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Exact rogue wave solutions of the coupled Hirota equations are obtained by using a Darboux dressing
transformation. An analysis of the spectral parameter condition shows that our coupled rogue waves, equal or
unequal in background height, always exist no matter what parameters have been chosen for the starting plane
waves. We demonstrate that, compared with the decoupled ones, the coupled rogue waves can appear in a rather
striking way, i.e., one wave exhibits a centrally humped structure, while the other may feature one single hole
in the center—a dark rogue wave structure. It is expected that these unusual rogue wave structures due to the
two-wave coupling may help explain the extreme wave events in deep ocean or other nonlinear dispersive media.
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I. INTRODUCTION

Freak or rogue waves, initially termed to describe extreme
wave events that emerge in deep ocean [1,2], have recently
attracted a significant surge of research activities on both
experimental observations and theoretical predictions, in areas
as diverse as hydrodynamics [3,4], capillary waves [5], optics
[6–8], plasma physics [9], Bose-Einstein condensates [10],
and even finance [11]. Fundamentally, aside from having
a peak amplitude generally more than twice the significant
wave height, rogue waves appear from nowhere and disappear
without a trace [12]. Experiments show that the rogue waves
appear to follow L-shaped statistics and can occur more
frequently than they would according to ordinary Gaussian
statistics [6,8]. Although uncertainty about their fundamental
origins remains, there has been a consensus that rogue waves
can be intimately related to some kind of breather solutions of
the underlying evolution equations [3,4,13,14].

In the context of the (1 + 1)-dimensional nonlinear
Schrödinger (NLS) equation, one family of breather-type
solutions is the so-called Ma solitons [15], which breathe
in the propagation dimension but are transversally localized.
By contrast, there is another hierarchy of breather solutions,
also known as Akhmediev breathers (ABs) [14,16,17], which
instead breathe in the transverse dimension but are localized
in the other dimension. Interestingly, by setting the breathing
period of these two kinds of breathers to infinity, identical
rational (or rogue wave) solutions that are localized in both
dimensions can be obtained. The simplest rational solution is
the Peregrine soliton, which was first found by Peregrine in
1983 as the limiting case of Ma solitons [18]. Experimental
verification of this Peregrine soliton has been successfully
carried out in a water wave tank [3] and in optical fibers
[7], confirming that rogue waves occurring in reality can be
described by such kinds of rational solutions.

Recently, rogue wave solutions in other more complex
systems have been sought. Using the Darboux dressing
technique [19,20] or Hirota bilinear method [21], researchers
have reported exact rogue wave solutions in a variety of
integrable equations such as the Hirota equation [22,23],
the Sasa-Satsuma equation [24], and the Davey-Stewartson
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equation [25]. Also, rogue waves in coupled NLS equations (or
the Manakov system) [26], coupled Gross-Pitaevskii equations
[27], and coupled NLS Maxwell-Bloch equations [28] have
been demonstrated. Additionally, although rogue waves have
been studied mostly in conservative systems, there appears
to be an increasing number of experimental and theoretical
works [8,29,30] that place an emphasis on the role of active
media and dissipative systems so as to excite instabilities for
the formation of rogue waves [13,14,31].

In this work we deal with the rogue wave solutions of
the coupled Hirota (CH) equations [32–34]. Compared with
the simple Manakov system [26], the CH system involves
high-order effects such as third-order dispersion (TOD), self-
steepening, and delayed nonlinear response and thus can be
thought of as a more accurate prototype of the wave evolution
in the real world. As an example, the CH equations can model
the interaction of two waves brought on by severe weather in
deep ocean [2,22] and as well as describe the propagation of
ultrashort optical pulses in a birefringent fiber or simultaneous
propagation of two fields in a nonlinear channel [33,34]. Since
early works dealt with only solitonlike solutions [32–34],
we present here the lowest-order but most general rogue
wave solutions using the Darboux dressing technique [19,20].
Furthermore, the spectral parameters responsible for such
coupled rogue waves and the related wave characteristics will
be thoroughly discussed.

