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Turing space in reaction-diffusion systems with density-dependent cross diffusion
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Reaction-diffusion systems with cross-diffusion terms that depend linearly on density are studied via linear
stability analysis and weakly nonlinear analysis. We obtain and analyze the conditions for the Turing instability
and derive a universal form of these conditions. We discuss the features of the pattern-forming regions in
parameter space for a cross activator-inhibitor system, the Brusselator model, and for a pure activator-inhibitor
system, the two-variable Oregonator model. The supercritical or subcritical character of the Turing bifurcation
for the Brusselator is determined by deriving an amplitude equation for patterns near the instability threshold.
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I. INTRODUCTION

Reaction-diffusion systems with cross-diffusion terms that
depend linearly on the density, described by equations [1]
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for two components u = u(r,t),v = v(r,t) and constant diffu-
sion coefficients Dij ,i,j = 1,2, implement the Keller-Segel
ansatz [2,3] for the chemotactic response of microscopic
organisms to macroscopic chemical gradients. In such a
description the (diagonal or main) diffusion coefficients, Dii ,
are always positive, whereas the chemotactic (cross-diffusion)
coefficients, Dij ,i �= j , may be positive or negative [2].
Thermodynamics imposes the additional condition that the
eigenvalues of the diffusion matrix D = (Dij ) must be real
and positive [4].

Positive cross-diffusion coefficients tend to separate the
corresponding species, whereas negative ones drive their local
accumulation, i.e., cross diffusion can generate spatial patterns
[5]. Experiments on chemical systems show that the values of
the cross-diffusion coefficients are often comparable to, or
larger than, the main (diagonal) diffusion coefficients [6–9].
In light of this fact, it is significant that pattern formation
can occur already for small values of the cross-diffusion
constants if the kinetics are nonlinear [5]. The interplay of
diffusion and kinetics described by the theory of the Turing
instability has been recently discussed in this context and the
conditions for the Turing instability were examined in the
presence of cross diffusion with density-dependent coefficients
of a general type [10]. We focus here on the description of the
regions of parameter space where the conditions for pattern
formation via the Turing instability are satisfied. For simplicity,
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we consider a linear concentration dependence of the cross-
diffusion coefficients as in (1.1) and analyze the two basic
classes of two-variable reaction-diffusion systems, namely
cross activator-inhibitor systems and pure activator-inhibitor
systems. A typical example belonging to the first class is the
Brusselator model [11,12], one of the most frequently studied
model systems in pattern formation, with reaction functions

F1(u,v) = A − (B + 1)u + u2v, (1.2a)

F2(u,v) = Bu − u2v, (1.2b)

where A and B are positive constants. The dimensionless
concentration of the activator is given by u and that of the
inhibitor by v. A typical example belonging to the second
class is the two-variable Oregonator model of the Belousov-
Zhabotinsky reaction [13,14] with reaction functions

F1(u,v) = 1

ε

[
u − u2 − f v

u − q

u + q

]
, (1.3a)

F2(u,v) = u − v, (1.3b)

where ε, f , and q are positive constants.
The paper is organized as follows. In Sec. II, we obtain the

conditions for the Turing instability and indicate the regions
of parameter space for which linear stability analysis predicts
pattern formation. In Sec. III, the character of these regions is
specified in more detail using the amplitude equation obtained
by weakly nonlinear analysis. In Sec. IV, we discuss our
results and highlight universal features of the Turing instability
analysis that allow us to carry out a large reduction in the
number of required parameters. We discuss the importance of
including cross-diffusion terms in reaction-diffusion systems,
mention open problems, and summarize our results in Sec. V.
Technical details of the derivation of the amplitude equation
are collected in the Appendix.

II. TURING INSTABILITY

A Turing bifurcation corresponds to a diffusion-driven
instability of a homogeneous steady state that is stable to
homogeneous perturbation, i.e., it is a stable steady state of the
well stirred system corresponding to (1.1) without the diffusion
terms, but is unstable within the full reaction-diffusion system.
The conditions for the steady state to be stable against
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homogeneous perturbations are that the Jacobian J of the two-
variable system has a negative trace and a positive determinant,

tr J < 0, det J > 0. (2.1)

Taking into account that all eigenvalues of the diffusion
matrix must be positive for chemical systems, we obtain a
set of inequalities from the requirement that the steady state
be unstable against inhomogeneous perturbations. In general,
Turing patterns are observed if the following four conditions
are satisfied [10,15]:

det D̂ = D̂11D̂22 − D̂12D̂21 > 0, (2.2a)

(D̂11 − D̂22)2 + 4D̂12D̂21 � 0, (2.2b)

D̂11J22 + D̂22J11 − D̂12J21 − D̂21J12 > 0, (2.2c)

(D̂11J22 + D̂22J11 − D̂12J21 − D̂21J12)2

− 4 det D̂ det J � 0, (2.2d)

where the Jij are the elements of the Jacobian and the D̂ij are
the elements of the effective diffusion matrix,

D̂ =
(

D11 D12u0

D21v0 D22

)
. (2.3)

Here (u0,v0) is the steady state of the spatially homogeneous
system, given by F1(u0,v0) = F2(u0,v0) = 0.

