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Coherent traveling waves in nonlocally coupled chaotic systems
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We discuss the origin of coherent traveling wave patterns in a network of coupled chaotic Lorenz systems
with nonlocal interaction. By systematically analyzing the dependence of the spatiotemporal network dynamics
on the range and strength of the coupling, we uncover a bifurcation scenario for the transition from stationary
patterns to regular traveling waves of different wave numbers. The transition is ruled by a symmetric homoclinic
bifurcation and is accompanied by the appearance of periodic and chaotic breathing, as well as long chaotic
transients.
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I. INTRODUCTION

Complex networks occur in a plethora of applications in
physics, biology, and technology [1–3], e.g., coupled lasers,
genetic or neural networks, power grids, and communication
networks. The study of dynamics on networks has become
a challenging paradigm as contrasted with spatiotemporal
patterns on continuously extended media. Significant novel
features are found when emergent spatiotemporal patterns
which are well known, e.g., in spatially continuous reaction-
diffusion systems described by partial differential equations,
are studied on networks. Recent prominent examples are
Turing patterns [4], traveling fronts [5–8], and traveling
waves [9,10]. Besides completely synchronized periodic or
chaotic oscillations, the phenomenon of chimera states, where
a network of oscillators splits into coexisting spatial domains
of coherent, phase-locked and incoherent, desynchronized
behavior, has attracted much interest [11–24], but experimental
evidence has been presented only very recently [25,26].

These chimera states have been shown to arise in bifurcation
scenarios of networks of chaotic systems with nonlocal
coupling of a variable range, during the transition from
spatial coherence to incoherence [25,27,28]. Here we report a
different scenario which arises in nonlocally coupled networks
of chaotic elements and which leads to coherent traveling
waves, whose profiles do not change over time.

II. MODEL

We consider a ring of N nonlocally coupled chaotic Lorenz
oscillators

ẋi = ζ (yi − xi) + σx

2P

i+P∑
j=i−P

(xj − xi),

ẏi = xi(ρ − zi) − yi + σy

2P

i+P∑
j=i−P

(yj − yi), (1)

żi = xiyi − βzi + σz

2P

i+P∑
j=i−P

(zj − zi),

where xi,yi,zi (i = 1, . . . ,N) are real dynamic variables and
the index i is periodic mod N . The positive parameters ζ,ρ,β

are fixed in the chaotic regime of the uncoupled Lorenz
system [29]. P specifies the number of neighbors in each
direction coupled with the ith element, and σx , σy , and σz are
the coupling strengths of the respective coordinates. First, the
coupling is assumed only through the first two coordinates,
xi and yi (σx = σy ≡ σ , σz = 0). However, as we demonstrate
below, traveling waves exist also for more general coupling
configurations.

Results of direct numerical simulation in the parameter
plane of the coupling radius r = P/N and the coupling
strength σ are presented in Fig. 1(a). It reveals the existence
of two characteristic regions tangent to each other: traveling
waves of different wave numbers (different shades of yellow)
and stationary patterns (different shades of blue hatching).
Examples of these states for the parameters marked by A∗ and
B∗ are illustrated in Figs. 1(b)–1(e) as snapshots (left column)
and space-time plots (right column). The profiles of traveling
[Fig. 1(b)] and stationary [Fig. 1(d)] patterns look similar:
they are coherent and invariant under the transformation
xi → −xi+N/2,∀ i. The stationary pattern [Fig. 1(d)] has, in
addition, an inversion symmetry xi = x2is−i ,∀ i, for some is ,
which the traveling wave [Fig. 1(b)] does not have. With
decreasing σ the stationary state loses its spatial coherence in
a coherence-incoherence transition similar to the one found in
nonlocally coupled logistic maps and Rössler systems [27,28]
via chimera states.

Traveling waves are found in Fig. 1(a) for intermediate
values of the coupling radius r and coupling strength σ . Only
the regions for wave numbers k = 1, k = 2, and k = 3 are
shown, although a further decrease of r yields additional,
thinner high-order regions following a period-adding cascade
k = 4,5,6, . . . With decreasing r the overlap of regions with
different k increases, leading to a higher degree of multistabil-
ity. Different wave numbers of the stationary patterns below
the traveling wave region are also marked by different shades
of blue hatching.