For the present study we write the CH equations in
dimensionless form [32–34]

iut + 1
2uxx + (|u|2 + |v|2)u

+ iε[uxxx + (6|u|2 + 3|v|2)ux + 3uv∗vx] = 0, (1)

ivt + 1
2vxx + (|v|2 + |u|2)v

+ iε[vxxx + (6|v|2 + 3|u|2)vx + 3vu∗ux] = 0, (2)

where u(t,x) and v(t,x) are the complex envelopes of the two
fields, t is the evolution variable, and x is a second independent
variable. The subscripts stand for the partial derivatives and
the real parameter ε scales the integrable perturbations of
the coupled NLS equations [26]. The terms included in the
square brackets explain effects such as TOD, self-steepening,
and delayed nonlinear response. It should be pointed out that
the meaning of the dependent variables u(t,x) and v(t,x) and
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of coordinates t and x depends on the particular applicative
context. For example, in deep water, u(t,x) and v(t,x) are the
complex amplitudes related to the surface elevation with t and
x being the time and longitudinal coordinates, respectively
[1–4], while in optical fibers u(t,x) and v(t,x) represent the
interacting optical fields or the two components of the vector
optical field, with t being the propagation distance and x the
time scaling the pulse duration [35].

II. DARBOUX DRESSING TRANSFORMATION

We note that Eqs. (1) and (2) pass the Painlevé test for
integrability [33,36,37] and thus can be cast into a 3 × 3 linear
eigenvalue problem

Rx = UR, Rt = VR, (3)

where R = (r,s,w)T (T means a matrix transpose) and

U = λU0 + U1, (4)

V = λ3V0 + λ2V1 + λV2 + V3, (5)

with

U0 = 1

12ε

⎛
⎝−2i 0 0

0 i 0
0 0 i

⎞
⎠ , U1 =

⎛
⎝ 0 −u −v

u∗ 0 0
v∗ 0 0

⎞
⎠ ,

(6)

U2 =
⎛
⎝−(|u|2 + |v|2) ux vx

u∗
x |u|2 vu∗

v∗
x uv∗ |v|2

⎞
⎠ , (7)

U3 =
⎛
⎝ e1 + e2 e3 e4

−e∗
3 −e1 e5

−e∗
4 −e∗

5 −e2

⎞
⎠ , (8)

V0 = 1

16ε
U0, V1 = 1

8ε
U0 + 1

16ε
U1, (9)

V2 = 1

8ε
U1 − i

4
U2, V3 = εU3 − i

2
U2. (10)

Here λ is the complex spectral parameter. The matrix elements
in U3 are given by e1 = uu∗

x − u∗ux , e2 = vv∗
x − v∗vx , e3 =

uxx + 2u(|u|2 + |v|2), e4 = vxx + 2v(|u|2 + |v|2), and e5 =
u∗vx − vu∗

x . It is easy to prove that by virtue of the matrices (4)
and (5), the CH equations (1) and (2) can be exactly reproduced
from the compatibility condition Ut − Vx + UV − VU = 0.

The Darboux dressing process [19,20] can be simply
formulated as follows. First, suppose u and v are a pair of
known solutions of Eqs. (1) and (2); one can use them as
initial potentials and find the eigenfunction R through the Lax
pair (3). Then, in terms of R for a given spectral parameter, a
dress operator D is properly constructed with which R can be
dressed into R′ (i.e., R′ = DR) and, moreover, R′ satisfies the
Lax pair (3) of the same form but with a new pair of potentials
u′ and v′. Finally, u′ and v′ are thought to be a new pair of
solutions to Eqs. (1) and (2) if and only if

U(u′,v′,λ) = D[−∂x + U(u,v,λ)]D−1, (11)

V(u′,v′,λ) = D[−∂t + V(u,v,λ)]D−1. (12)

Note that here we use M(u′,v′,λ) (M = U,V) to represent a
transformed matrix identical to M(u,v,λ) but only with u ↔ u′
and v ↔ v′ interchanged correspondingly.

