 + 
l,5exp(θ2 + θ∗
2 )][σ ∗

1 + σ ∗
5 exp(θ2 + θ∗

2 )]3

[
∗
l,1 + 
∗

l,5exp(θ2 + θ∗
2 )][σ1 + σ5exp(θ2 + θ∗

2 )]3
;

for S1+(θ1 + θ∗
1 ∼ 0,θ2 + θ∗

2 → ∞),

qs → S1+
s =

∣∣χs,4

σ2

∣∣exp(i�+
1,s)√

σ5
σ2

+ σ ∗
5

σ ∗
2

+ 2
∣∣ σ5
σ2

∣∣ cosh
(
θ1 + θ∗

1 + ln
∣∣ σ5
σ2

∣∣) , (A12a)

qm+l → S1+
m+l =

∣∣∣∣αl
l,2

σ2

∣∣∣∣
√√√√√1 −

σ5
σ2

+ σ ∗
5

σ ∗
2

− 
l,5


l,2
− 
∗

l,5


∗
l,2

σ5
σ2

+ σ ∗
5

σ ∗
2

+ 2
∣∣ σ5
σ2

∣∣ cosh
(
θ1 + θ∗

1 + ln
∣∣ σ5
σ2

∣∣) exp(i�+
1,m+l)

(s = 1, . . . ,m; l = 1, . . . ,n), (A12b)
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with

�+
1,s = i(θ∗

1 − θ1)

2
+ 3bx − i

2
ln

χs,4[σ ∗
2 + σ ∗

5 exp(θ1 + θ∗
1 )]3

χ∗
s,4[σ2 + σ5exp(θ1 + θ∗

1 )]3
,

�+
1,m+l = −alt + 3bx − i

2
ln

[
l,2 + 
l,5exp(θ1 + θ∗
1 )][σ ∗

2 + σ ∗
5 exp(θ1 + θ∗

1 )]3

[
∗
l,2 + 
∗

l,5exp(θ1 + θ∗
1 )][σ2 + σ5exp(θ1 + θ∗

1 )]3
;

and for S2+(θ2 + θ∗
2 ∼ 0,θ1 + θ∗

1 → −∞),

qs → S2+
s = |χs,2|exp(i�+

2,s)√
σ2 + σ ∗

2 + 2|σ2| cosh (θ2 + θ∗
2 + ln |σ2|)

, (A13a)

qm+l → S2+
m+l = |αl|

√
1 − σ2 + σ ∗

2 − 
l,2 − 
∗
l,2

σ2 + σ ∗
2 + 2|σ2| cosh (θ2 + θ∗

2 + ln |σ2|) exp(i�+
2,m+l)

(s = 1, . . . ,m; l = 1, . . . ,n), (A13b)

with

�+
2,s = i(θ∗

2 − θ2)

2
+ 3bx − i

2
ln

χs,2[1 + σ ∗
2 exp(θ2 + θ∗

2 )]3

χ∗
s,2[1 + σ2exp(θ2 + θ∗

2 )]3
,

�+
2,m+l = −alt + 3bx − i

2
ln

[1 + 
l,2exp(θ2 + θ∗
2 )][1 + σ ∗

2 exp(θ2 + θ∗
2 )]3

[1 + 
∗
l,2exp(θ2 + θ∗

2 )][1 + σ2exp(θ2 + θ∗
2 )]3

,

where Sj∓ (j = 1,2) denotes the status of the j th solitons before (−) and after (+) the collisions, respectively.
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