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Single- and double-hump femtosecond vector solitons in the coupled Sasa-Satsuma system
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We construct the Darboux transformation of the coupled Sasa-Satsuma system and represent the N-soliton
solutions in terms of the five-component Wronskian. We give the parametric criterion for the appearance of single-
and double-hump soliton profiles, and analyze the structure and stability of double-hump solitons. We also reveal
the polarization-changing collisions occurring in the femtosecond vector solitons with the third-order dispersion,
self-steepening, and stimulated Raman scattering effects. Such nontrivial collisions may have applications in the
ultrafast all-optical switching, computation, and signal control.
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I. INTRODUCTION

It is known that the single-mode optical fibers are not
really “single-mode” but are actually bimodal because of
the birefringence induced by various imperfections randomly
distributed along the fiber [1]. With the presence of the
birefringence, the real fibers can support the vector solitons
in which two orthogonally polarized components trap each
other [2]. In the picosecond regime, the governing model for
the vector solitons propagation in the birefringent or two-mode
fibers is the coupled nonlinear Schrödinger (CNLS) system
[2,3]. With the internal degrees of freedom, the picosecond
vector solitons have been found to admit the polarization-
changing collisions along with energy exchange between two
components under certain parametric condition [4–8]. Such
nontrivial collisions have been experimentally observed in
the linearly birefringent fibers [9] and brought about some
applications such as the implementation of the all-optical
digital computation [10] and design of the “solitonets,” which
are complex networks made up of interacting fields [11].

To improve the capacity of high-bit-rate transmission
systems, the propagation of femtosecond pulses with the width
less than 100 fs is tempting and desirable [12]. In this case, the
effects of third-order dispersion (TOD), self-steepening (SS,
also known as Kerr dispersion), and stimulated Raman scatter-
ing (SRS) should be taken into account [13]. As the available
laser power continues to grow, there is an increasing interest in
the femtosecond soliton pulse propagation inside the birefrin-
gent fibers [14] or multimode fibers [15], and the pulse trapping
generated by the femtosecond soliton pulses in the birefringent
fibers [16] or across the zero-dispersion wavelength [17].

With all the effects of TOD, SS, and SRS, the dynamics of
femtosecond vector solitons in the birefringent or two-mode
fibers can be approximately described by the following
coupled higher-order nonlinear Schrödinger (CHONLS)
system [16–21]:

i uj,z + 1

2
uj,tt +

2∑
k=1

|uk|2uj + i ε

[
uj,ttt + 6

2∑
k=1

|uk|2uj,t

+ 3

(
2∑

k=1

|uk|2
)

t

uj

]
= 0, (j = 1,2), (1)
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which is usually referred to as the coupled Sasa-Satsuma
system [22], where z and t , respectively, represent the pro-
pagation direction and retarded time, uj corresponds to the
j th optical field, ε is the ratio of the width of the spectra
to the carrier frequency, and the last three terms in the
left-hand side of (1) stand for the TOD, SS, and SRS effects,
respectively.

System (1) is a completely integrable model in the sense
of being solvable by the inverse scattering transform [23] and
possesses some integrable properties such as the Bäcklund
transformation [20], Painlevé property [21], and bilinear
representation [24]. However, the Darboux transformation
(DT) as an important aspect for indicating the integrability
of system (1) has not been obtained in the previous liter-
ature. The DT applies only to the Lax-integrable nonlinear
equations, but to the best of our understanding it admits
the following two virtues: (1) The DT, which comprises the
eigenfunction and potential transformations, can be used to
recursively generate an infinite chain of solutions including
the multisoliton solutions [25,26]. The DT algorithm is also
very computerizable since one only need solve the associated
Lax pair with a given initial potential and perform tedious
but not complicated iterative operations [26]. In comparison,
the Bäcklund transformation is not very straightforward in
use because it just stays on the potential level but does not
involve the eigenfunction transformation [25]. (2) Instead of
the guesswork when using the Hirota method [27], the iterated
DT algorithm enables us to easily represent the generated
solutions in terms of some determinants like the Wronskian
and Grammian [7,25]. Moreover, the determinant represen-
tation provides an algebraic basis for the direct verification
of the solutions [7] and makes it feasible to algebraically
study the collision dynamics among an arbitrary number of
solitons [8,28].