As in Ref. [20], the Darboux dressing operator can be
correctly defined with the form

D = I − λ1 − λ∗
1

λ − λ∗
1

X, (13)

D−1 = I + λ1 − λ∗
1

λ − λ1
X†, (14)

where λ1 is any given value of the spectral parameter λ, I
is a 3 × 3 identity matrix, the dagger indicates the complex-
conjugate transpose, and X is a 3 × 3 rank-deficient matrix
given by

X = 1

�
R(λ1)R(λ1)†, (15)

with � = R(λ1)†R(λ1) = |r(t,x,λ1)|2 + |s(t,x,λ1)|2 +
|w(t,x,λ1)|2. It follows easily from Eqs. (13)–(15) that
X = X† = X2 and DD−1 = I. With this in mind and recalling
that U(λ1)† = −U(λ∗

1) and V(λ1)† = −V(λ∗
1), one can verify

that Eqs. (11) and (12) are completely satisfied. In particular,
Eq. (11) can be exactly reduced to

U1(u′,v′) = U1(u,v) − (λ1 − λ∗
1)(XU0 − U0X), (16)

which, according to Eq. (6), gives rise to the auto-Darboux
transformation between the new and the seeding solutions:

u′ = u + i(λ1 − λ∗
1)

4ε�
r(t,x,λ1)s∗(t,x,λ1), (17)

v′ = v + i(λ1 − λ∗
1)

4ε�
r(t,x,λ1)w∗(t,x,λ1). (18)

In other words, by an appropriate choice of seeding solutions,
Eqs. (17) and (18) can yield a hierarchy of soliton or breather-
type solutions of the CH equations. Obviously, the larger the
order of the solutions, the more complicated their forms are.
In the following we are concerned only with the lowest-order
(fundamental) rogue wave solutions.

III. EXACT COUPLED ROGUE WAVE SOLUTIONS

It is well known that rogue wave solutions correspond
to the limiting case of either Ma solitons or ABs, which
are homoclinically or heteroclinically related to the unstable
plane waves [19,20,22,24]. Therefore, we start directly with a
general pair of plane-wave solutions

u0(t,x) = c1

2ε
exp

[
− i

2ε

(
k1x − ω1

4ε
t

)]
, (19)

v0(t,x) = c2

2ε
exp

[
− i

2ε

(
k2x − ω2

4ε
t

)]
, (20)

where cn,kn,ωn ∈ R (n = 1,2) and the dispersion relations
read

ω1 = 2α − k2
1 − k3

1 + 6c2
1k1 + 3c2

2κ, (21)

ω2 = 2α − k2
2 − k3

2 + 6c2
2k2 + 3c2

1κ. (22)

Here and for later use we define α = c2
1 + c2

2, β = c2
1 − c2

2,
κ = k1 + k2, and δ = k1 − k2.
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We are mainly interested in the coupled situation δ �= 0.
If δ = 0, Eqs. (1) and (2) will be decoupled into two single
Hirota equations. We will discuss this simple decoupled case
in Sec. V.

Now, substituting Eqs. (19) and (20) into Eq. (3), with some
manipulations we obtain

r(t,x,λ) = e−iθ1 + �1e
−iθ2 + �2e

−iθ3 , (23)

s(t,x,λ) = 2ε

c1
f1u

∗
0(t,x)r(t,x,λ), (24)

w(t,x,λ) = 2ε

c2
f2v

∗
0 (t,x)r(t,x,λ), (25)

where �1 and �2 are arbitrary constants and

θj = μj

12ε
x + νj

288ε2
t, (26)

νj = [
λ2 − (κ − 2)λ − 12α + 3

2 (δ2 − κ2)
]
μj

+
(

λ

2
+ κ + 1

)
μ2

j − λ3 − 2(κ + 1)λ2

−3(4α + δ2 − κ2)λ − 72α(κ + 1) − 36δβ, (27)

f1 = r11e
−iθ1 + �1r12e

−iθ2 + �2r13e
−iθ3

e−iθ1 + �1e−iθ2 + �2e−iθ3
, (28)

f2 = r21e
−iθ1 + �1r22e

−iθ2 + �2r23e
−iθ3

e−iθ1 + �1e−iθ2 + �2e−iθ3
, (29)

with

r1j = 6ic1

μj + λ − 6k1
, r2j = 6ic2

μj + λ − 6k2
. (30)