The first two inequalities, (2.2a) and (2.2b), ensure the
positivity of the eigenvalues of the effective diffusion matrix.
[We consider only the case where the diagonal diffusion
coefficients are positive. The thermodynamic requirement that
D11 + D22 > 0 is automatically fulfilled and is not included
explicitly in (2.2).] The last two inequalities are obtained from
a stability analysis of the linearized reaction-diffusion system,

∂X

∂t
= J11X + J12Y + D̂11

∂2X

∂r2
+ D̂12

∂2Y

∂r2
, (2.4a)

∂Y
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= J21X + J22Y + D̂21

∂2X

∂r2
+ D̂22

∂2Y

∂r2
, (2.4b)

for small perturbations X and Y of the steady state (u0,v0),
namely u = u0 + X,v = v0 + Y . The inequality (2.2c) is
a necessary, but not a sufficient, condition for a Turing
instability. The Turing threshold corresponds to the case
where the equal sign applies in the last inequality (2.2d). The
inequalities (2.2) define a domain in parameter space, called
the pattern formation space or Turing space [16].

A. Brusselator

The Brusselator model admits a steady state u0 = A, v0 =
B/A, and the Jacobian at this steady state reads

J =
(

B − 1 A2

−B −A2

)
. (2.5)

The Jacobian has the sign structure

J =
(+ +

− −
)

, (2.6)

if B > 1, which is the signature of a cross activator-inhibitor
system. The determinant det J = A2 is always positive. The
stability of the steady state in the well stirred system is
therefore entirely determined by the condition on the trace;
see (2.1). This restricts the values of the parameter B to

B < 1 + A2 = BH
c , where BH

c is the critical value for the Hopf
bifurcation, which corresponds to the threshold of oscillations
in the well stirred system.

The effective diffusion matrix of the linearized reaction-
diffusion system is given by

D̂ =
(

D11 D12A

D21B/A D22

)
. (2.7)

Substitution of J and D̂ into (2.2) yields the following
conditions for the determination of the Turing region in the
Brusselator model,

D11D22 − BD12D21 > 0, (2.8a)

(D11 − D22)2 + 4BD12D21 � 0, (2.8b)

−A2D11 + (B − 1)D22 + AB(D12 − D21) > 0, (2.8c)

[−A2D11 + (B − 1)D22 + AB(D12 − D21)]2

− 4A2(D11D22 − BD12D21) � 0. (2.8d)

A two-dimensional slice of the Turing space, the D12-D21

plane, is represented in Fig. 1 for fixed values of the parameters
A and B and different values of the ratio of the diagonal
diffusion constants, � = D22/D11. The effect of reducing this
ratio is mostly to shift downwards and to the right that part
of the boundary of the Turing region defined by the limiting
case of inequality (2.8d). Each of the curves in the figure
corresponds to a boundary of one of the domains described
by the inequalities. Inequality (2.8a), for example, describes a
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FIG. 1. Brusselator: pattern formation space for A = 5 and
B = 20 with (a) D11 = 1,D22 = 3 and (b) D11 = 2,D22 = 1. Thin
gray, thick gray, thick black, and thin black curves correspond to
Eqs. (2.8a), (2.8b), (2.8c), and (2.8d), respectively. The Turing region
corresponds to the hatched areas. All quantities are dimensionless.
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region bounded by the product D12D21 taking on the positive
value D11D22/B; thus the region is inside the two hyperbolas
in the first and third quadrants. The second region is bounded
by the product of D12 and D21 not becoming smaller than a
certain negative value; the corresponding region is inside the
hyperbolas lying in the second and fourth quadrants. The third
inequality (2.8c) yields a straight line that divides the plane
into two regions. Finally, the fourth inequality (2.8d) yields an
elliptic region, outside of which the Turing region must lie.

We note that it is possible to enter the Turing region by
crossing either of the three curves corresponding to the limiting
cases of (2.2a), (2.2b), and (2.2d). The third inequality (2.2c)
never determines the boundary of a region; it simply picks out
into which of the two half planes the Turing region will fall.
For the Brusselator, the Turing region lies below the straight
line. The first two curves, corresponding to (2.2a) and (2.2b),
provide the limits for the reaction-diffusion system to be an ac-
ceptable system in meeting the thermodynamic requirements
on the diffusion matrix. The last curve, corresponding to (2.2d),
then delimits the region of Turing instability within the domain
of thermodynamically acceptable systems.

Figure 1 shows two different situations: (a) the case where
both cross-diffusion coefficients can vanish simultaneously in
the Turing region [Fig. 1(a), the origin is inside the hatched
region], and (b) the case where only one cross-diffusion
constant can take on the value zero inside the hatched region
[Fig. 1(b)]. The first case includes the situation where the
Turing instability occurs in systems without cross-diffusion
terms and which requires that the main diffusion coefficient
of the inhibitor is larger the main diffusion coefficient of
the activator, D22 > D11. In the second case, cross diffusion
contributes crucially to the pattern formation and the inhibitor
need not diffuse faster than the activator.