In this paper, we will employ the DT method to study the
femtosecond vector solitons in system (1) from the following
three considerations: (a) It has been shown in Refs. [7,8]
that the multicomponent Wronskian solutions can lead to an
algebraic procedure to directly study the collision dynamics
for an arbitrary number of vector solitons in the incoherently
CNLS system. Also, it is desirable to obtain the uniform
determinant representation of the general N-soliton solutions
for system (1). (b) The one-component Sasa-Satsuma equation
possesses the double-hump solitons [22,29] in addition to
the usual single-hump solitons. It is of importance to study
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the structure and stability of double-hump solitons in system
(1) since such kind of solitons may allow higher bit-rate
transmission systems based on the multilevel information-
coding scheme in each pulse [30]. (c) To our knowledge,
the previous studies have reported only the polarization-
preserving collisions of vector solitons in system (1), as seen,
e.g., in Ref. [24]. It is still an unsolved question as to whether
system (1) can exhibit the polarization-changing vector-
soliton collisions along with energy exchange between two
components, like the case in the incoherently CNLS system
[4–8].

II. DARBOUX TRANSFORMATION AND N-SOLITON
SOLUTIONS

To begin with, we introduce the variable transformations
[22]

uj (t,z) = qj (T ,Z)ei( t
6ε

− z

108ε2 ) (j = 1,2), Z = ε z,

T = t − z

12 ε
(2)

to convert system (1) into the following coupled complex
modified Korteweg-de Vries system:

qj,Z + qj,T T T + 6
2∑

k=1

|qk|2qj,T + 3

(
2∑

k=1

|qk|2
)

T

qj = 0 (j = 1,2). (3)

The Lax pair of system (3) can be written in the 5 × 5 Ablowitz-Kaup-Newell-Segur form [20]:

�T =
(

λ Q

−Q† −λ E4

)
�, Q = (q1,q2,q3,q4), (4a)

�Z =
(

−4 λ3 − 2 λQQ† + QQ†
T − QT Q† −4 λ2Q − 2 λQT − QT T − 2 QQ†Q

4 λ2Q† − 2 λQ†
T + Q†

T T + 2 Q†QQ† 4 λ3 E4 − 2 λQ†Q + Q†QT − Q†
T Q

)
�, (4b)

with the complementary constraints

q3 = q∗
1 , q4 = q∗

2 , (5)

where � = (ψ1,ψ2,ψ3,ψ4,ψ5)T (T represents the transpose of a vector) is the vector eigenfunction, λ is the spectral parameter,
E4 is the 4 × 4 identity matrix, and the asterisk and dagger, respectively, denote the complex conjugate and Hermitian conjugate
(i.e., transpose and conjugate).

Without consideration of constraints (5), the compatibility condition �TZ = �ZT yields

qj,Z + qj,T T T + 3
4∑

k=1

|qk|2qj,T + 3
4∑

k=1

qk,T q∗
k qj = 0, (1 � j � 4), (6)

which is equivalent to the four-coupled Hirota system, which is also an integrable CHONLS system excluding the SRS term [31].
In the manner of Ref. [32], the Mth iterated DT for system (6) can be constituted by the eigenfunction transformation

�M = [λME5 − SM (λ)]�, (7a)

SM (λ) =

⎛
⎜⎜⎜⎜⎝

∑M−1
n=0 anλ

n −∑M−1
n=0 b1n(−λ)n · · · −∑M−1

n=0 b4n(−λ)n∑M−1
n=0 c1nλ

n −∑M−1
n=0 d

(n)
11 (−λ)n · · · −∑M−1

n=0 d
(n)
14 (−λ)n

...
...

. . .
...∑M−1

n=0 c4nλ
n −∑M−1

n=0 d
(n)
41 (−λ)n · · · −∑M−1

n=0 d
(n)
44 (−λ)n

⎞
⎟⎟⎟⎟⎠, (7b)

and the potential transformation

qj,M = qj + 2 (−1)Mbj,M−1, (8)

where the subscript M is a mark to signify the Mth iterated
DT. The functions an(T ,Z), bjn(T ,Z), cin(T ,Z), and d

(n)
ij (T ,Z)

(1 � i,j � 4; 0 � n � M − 1) satisfy the conditions

SM (λk)�k = λM
k �k, SM (−λ∗

k)�(j )
k = (−λ∗

k)M�
(j )
k

(1 � j � 4; 1 � k � M), (9)

where �k = (fk,g
(1)
k ,g

(2)
k ,g

(3)
k ,g

(4)
k )T is the solution of Lax

pair (4a) and (4b) with λ = λk (λk �= λl for k �= l), �
(j )
k =

(−g
(j )∗
k ,

j−1︷ ︸︸ ︷
0, . . . ,0 ,f ∗

k ,

4−j︷ ︸︸ ︷
0, . . . ,0 )T (1 � j � 4) are the vector

functions orthogonal to �k .
Since {�k}Mk=1 and {�(j )

k }Mk=1 (1 � j � 4) are five sets of
linearly independent solutions, the elements in SM (λ) can be
uniquely determined from Eq. (9) by Cramer’s rule. In order
to maintain the complex conjugate constraints q3M = q∗