The index j in Eqs. (26), (27), and (30) runs over 1, 2, and 3
and μj are three roots of the cubic equation

(μ − 2κ)3 − 3σ (μ − 2κ) + 2ρ = 0, (31)

where the coefficients σ and ρ are defined by

σ (λ) = (κ − λ)2 + 3δ2 + 12α, (32)

ρ(λ) = (κ − λ)3 + 9(κ − λ)(2α − δ2) − 54δβ. (33)

In an orderly way, we can write the formulas of the three
roots of Eq. (31) as

μ1(λ) = −1

2

(
� + σ

�

)
− i

√
3

2

(
� − σ

�

)
+ 2κ, (34)

μ2(λ) = −1

2

(
� + σ

�

)
+ i

√
3

2

(
� − σ

�

)
+ 2κ, (35)

μ3(λ) = � + σ

�
+ 2κ, (36)

where

� = (−ρ +
√

ρ2 − σ 3)1/3.

It is clear that these three roots, along with σ and ρ, are
functions of the spectral parameter λ. Obviously, if choosing
a specific parameter λ = λ′ so that

�(λ′) =
√

σ (λ′) (37)

or, more explicitly [via Eqs. (32) and (33)],

ρ(λ′) + [
√

σ (λ′)]3 = 0, (38)

we then get two equal roots

μ1(λ′) = μ2(λ′) = −�(λ′) + 2κ (39)

and the third root

μ3(λ′) = 2�(λ′) + 2κ. (40)

It should be noted that as �(λ′) = −√
σ (λ′) or, equivalently,

ρ(λ′) = [
√

σ (λ′)]3, one can also get two equal roots given by
Eq. (39). However, as one can verify, this condition can result
in the same rogue wave solutions as derived from Eq. (37) or
(38). For this reason, we consider only Eqs. (37) and (38) in
our study.

It is now very straightforward to derive the rogue wave
solutions. Specifically, in Eqs. (28) and (29), we set �1 = −1
and �2 = 0. Hence, in the limit of λ = λ′, f1 and f2 can take
the forms

lim
λ=λ′

f1 = r11(λ′) + 16ε2[6k2 + λ′ − 2μ1(λ′)]
c1δχ

≡ F, (41)

lim
λ=λ′

f2 = r21(λ′) − 16ε2[6k1 + λ′ − 2μ1(λ′)]
c2δχ

≡ G, (42)

where χ is a linear function of t and x, given by

χ = [2(λ′ + 2κ + 2)μ1(λ′) + 2λ′(λ′ − κ + 2)

− 3(κ2 − δ2 + 8α)]t + 48εx. (43)

Here μ1(λ′) is given by Eq. (39) and thereby r11(λ′) and r21(λ′)
are determined by Eq. (30) with λ = λ′ and j = 1. Under
these circumstances, f1 and f2 become two rational functions
rather than exponential or periodic ones. This implies that
when inserting Eqs. (23)–(25) into Eqs. (17) and (18), the new
pair of solutions u′ and v′ can be identified as genuine rogue
waves.

Consequently, by noting that � = |r(t,x,λ′)|2(1 + |F |2 +
|G|2), we write the rogue wave solutions as

u(t,x) = u0(t,x)

[
1 + i(λ′ − λ′∗)F ∗

2c1(1 + |F |2 + |G|2)

]
, (44)

v(t,x) = v0(t,x)

[
1 + i(λ′ − λ′∗)G∗

2c2(1 + |F |2 + |G|2)

]
, (45)

which, as one can verify, exactly satisfy the CH equations
(1) and (2). It is worth noting that if u(t,x) and v(t,x) are a
pair of solutions of Eqs. (1) and (2), so are u(t,x + ι) exp(im)
and v(t,x + ι) exp(in), where ι, m, and n are arbitrary real
constants. As such, in order to be more compact, the solutions
(44) and (45) are sometimes translated along the x axis, with
their constant phases being discarded completely. It is also
worth noting that the spectral parameter λ′ should be complex
with a nonvanishing imaginary part, otherwise Eqs. (44) and
(45) are still a pair of trivial plane-wave solutions. Fortunately,
by solving Eq. (38), the allowed spectral parameter λ′ is always
found to be complex with Im(λ′) �= 0, independently of what
parameters in Eqs. (19) and (20) have been exploited, as shown
in the following section.