For small values of r or σ the network dynamics typically
exhibits high-dimensional spatiotemporal chaos and oscil-
latory patterns. We emphasize that for nearest-neighboring
coupling, i.e., r = 1/N , multistability of stationary patterns is
possible, but coherent traveling waves have not been observed
[30].
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FIG. 1. (Color online) (a) Different dynamical regimes in the
(r,σ ) parameter plane. Coherent traveling waves are labeled with
wave numbers k = 1,2,3. Snapshots of typical wave shapes are
shown for xi in the insets. The completely synchronized chaotic
state exists in the gray hatched region bounded by the blowout
bifurcation curve BB. (b) Snapshot xi and (c) space-time plot of
traveling waves (r = 0.15, σ = 20) and (d) and (e) the same plots
for stationary patterns (r = 0.15, σ = 13.5). Parameters are ζ = 10,
ρ = 28, β = 8/3, N = 300, σx = σy ≡ σ , σz = 0.

At the opposite end of the bifurcation diagram, where
r and σ are large enough, chaotic synchronization occurs:
the oscillators in the network behave identically in space
but chaotically in time following the strange attractor of a
single Lorenz system. In Fig. 1(a), the region of chaotic
synchronization is hatched in light gray, being bounded by
the blowout bifurcation curve (BB), where the maximum
transverse Lyapunov exponent of the synchronized state
becomes positive and chaotic synchronization is no longer
stable. The chaotic synchronization region partially overlaps
with both traveling waves and stationary patterns, causing
multistability. For very large σ , the traveling wave region
shrinks proportionally to 1/r , and the only stable regime left
is chaotic synchronization.

Our numerical simulations show that traveling waves persist
also for more general coupling configurations in Eq. (1). This
is illustrated in Fig. 2 where the parameter regimes for the
existence of traveling waves (k = 1) are depicted for coupling
coefficients perturbed as follows: σx = σ + �σx , σy = σ ,
σz = �σz. We find that the shape of the wave is similar to

FIG. 2. (Color online) Regimes of traveling waves for more
general coupling configurations: σx = σ + �σx , σy = σ , σz = �σz.
(a) σ vs �σx for �σz = 0 (yellow shading) and σ vs �σz for �σx = 0
(hatched area); (b) �σz vs �σx for σ = 20, r = 0.15 [point A∗ in
Fig. 1(a)]. Other parameters as in Fig. 1.

that illustrated in Fig. 1(b), but it becomes more asymmetric
with increasing coupling asymmetry �σx and �σz.

III. BIFURCATION SCENARIOS

Next, we will investigate the bifurcation scenarios from
stationary patterns to traveling waves. The detailed structure
of the various transition regimes in the (r,σ ) parameter space
is shown in Figs. 3(a)–3(c) for N = 300, N = 200, and N =
100, respectively. With decreasing system size N the width
of these transition regimes between stationary patterns (SP)
and traveling waves (TW1) grows substantially. Also, with
decreasing coupling range r the transition regime widens and
undergoes essential changes. Different bifurcation scenarios,
denoted by sc1, sc2, and sc3, are marked by vertical lines in
the (r,σ ) space.

For large N and r the transition along line sc1 [Fig. 3(a)]
with increasing σ starts with a saddle-node bifurcation of a
pair of stable (TW1, yellow region) and unstable traveling
waves at the red dashed line, followed by a subcritical Hopf
destabilization of the stationary pattern (solid blue line).
Including bistability and hysteresis, it represents a typical
bifurcation scenario for traveling fronts and waves in discrete
systems, e.g., locally coupled FitzHugh-Nagumo oscillators
[8], and continuous media [31,32]. It is schematically shown
in Fig. 4(a).

With decreasing N and r , the complexity of the transition
grows, as shown schematically in Fig. 4(b) [e.g., line sc2

in Fig. 3(b)]. It includes a supercritical Hopf bifurcation
(H) of the stationary pattern, giving rise to small-amplitude
breathing (SBr, green region in Fig. 3). An example of the
breathing behavior is illustrated in Fig. 5(g). Upon a further
increase of σ , the breathing amplitude grows, and a homoclinic
bifurcation occurs when two breathing limit cycles with a
phase lag of π (two antiphase oscillations) simultaneously
collide with a saddle-point (stationary pattern) S forming a
double homoclinic orbit attached to this saddle point. This
is a “gluing” bifurcation, where two neighboring breathing
patterns (i.e., two patterns which are shifted on the ring by one
element) coalesce at x = 0. It generates a second traveling
wave, denoted by TW2 (orange region in Fig. 3). The spatial
profile of TW2 is similar to that of TW1. However, closer
to the homoclinic bifurcation point, the profile of TW2 looks
more and more symmetric, and the wave velocity tends to zero,
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FIG. 3. (Color online) Transitions from stationary patterns to
traveling waves in the (r,σ ) parameter plane for (a) N = 300,
(b) N = 200, (c) and N = 100 chaotic Lorenz oscillators. Different
dynamic regimes are given by yellow shading (traveling waves TW1),
orange shading (traveling waves TW2), dark blue squares (breathing
Br), green shading (small-amplitude breathing SBr), and light blue
hatching (stationary patterns SP). Different bifurcation scenarios
are marked by vertical lines sc1, sc2, and sc3. (a) corresponds to
a blowup of the thin rectangle marked in Fig. 1(a) between the
traveling wave and the stationary pattern regions. Parameters are as
in Fig. 1.