1M and
q4M = q∗

2M , we still require that

M = 2 N, λN+k = λ∗
k, (10a)

�N+k = (
f ∗

k ,g
(3)∗
k ,g

(4)∗
k ,g

(1)∗
k ,g

(2)∗
k

)T
,

�
(j )
N+k = (−g

(j ′)
k ,

j−1︷ ︸︸ ︷
0, . . . ,0 ,fk,

4−j︷ ︸︸ ︷
0, . . . ,0

)T
, (10b)
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where 1 � k � N , j ′ = j + 2 (modulo 4), �(j )
N+k (1 � j � 4)

are all orthogonal to �N+k . With the reduction in Eqs. (10a)
and (10b), transformations (7) and (8) are reduced to the N th
iterated DT for system (3) [or equivalently system (1)], which
has been presented here for the first time.

We implement the above DT algorithm starting from qj = 0
(j = 1,2). With λ = λk (1 � k � N ), the solutions of Lax pair
(4a) and (4b) can be given as(
fk,g

(1)
k ,g

(2)
k ,g

(3)
k ,g

(4)
k

)=(αkeθk ,βke−θk ,γke−θk ,δke−θk ,σke−θk ),

(11)

with θk = λk(t − z
12 ε

) − 4 ελ3
kz, and αk , βk , γk , δk , and σk (1 �

k � N ) are all complex constants. Particularly taking δk =
σk = 0 for 1 � k � N , we use transformation (8) to obtain
the N-soliton solutions of system (1) in terms of the following
five-component Wronskian:

u1 = −2 ei( t
6ε

− z

108ε2 ) τ2N+1,2N−1,2N

τ2N,2N,2N

,

(12)
u2 = −2 ei( t

6ε
− z

108ε2 ) τ2N+1,2N,2N−1

τ2N,2N,2N

with

τJ,K,L =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

FN×J −GN×K −HN×L 0 0

F ∗
N×J 0 0 −G∗

N×2N −H ∗
N×2N

G∗
N×J F ∗

N×K 0 0 0

0 FN×K 0 0 0

H ∗
N×J 0 F ∗

N×L 0 0

0 0 FN×L 0 0

0 0 0 F ∗
N×2N 0

GN×J 0 0 FN×2N 0

0 0 0 0 F ∗
N×2N

HN×J 0 0 0 FN×2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(13)

where J + K + L = 6 N , the matrices FN×J , GN×K , and
HN×L are given by

FN×J = A�+�+,J , GN×K = B�−�−,K,

HN×L = C�−�−,L, (14)

A = diag(α1, . . . ,αN ), B = diag(β1, . . . ,βN ), C = diag
(γ1, . . . ,γN ), �+ = diag(eθ1 , . . . ,eθN ), �− = diag(e−θ1 , . . . ,

e−θN ), �+,J = (λm−1
n )N×J , �−,K = [(−λn)m−1]N×K ,

�−,L = [(−λn)m−1]N×L. Without loss of generality, we
can take αk = 1 for 1 � k � N [32]. It means that the
N-soliton solutions of system (1) are in general characterized
by 3 N complex parameters {βk,γk,λk}Nk=1, which is the same
as the case for the incoherently CNLS system [4–8].

III. NONDEGENERATE VECTOR SOLITONS AND
POLARIZATION-CHANGING COLLISIONS

For λ1I = 0, solutions (12) with N = 1 represent only the
single-hump solitons of the “sech” profile, which have been
discussed in Refs. [20,24]. If λ1I �= 0, solutions (12) with

2 1 0 1
t

1

2

u1,2
2

FIG. 1. Nondegenerate single-hump solitons via solutions (15)
transverse at Z = 0, with ε = 1

2 , β1 = 1, γ1 = i, and λ1 = −1 + iλ1I .
The dotted, dashed, and solid lines correspond to λ1I = −100, λ1I =
−1, and λ1I = − 1√

3
, respectively. The components u1 and u2 have

the same intensity.