IV. SPECTRAL PARAMETERS FOR COUPLED
ROGUE WAVES

The condition (38) allows two solutions of λ′ that fulfill
μ1(λ′) = μ2(λ′). In fact, it is equivalent to a real coefficient
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quartic equation specified by ρ2(λ′) − σ 3(λ′) = 0, despite the
latter having introduced two additional roots. We can write
this quartic equation as

ξ 4 + pξ 2 + qξ + a = 0, (46)

where ξ = λ′ − κ − β/δ and p, q, and a are given by

p = 2(2α2 − δ4 + 10δ2α − 3β2)

δ2
, (47)

q = 8β[(α − 2δ2)2 − β2]

δ3
, (48)

a = (4α + δ2)3

δ2
+ (4α2 − 52δ2α − 74δ4)β2 − 3β4

δ4
. (49)

After relaxing the condition (38) to Eq. (46), one should keep
in mind that only two of its four roots are significant. Below
we solve for the roots that are responsible for the coupled
rogue waves according to two categories: (i) equal background
amplitude β = 0 and (ii) unequal background amplitude
β �= 0. The complex nature of the roots, with illustrative
examples, is also shown.

A. Equal background amplitude β = 0

We first consider the case of β = 0, which means that the
coupled rogue waves have the same background height. For
this case, Eq. (46) gives two simple spectral parameters that
can meet the condition (38). Specifically, as α < 2δ2, these
two spectral parameters λ′ take the form

λ′ = κ − 1

|δ|
√

δ4 − 2α2 − 10δ2α ± 2i
√

α(2δ2 − α)3; (50)

otherwise they are determined by

λ′ = κ ± i

|δ|
√

2α2 + 10δ2α − δ4 ± 2
√

α(α − 2δ2)3. (51)

Another two unwanted roots of Eq. (46) have been abandoned.
By inspecting the radical parts in Eqs. (50) and (51), one can
conclude that both spectral parameters are always complex
regardless of whether α < 2δ2 or α � 2δ2. Hence the coupled
rogue waves, defined by the spectral parameters (50) or (51),
exist for all equal background scenarios.

A special note of interest here is the situation α = 2δ2,
where, according to Eq. (51), the spectral parameters take the
form

λ′ = κ ± i3
√

3δ. (52)

In this situation σ (λ′) = ρ(λ′) = 0 and thus, according to
Eqs. (37)–(40), we now have three equal real roots

μ1(λ′) = μ2(λ′) = μ3(λ′) = 2κ. (53)

As a result, with some manipulations, the rogue wave solutions
(44) and (45) can reduce to

u(t,x) = u0(t,x)(i + 96ε2φ2), (54)

v(t,x) = v0(t,x)(i + 96ε2φ1), (55)

where φj (j = 1,2) are given by

φj = 6δ2(3κ + 2)t + (−1)j δη − 32iε2

36δ4(3κ + 2)2t2 + 3δ2η2 + 1024ε4
, (56)

with η = (3κ2 + 4κ − 33δ2)t + 16εx. Noting that in deriving
Eqs. (54) and (55) we have discarded the constant phase and
translated the solutions along the x axis to make their central
maximums close to the origin. It is obvious that this pair of
rational solutions is localized in both space and time and thus
describes a unique wave event that appears from nowhere.