manifesting the logarithmic scaling law of its round-trip period
in the ring. This is scenario sc2, which takes place, e.g., for N =
300 or 200 and r = 0.12. It is similar to the origin of discrete
traveling waves in arrays of globally coupled Josephson
junctions (ponies on a merry-go-round) [33] and traveling
fronts in locally coupled bistable Lorenz systems [5,7,8].

With a further decrease of N and r the transition becomes
even more complicated; see scenario sc3 in Fig. 3(c), which is
depicted schematically in Fig. 4(c). In Fig. 5 the bifurcation
scenario is illustrated for N = 100 oscillators, where we fix
the coupling range r = 0.1 and sweep the coupling strength
σ up from A to D along the triangles on the vertical line in the
inset of Fig. 3(c).

FIG. 4. (Color online) Schematic bifurcation scenarios (a) sc1,
(b) sc2, and (c) sc3 for the transition from stationary patterns (SP) to
traveling waves (TW) as a function of the coupling strength σ : saddle-
node bifurcation (sn), Hopf bifurcation (H), homoclinic bifurcation
(hom), and breathing (Br).

For better illustration, following [5], we introduce reduced
cylindrical coordinates:

ξj = 1√
2

∑
i1�i<i2

[
xi + yi + σ

8Pζ

i+P∑
l=i−P

(xl − xi)

]

mod [2
√

2β(ρ − 1)],

ηj = 1√
2

∑
i2�i<i1

[
−xi + yi + σ

2Pζ

i+P∑
l=i−P

(xl − xi)

]
, (2)

where the subscripts j = 1 and j = 2 stand for the trailing and
the leading fronts of the wave profile, respectively, assuming
k = 1, and i1,i2 correspond to the positions of the minimum

FIG. 5. (Color online) Bifurcation scenario from oscillatory states
to traveling waves along line sc3 in Fig. 3(c) (N = 100, r = 0.1). The
panels from bottom to top correspond to points marked A, B, C, and D
in the inset of Fig. 3(c) with values of σ = 13.355, 13.358, 13.364, and
13.367, respectively. For each value of the coupling parameter σ (left)
space-time plots of xi and (right) phase portraits (ξ1,η1: solid black
lines; ξ2,η2: dashed red lines) are shown. (a) includes the transient,
but in (b) (point D) only the asymptotic traveling wave is depicted.
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and the maximum of the x profile (all indices mod N ); see
Fig. 1(b). The right column in Fig. 5 shows phase portraits in
these coordinates.

If the front profiles have an inversion symmetry with respect
to each other as in Fig. 1(d), then coordinates ξj (t) and ηj (t)
for j = 1 and j = 2 coincide, as in Figs. 5(c), 5(d), 5(g), and
5(h). Alternatively, in the asymmetric case [Figs. 5(e) and 5(f)],
the coordinates are different, and the difference can serve as
a measure of mismatch between the left- and the right-hand
front profiles of the wave.

In the (ξj ,ηj ) coordinates, the stationary pattern is a stable
fixed point, while small-amplitude breathing is represented by
a symmetric limit cycle B0; see Figs. 5(g) and 5(h). As σ is
increased, the cycleB0 loses stability in a pitchfork bifurcation,
and two asymmetric limit cycles B+

0 and B−
0 are born.

The cycles B+
0 and B−

0 grow in size, approaching the saddle
point S. But, in contrast to scenario sc2 [Fig. 4(b)], they do
not disappear in a gluing homoclinic bifurcation of S. Instead,
they both coalesce in an inverse saddle-node bifurcation. The
homoclinic loop is not created in this case. As a result, traveling
wave TW2 is born later on in a saddle-node bifurcation. This
parameter gap between the periodic small-amplitude breathing
and traveling wave TW2 is an essential property of scenario
sc3 [shown as yellow shading in Fig. 4(c)]. In the gap, the
previously simple behavior (given by a pair of stable limit
cycles, B+

0 and B−
0 ) will instead display spatiotemporal chaos.