N = 1 can be written as(
u1

u2

)
=

(
β∗

1
γ ∗

1

)
2ei( t

6ε
− z

108ε2 )
λ1Reθ1−θ∗

1

2|λ1I | cosh2
(
ξ1 + ln

√
|λ1I |

|λ1|�1

) + |λ1| − |λ1I |

×
{

[|λ1| − iλ∗
1sgn(λ1I )]e−ξ1 + 2iλ∗

1sgn(λ1I )

×
√

|λ1I |
|λ1|�1

cosh

(
ξ1 + ln

√
|λ1I |

|λ1|�1

)}
, (15)

with ξ1 := θ1 + θ∗
1 , �1 := |β1|2 + |γ1|2, where λ1R and λ1I

denote the real and imaginary parts of λ1, respectively. Because
λ1I �= 0, one more degree of freedom is added in solutions (15).
Thus, solutions (15) are nondegenerate in the sense that
they can display both the single- and double-hump soliton
profiles under different parametric conditions. In the manner of
Ref. [22], we take the derivatives of |uj |2 (j = 1,2) with
respect to ξ1, yielding

d

dξ1

( |u1|2
|u2|2

)
=

( |β1|2
|γ1|2

) −32|λ1|2λ2
1Re2ξ1

(
λ2

1I e4ξ1−|λ1|2�2
1

)
(
λ2

1I e4ξ1+2|λ1|2�1e2ξ1 + |λ1|2�2
1

)3

×[
λ2

1I e4ξ1 + 2�1
(
λ2

1I − λ2
1R

)
e2ξ1+|λ1|2�2

1

]
,

(16)

which suggests that the number of extrema of |uj |2 (j = 1,2)
in solutions (15) is only related to λ1; that is, the appearance
of single- or double-hump soliton structure is completely
dependent on the parameter λ1.

If |λ1R| �
√

3|λ1I |, |uj |2 has only one maximum which
is along the line C0 : θ1 + θ∗

1 = 1
2 ln |λ1|�1

|λ1I | . Figure 1 presents
three types of single-hump solitons with λ1 satisfying |λ1R| �√

3|λ1I |. It can be observed that the top of |uj |2 becomes flatter
as |λ1R| approaches to

√
3|λ1I |. For the case |λ1R| >

√
3|λ1I |,

the nondegenerate soliton solutions (15) exhibit two humps
whose centers are located along two lines in the tz plane:

C1,2 : θ1 + θ∗
1 =1

2
ln

�1
(
λ2

1R−λ2
1I

) ± �1|λ1R|
√

λ2
1R − 3λ2

1I

λ2
1I

.

(17)
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16 18 20 22 24 26
t

1

2

u1,2
2

FIG. 2. Nondegenerate double-hump solitons via solutions (15)
transverse at Z = 8, with ε = 1

2 , β1 = 1, γ1 = i, and λ1 = −1.2 +
iλ1I . The dotted, dashed, and solid lines correspond to λ1I = − 6

25 ,
λ1I = − 24

250 , and λ1I = −6 × 10−8, respectively. The components u1

and u2 have the same intensity.

At any given z, the separation between two humps is fixed and
can be exactly calculated by the formula

d =
∣∣∣∣∣ 1

4λ1R
ln

λ2
1R − λ2

1I + |λ1R|
√

λ2
1R − 3λ2

1I

λ2
1R − λ2

1I − |λ1R|
√

λ2
1R − 3λ2

1I

∣∣∣∣∣, (18)

where |λ1R| >
√

3|λ1I |. Via the qualitative analysis, we find
that the double-hump solitons obey the following three
features: (i) The two humps in |uj |2 are symmetric with respect
to the line C0 and have the same height. (ii) The soliton does
not change its shape and retains the separation between two
humps during the propagation. (iii) Formula (18) implies that
when λ1R is fixed, the separation of one hump from the other
one becomes larger as λ1I tends to zero (see Fig. 2).

For N � 2, we try to explore the polarization-changing
collisions of the nondegenerate vector solitons via solutions
(12) with λkI �= 0 (1 � k � N ). The two-soliton solutions
[i.e., solutions (12) with N = 2] will be studied by the mul-
ticomponent Wronskian-based asymptotic analysis technique
[7,8]. As z → −∞ or z → ∞, solutions (12) with N = 2
can be understood as a combination of two vector one-soliton
solutions, whose asymptotic expressions differ from solutions
(15) in the amplitudes and phases. For convenience, we define
ak = 1√

�k
(βk,γk)T (�k = |βk|2 + |γk|2, k = 1,2) as the initial

polarization vectors of two colliding solitons, and use S±
1n

FIG. 3. (Color online) Polarization-changing collisions between
single- and double-hump vector solitons via solutions (12) with N =
2, ε = 3

10 , β1 = 2, β2 = 1, γ1 = 1 + i, γ2 = 1 + 2i, λ1 = 1
2 + 1

6 i, and
λ2 = − 1

2 − 1
2 i.