An inspection of the extremums of the rogue wave ampli-
tude indicates that our rogue wave solutions (54) and (55) have
two interesting features. First, both rogue waves have a peak
amplitude just twice that of the background. Second, either of
the coupled rogue waves has two characteristic holes where the
wave amplitude can fall to zero in the hole center; specifically,
the u wave amplitude goes to zero at the two points in the
plane (t,x):(

τ0, −
√

2ε(1 + ζ0)

δ

)
,

(
− τ0,

√
2ε(1 + ζ0)

δ

)
, (57)

whereas the v wave vanishes completely at(
τ0,

√
2ε(1 − ζ0)

δ

)
,

(
− τ0, −

√
2ε(1 − ζ0)

δ

)
. (58)

Here the parameters τ0 and ζ0 are defined as

τ0 = 8
√

2ε2

3δ2(3κ + 2)
, ζ0 = 3κ2 + 4κ − 33δ2

6δ(3κ + 2)
.

Note that if κ = −2/3, the zero-amplitude points (57) and
(58) will be at infinity. In such a special case, one can show
that Eqs. (54) and (55) are a pair of line rogue waves [25] or,
more accurately, a pair of algebraic solitons on their respective
backgrounds [38].

Figure 1 displays the coupled rogue waves (54) and (55)
with the starting plane-wave parameters being chosen such
that α = 2δ2 and β = 0. It can be clearly seen that both
rogue waves contain two zero-amplitude holes separated by
one wall-like hump in the center and moreover the hump has
a peak amplitude exactly twice that of the background [see

FIG. 1. (Color online) Coupled rogue waves (54) and (55) as-
sociated with λ′ = 3 ± i3

√
3 for the starting plane-wave parameters

ε = 0.5, k1 = 1, k2 = 2, c1 = 1, and c2 = 1. The values of ω1 and ω2

are given by Eqs. (21) and (22). (a) and (c) show the u wave and (b)
and (d) show the v wave.
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FIG. 2. (Color online) Pair of centrally humped and sunken rogue

waves associated with λ′ = 4 −
√

−18 + 6i
√

3 for the starting plane-
wave parameters ε = 0.5, k1 = 1, k2 = 3, c1 = 1, and c2 = 1. (a) and
(c) show the u wave and (b) and (d) show the v wave.

Figs. 1(a) and 1(b)]. The hole centers of each rogue wave are
exactly determined by Eq. (57) or (58) [see Figs. 1(c) and
1(d)]. Obviously, this pair of rogue waves, although somewhat
alike in structure, distinguishes itself in zero-amplitude points
and in a tilted angle.

More interestingly, an increase of the wave-number differ-
ence |δ| invalidating the relation α = 2δ2 can lead to a new
phenomenon: One rogue wave is amplified in peak amplitude
while the other exhibits a deep submergence (dark rogue wave
structure) in the center, as seen in Fig. 2. In this situation, one
should use Eq. (50) or (51) to determine the spectral parameter
λ′ and correspondingly Eqs. (44) and (45) to describe the
dynamics of the coupled rogue waves. We show that compared
to those in Fig. 1, the u wave, which still contains two
zero-amplitude holes, has been amplified in peak amplitude
from 2 to 2.978 [see Figs. 2(a) and 2(c)], while the v wave
features one hole in the center [see Figs. 2(b) and 2(d)]. If
δ > 0, the reverse applies, namely, the u wave is centrally
sunken, but the v wave is humped there. Calculations show
that such a dark rogue wave structure indeed results from the
complete merger of two nearby holes as |δ| increases and,
moreover, the larger the value of |δ|, the shallower the depth
of the central hole will become.