The breathing is not periodic any longer, and instead, the
left- and the right-hand wave fronts move chaotically and
asymmetrically [Figs. 5(e) and 5(f)]. (See the Appendix for
a more detailed bifurcation analysis of scenario sc3.)

The second peculiarity of scenario sc3 is the appearance
of large-amplitude breathing, given by periodic orbits Bl ,l =
1, . . . ,l∗. Each of the cycles is characterized by the number
l of turns (loops) which its trajectory [ξj (t),ηj (t)] performs
around the cylinder before it reverses and starts propagating
in the opposite direction. For the respective breathing states
of the network, the loop number l shows how many oscillator
pairs cross the x = 0 level in one period.

The stability intervals of the l-loop breathing states are
bounded by regions of chaotic breathing transients; see
Figs. 5(a) and 5(b). The asymptotic states are traveling waves
or complete synchronization [above the blowout bifurcation
curve (BB) shown in Fig. 1(a)]. The transient time can be
very long; it grows exponentially with N , as well as with
decreasing σ .

IV. CONCLUSION

In summary, we have shown the existence of coherent trav-
eling waves in a ring network of symmetrically coupled chaotic
Lorenz oscillators. These regular waves exist in a wide range
of parameters in spite of strong chaoticity of the individual
oscillators. Moreover, traveling waves are robust with respect
to changes in the coupling scheme, e.g., asymmetries in the
coupling strengths of the different components. Such behavior
is caused by the nonlocal coupling of the network; it has been
found neither for local (nearest-neighboring) nor for global
(mean-field) coupling topologies. We have also identified
a mechanism for the transition from stationary to traveling
patterns, given by scenario sc3. It consists of the appearance

of periodic and chaotic breathing in a narrow parameter gap
which exists prior to the traveling waves. The mechanism of the
transition appears to be a finite-size effect: the parameter gap
of the coupling strength shrinks with increasing network size
N . We expect that the coherent traveling wave structures and
their bifurcation mechanism are a rather general phenomenon
and occur in other dynamical networks with nonlocal coupling.
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APPENDIX: BIFURCATION ANALYSIS OF THE l-LOOP
BREATHING STATES IN SCENARIO SC3

Here we discuss bifurcation scenario sc3 of Fig. 4(c)
[Fig. 6(a)] in more detail. The stability intervals of σ for
breathing states with different loop numbers l are shown in
Fig. 6(b). The closest to the “chaotic gap” (yellow) is the
“one-loop” interval, where the B1 cycle exists [Figs. 5(c)
and 5(d)]. The one-loop cycle B1 is born in a saddle-node
bifurcation at the right-hand end point of the interval. In the
major part of the interval the breathing state is symmetric:
its left- and right-hand fronts oscillate in synchrony. With
decreasing σ , the symmetry is broken in a pitchfork bifurcation
[shown schematically in Fig. 6(b)]. Two asymmetric one-loop
cycles, B+

1 and B−
1 , are born, and soon after, they cease to exist

at the left edge of the interval. The bifurcation structure inside

FIG. 6. (Color online) (a) Schematic bifurcation scenario sc3

for the transition from stationary patterns (below H) to traveling
waves (TW) via small-amplitude breathing (SBr), chaotic behavior
(yellow stripe), and large-amplitude breathing (Br) as a function
of the coupling strength σ : Hopf bifurcation (H) and saddle-node
bifurcations (sn). (b) Blowup of the breathing (Br) scenario in (a)
showing the stability intervals for l-loop breathing cycles Bl , l = 0,
1, 2, and 10. (c) and (d) Examples of two- and ten-loop cycles, B2

and B10, respectively, in the (ξj ,ηj ) coordinates given by Eq. (2).
Parameters are σ = 13.370 (c), 13.606 (d), r = 0.1, N = 100.
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the other l-loop intervals is similar, as shown schematically
in Fig. 6(b). Examples of two-loop and ten-loop cycles are
illustrated in Figs. 6(c) and 6(d), respectively. For N = 100,

r = 0.1 we have only found at most l∗ = 10 l-loop intervals.
With decreasing r the number of l-loop cycles grows, e.g.,
l∗ = 15 for N = 100 and r = 0.09.
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