FIG. 4. (Color online) Polarization-changing collisions between
two single-hump vector solitons via solutions (12) with N = 2, ε = 1

2 ,
β1 = β2 = 1, γ1 = 1

2 , γ2 = 0, λ1 = 1
2 − 1

2 i, and λ2 = 3
4 − 1

2 i. Note
that the u2 component of the second colliding soliton, i.e., S+

22,
completely vanishes after collision.

and S±
2n (n = 1,2) to represent the nth colliding soliton in

the components u1 and u2 as z → ±∞, respectively.
Our asymptotic analysis shows that the polarization-

changing collisions of vector solitons can take place in
system (1) if neither a1 ‖ a2 nor a1 ⊥ a∗

2 is satisfied. In this
case, the colliding vector solitons experience the polarization
rotation and energy exchange between two components, but
the total energy of each vector soliton in two components
is conserved and exactly equals to 4|λnR| (n = 1,2). Similar
to the vector soliton collisions in the incoherently CNLS
system [4,8], the polarization-changing collisions lead to the
enhancement of intensity in one component of individual
soliton, and the suppression of intensity in the other component
of the corresponding soliton, as seen in Figs. 3–5. It is even
possible that the intensity for one component of some vector
soliton becomes zero after collision; for example, γ2 = 0 (or
β2 = 0) causes the disappearance of S+

22 (or S+
12) in Fig. 4(b)

[or Fig. 5(a)].
On the other hand, under the parametric condition a1 ‖ a2

or a1 ⊥ a∗
2 both components of each vector soliton preserve

their polarizations and velocities after collision except for the
phase shifts. Particularly, in the case βn = γ3−n = 0 (n = 1,2),
which is in obedience to a1 ⊥ a∗

2, either colliding vector
soliton has one component absent after collision. Because
the nonvanishing components belong to two different vector
solitons, they experience a phase shift upon their mutual
interaction, as shown in Fig. 6. In the context of birefringent

FIG. 5. (Color online) Polarization-changing collisions between
two double-hump vector solitons via solutions (12) with N = 2, ε =
1
2 , β1 = 1

3 , β2 = 0, γ1 = 1, γ2 = 1, λ1 = 1
2 − 1

5 i, and λ2 = 3
5 − 1

10 i.
Note that the u1 component of the second colliding soliton, i.e., S+

12,
completely vanishes after collision.
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FIG. 6. (Color online) Particular polarization-preserving colli-
sions between single- and double-hump vector solitons via solutions
(12) with N = 2, ε = 4

5 , β1 = 0, β2 = 1, γ1 = 1, γ2 = 0, λ1 =
− 1

2 − 1
3 i, and λ2 = 1

2 + 1
6 i. Note that the soliton components shown

in (a) and (b) belong to two different vector solitons, respectively.

or two-mode fibers, this corresponds to the case of two optical
soliton pulses with different frequencies and wave numbers
propagating in their individual components.

IV. DISCUSSION

1. It is because the presence of the SRS term that system (1)
admits both the single- and double-hump soliton profiles. We
should also mention a common property for the single- and
double-hump solitons in solutions (15); that is, the central
position of the soliton depends on λ1 in addition to β1 and γ1.
Therefore, the variation of λ1 may cause the position shift of
the soliton, as displayed in Figs. 1 and 2. Note that the coupled
Hirota system [31] does not exhibit this property due to the
absence of the SRS term [32].

2. We note that in the incoherently CNLS system the two
vector solitons can form a bound state with periodic attraction
and repulsion if the they have the same velocity [30]. Such two-
vector-soliton bound state exhibits the periodically varying
double-hump structure except that the two solitons are both
nonpropagating [33]. Differently, the symmetric double-hump
soliton profile in solutions (15) is always retained during
the propagation if the condition |λ1R| >

√
3|λ1I | is satisfied.