B. Unequal background amplitude β �= 0

We now discuss the general case β �= 0. It is noted that
as β2 = (α − 2δ2)2, corresponding to c2

1 = δ2 or c2
2 = δ2, the

coefficient q in Eq. (46) vanishes as well. Thus Eq. (46) has
two concise roots as before. Specifically, we obtain

λ′ = β

δ
+ κ ± 1

|δ|
√

β2 − 18δ2β − 27δ4 − 8i
√

δ2β3 (59)

for β = α − 2δ2 > −δ2 and

λ′ = β

δ
+ κ ± 1

|δ|
√

β2 + 18δ2β − 27δ4 − 8
√

δ2β3 (60)

α/δ2

β2 /δ
4

 a−p
2 /4=0

p = 0

10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

A

B

C

a−p2/4>0

 p>0 and a−p2/4>0

p>0

FIG. 3. (Color online) Allowed regimes of the condition p > 0 or
a − p2/4 > 0 in the plane (α/δ2,β2/δ4) for α � (5 + 2

√
6)δ2 (only

up to 40δ2 is shown here). The blue and red lines, which represent p =
0 and a − p2/4 = 0, respectively, separate the plane into three blocks
A, B, and C with each identified by the corresponding condition
inside.

for β = −α + 2δ2 < δ2. Likewise, it is easy to show that in
respective allowed regimes of β, the values of λ′ given above
are always complex, as is the case in Eq. (50) or (51). Also,
one can easily find that, as β = 0 and α = 2δ2, both Eqs. (59)
and (60) can reduce to Eq. (52).

For the other cases, Eq. (46) still can be solved algebraically,
although the process is a little cumbersome [39]. We do not
present here all four lengthy roots, but just analyze the nature of
these roots according to the criterion proposed in Ref. [40]. The
criterion says, by example of Eq. (46), that a real-coefficient
quartic equation will have four complex roots if and only
if the discriminant � > 0 and at least one of the conditions
p � 0 and a − p2/4 > 0 holds. Clearly, the discriminant � of
Eq. (46) is found to be

� = 46(α2 − β2)[(4α + δ2)(α − 2δ2)2 + 27δ2β2]3

δ10
> 0,

(61)

by reason that β2 < α2. Besides, it is easily found that the
condition a − p2/4 > 0 holds definitely for 0 < α � (2 −√

3)δ2 and p > 0 holds for (2 − √
3)δ2 < α � (5 + 2

√
6)δ2.

As α > (5 + 2
√

6)δ2 	 9.899δ2, we also find that for every
α, at least one of the conditions p > 0 and a − p2/4 > 0
prevails (see Fig. 3). Hence, according to the criterion above,
all four roots of Eq. (46) are complex, of course including the
ones responsible for the coupled rogue waves. Recalling the
discussion for the equal background case β = 0, we naturally
come to the conclusion that our rogue wave solutions (44) and
(45) always exist no matter what parameters have been chosen
for the plane-wave seeds (19) and (20). This is quite different
from the situation in the integrable Sasa-Satsuma equation
where the rogue wave solutions exist only in a limited regime
of the starting plane-wave parameters [24].

Despite the complexity of the spectral parameters attributed
to unequal backgrounds, one may ask whether such coupled
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FIG. 4. (Color online) Formation of coupled rogue waves with
unequal background amplitude for the starting plane-wave parameters
ε = 0.5, k1 = 1, k2 = 3, c1 = 1, and c2 = 2. The spectral parameter

is given by λ′ = 11/2 − (i/2)
√

207 − 48
√

3 according to Eq. (59).
(a) and (c) show the u wave and (b) and (d) show the v wave.

rogue waves have more complicated structures than those
with equal background amplitude. To answer this question, we
simply demonstrate the coupled rogue waves in the following
two situations: (i) c1 = 1 and c2 = 2 and, conversely, (ii)
c1 = 2 and c2 = 1, with ε, k1, and k2 the same as in Fig. 2.
For the above-specified parameters, one can show that the
former situation meets the condition β = α − 2δ2 and hence
the spectral parameter is determined by Eq. (59), while the
latter goes for β = −α + 2δ2 and thus Eq. (60) applies. The
rogue wave solutions are demonstrated in Figs. 4 and 5,
respectively, indicating that the above unusual rogue wave
structures still exist for such unequal background scenarios.
By inspecting the minor details, we note that in Fig. 4 the u and
v waves are still centrally humped and sunken, respectively,
but both are extended in the x direction as compared to

FIG. 5. (Color online) Same as in Fig. 4 except for c1 = 2 and
c2 = 1. The corresponding spectral parameter is then given by λ′ =
5/2 + (i/2)

√
207 + 48

√
3 according to Eq. (60).