Accordingly, solutions (15) with |λ1R| >
√

3|λ1I | represent
only a one-vector soliton having two symmetric humps, but not
a pair of solitons with a constant distance between each other.
Besides, it has been found that the coherently CNLS system
also admits such a kind of soliton solutions [34,35]. However,
the polarization-changing collisions between double-hump

solitons cannot occur in the coherently CNLS system, and
its double-hump soliton may change into a single-hump one
when interacting with the degenerate soliton [34,35].

3. In the context of fiber optics, the parameters λ1R and λ1I

are respectively related to the soliton energy and frequency
shift from the carrier frequency [12]. That implies that the
formation of single- or double-hump soliton requires an
elaborate design of the power and width of the input pulse.
By the split-step Fourier method [12], we make a numerical
simulation of system (1) with solutions (15) at z = 0 as the
initial coupled pulses. Figure 7(a) shows that a double-hump
soliton propagates stably over four dispersion lengths along the
fiber. To study the stability of the double-hump soliton against
a small perturbation from some fiber parameters, we assume
that the initial pulses have a 10% deviation from the exact
solutions (15) at z = 0. As seen in Figs. 7(b) and 7(c), such a
small perturbation does not destroy the double-hump structure
and affects the stability of the pulses slightly. For a more
detailed analysis, one need employ the soliton perturbation
theory [36] to give a definite answer on whether there exists a
certain region in which the double-hump solitons are stable.

4. As seen from solutions (15), both the single- and double-
hump solitons satisfy the boundary condition u1 = u2 = 0
as |t | → ∞. In practice, the periodic boundary condition is
acceptable if the pulse width is considerably short [12]. On the
other hand, it is hard to produce the double-hump pulse soliton
with the present laser technology. As suggested in Ref. [37], a
feasible way is to utilize the initial antiphase coupled Gaussian
pulses

u1(0,t) = u2(0,t) = f

(
t − Ts

2

)
− f

(
t + Ts

2

)
, (19)

with f (t) =
√

E0p0√
π

e− P 2
0
2 t2

, where E0, Ts , and p0 respectively

stand for the pulse energy, spacing and width, “−” defines the
anti-phase relation between two pulses. However, it requires to
be further studied whether the coupled pulses defined in (19)
can propagate stably over a fiber distance long enough.

5. In the optical communication lines, the binary data “1”
and “0” can be respectively represented by the presence and
absence of an optical soliton, and thus the digital communica-
tion bit depends on the proximity of neighboring solitons [12].
The double-hump solitons may be appropriate candidates for
the multilevel communication in the birefringent or two-mode

FIG. 7. (Color online) Numerical simulations for the evolution of the coupled double-hump pulses, where the components u1 and u2 have
the same intensity. (a) The initial pulses correspond to the exact solutions (15) at z = 0 with β1 = γ1 = 1, λ1 = −0.2 − 0.01i, and ε = 0.1. (b)
The initial pulses are 10% less than the exact solutions. (c) The initial pulses are 10% greater than the exact solutions.
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fibers [30]. In fact, it has been experimentally found that
the double-hump solitons are immune to the time position
shifts arising from intrachannel interactions in the dispersion-
managed system [37]. This property leads to the invention of
an error preventable line-coding scheme in which the binary
data are assigned to the single- and double-hump solitons [37].

6. In view of the elegant properties of the five-component
Wronskian in (13), one can continue to study the collisions
among three or more vector solitons on the symbolic compu-
tation platform like Mathematica [8,32]. It is natural to infer
that the polarization-changing collisions occur in the N -soliton
solutions (12) if ak is neither parallel to al nor orthogonal to a∗

l

(k �= l). The polarization-changing collisions of femtosecond
vector solitons in system (1) may have potential applications
in the ultrafast all-optical virtual logic and computation [10],
high-performance all-optical switching [18], highly-functional
all-optical signal regenerator [19], and higher bit-rate optical
fiber complex network [11,38].

V. CONCLUSIONS

In this paper we have constructed the iterated DT for
system (1) and revealed that its N -soliton solutions can

be uniformly represented in terms of the five-component
Wronskian in (13). Such determinant representation makes
it possible to study the properties and collision behaviors of
femtosecond vector solitons in an algebraic way. We have
given the parametric criterion for the appearance of single-
and double-hump soliton profiles in system (1) and analyzed
the structure and stability of double-hump solitons. Moreover,
we have found that the vector solitons in system (1) can
exhibit the polarization-changing collisions and obtained the
parametric condition for the occurrence of such nontrivial
collisions. It is expected that the double-hump solitons and
their polarization-changing collisions can be experimentally
observed in the birefringent or two-mode optical fibers with
the TOD, SS, and SRS effects.
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