Fig. 2, while in Fig. 5 the u wave is simply amplified in peak
amplitude due to the elevation of the background, but the v

wave is in a complicated process where its two nearby holes
tend to merge.

V. DECOUPLED ROGUE WAVE SOLUTIONS

Finally, we simply discuss the rogue wave solutions as
δ = 0. In this case we have

k1 = k2 = κ

2
, (62)

ω1 = ω2 = α(3κ + 2) − 1
8κ2(κ + 2), (63)

indicating that the plane-wave seeds (19) and (20) are indeed
decoupled in addition to having different amplitude. Similarly,
by using the Darboux transformations (17) and (18), we find
the rogue wave solutions associated with the spectral parameter
λ′ = κ ± 4i

√
α as

u(t,x) = u0(t,x)(16ε2g − 1), (64)

v(t,x) = v0(t,x)(16ε2g − 1), (65)

where

g = iα(3κ + 2)t + 4ε2

α2(3κ + 2)2t2 + αγ 2 + 16ε4
, (66)

with γ = (κ + 3κ2/4 − 6α)t + 4εx. This pair of solutions
has also been translated along the x axis so that the central
maximums are close to the origin. Obviously, Eqs. (64) and
(65) are characterized by the same rational function g and thus
are decoupled as well. In particular, as c1 = 2ε, c2 = 0, and
k1 = k2 = 0, one can obtain v = 0 and the rogue wave solution
for the single Hirota equation

u =
[

4(1 + 2it)

4(x − 6εt)2 + 4t2 + 1
− 1

]
eit , (67)

FIG. 6. (Color online) Decoupled rogue waves (64) and (65) as-
sociated with λ′ = 2 ± 2i

√
5 for the starting plane-wave parameters

ε = 0.5, k1 = k2 = 1, c1 = 1, and c2 = 0.5, with ω1 and ω2 being
given by Eq. (63). (a) and (c) show the u wave and (b) and (d) show
the v wave.
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which is exactly the same as reported in Ref. [22]. Again,
if κ = −2/3, Eqs. (64) and (65) describe a pair of algebraic
solitons on their respective backgrounds [38].

An analysis of the amplitude extremums shows that the
decoupled rogue waves (64) and (65) have a peak amplitude
three times that of the background at the center (0,0) and
two zero-amplitude holes located symmetrically at the points
(0,

√
3/αε) and (0, − √

3/αε). Figure 6 demonstrates a pair
of decoupled rogue waves formed on different backgrounds
[Figs. 6(a) and 6(b)], with their two zero-amplitude points
exactly located at (0, ± √

3/5) [Figs. 6(c) and 6(d)]. In
particular, since the distance between two zero-amplitude
points 2

√
3/αε is not able to be zero by a selection of the

seeding parameters, the dark rogue wave structure due to the
full merger of two nearby holes, which usually occurs for
coupled rogue waves, can never be achieved by decoupled
ones.

VI. CONCLUSION

We have presented explicitly exact lowest-order but most
general rogue wave solutions of the CH equations by using a
Darboux dressing technique. The complex nature of all spectral
parameters has been revealed, indicating that our coupled
rogue waves, equal or unequal in background height, always

exist no matter what parameters have been chosen for the
starting plane waves. Several interesting wave characteristics
such as the magnitude of the peak amplitude as compared to the
significant wave height and the position of two zero-amplitude
holes were discussed. We demonstrated that, compared with
the decoupled rogue waves that have the same rational form,
the coupled rogue waves can appear in a rather striking way,
i.e., one wave is humped in the center, while the other exhibits
a deep hole there. Calculations showed that such a dark rogue
wave structure results from the full merger of two nearby
holes as the wave-number difference increases. It is expected
that these unusual rogue wave structures due to the two-wave
coupling may help explain the extreme wave events in deep
ocean [1,2] or in other nonlinear dispersive media where the
wave propagation is governed by the CH equations [32–34].
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