Using the inequality (2.8d), we obtain the critical value of
the parameter B for the onset of the Turing instability in the
Brusselator,

Bc = 1

�2
2

[�1�2 − 2�3 +
√

(�1�2 − 2�3)2 − (�2�4)2],

(2.9)
with notations �1 ≡ A2D11 + D22, �2 ≡ D22 + A(D12 −
D21), �3 ≡ A2D12D21, and �4 ≡ A2D11 − D22. In the par-
ticular cases where D21 = 0 or D12 = 0, it reduces to

Bc = BT
c

1 + AD12/D22
or Bc = BT

c

1 − AD21/D22
, (2.10)

respectively. Here BT
c = (1 + A

√
D11/D22)2 is the critical

value of B for the Turing instability in the Brusselator model
without cross-diffusion terms. Since the parameter B must
be positive, (2.10) implies the following restrictions on D12

and D21: D12 > −D22/A and D21 < D22/A if the other
cross-diffusion coefficient vanishes. In other words, the Turing
instability will be suppressed if D12 becomes too negative or
D21 becomes too positive. This fact was pointed out by Kumar
and Horsthemke [10] for the Brusselator model with a general
form of density-dependent cross-diffusion terms.

Writing the inhomogeneous spatial perturbations as
[X(r,t),Y (r,t)] = [X0 exp(λt + ikr),Y0 exp(λt + ikr)], we
obtain the dispersion relation λ(k) via linear stability analysis.
The Turing instability corresponds to λ(kc) = 0 with kc �= 0,

FIG. 2. Brusselator: length scale 1/kc of the pattern formation
for A = 5 and D11 = 1,D22 = 3, as in Fig. 1(a). All quantities are
dimensionless.

and knowing Bc allows us to determine the critical wave
number,

k2
c = A√

D11D22 − BcD12D21
. (2.11)

It provides a rough indication of the length scale to be expected
in the emerging patterns. Figure 2 displays the dependence of
this length scale 1/kc on the cross-diffusion coefficients D12

and D21 for fixed diagonal diffusion coefficients. The behavior
of the length scale changes from increasing to decreasing, or
vice versa, when one cross-diffusion coefficient is varied and
the other is fixed. The switch occurs when the line D12 = 0
or D21 = 0 is crossed. If D12 or D21 is equal to zero, then
there is no cross-diffusion effect on kc, as can be easily seen
from (2.11) and which has also been shown in [10].

The Brusselator is a qualitative model of a cross activator-
inhibitor chemical system, and all quantities are dimension-
less. As far as real systems are concerned, Turing patterns
have been observed experimentally in three different reaction-
diffusion systems: (i) the chlorite-iodide-malonic acid reaction
and its variant, the chlorine dioxide-iodine-malonic acid
(CDIMA) reaction [17–19], (ii) the Belousov-Zhabotinsky
reaction in a water-in-oil AOT (AOT is aerosol OT, and OT
is the trademark for the surfactant sodium bis(2-ethylhexyl)
sulfosuccinate) microemulsion (BZ-AOT reaction) [5,20], and
(iii) reactions belonging to the class of pH oscillators [21,22].
The diffusion coefficients are on the order of 10−5 cm2 s−1

for freely diffusing species in these reactions. They are one
to two orders of magnitude smaller for those species that
undergo complexation with a gel in the reactor in the case
of reactions (i) and (iii) and for those species that are confined
to the water droplets in the case of reaction (ii). Typical
chemical time scales, set by the rate constants and the feed
concentrations of the reactants, are on the order of one to ten
minutes in the pattern-forming region of parameter space. The
resulting wavelengths of the Turing patterns are about 0.2 mm
for reactions (i) and (ii) and about 2 mm for reactions (iii).

B. Oregonator

The Oregonator model has a steady state,

u0 = v0 = 1
2 [1 − q − f +

√
(1 − q − f )2 + 4q(1 + f )],

(2.12)
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FIG. 3. Oregonator: boundary of the onset of the Hopf instability
at the following values of q: 0.05 (thick), 0.02 (thin), 0.01 (dashed),
and 10−5 (dotted line). All quantities are dimensionless.

and the elements of the Jacobian are

J11 = εH
c /ε, J12 = −f

ε

u0 − q

u0 + q
,

(2.13)
J21 = 1, J22 = −1.

Here

εH
c = 1 − 2u0 − 2qf u0

(u0 + q)2
, (2.14)

which is the critical value of the parameter ε for the onset of a
Hopf instability. The Jacobian has the sign structure

J =
(+ −

+ −
)
, (2.15)

which is the signature of a pure activator-inhibitor system.
The stability of the steady state in the well stirred system,
see (2.1), requires trJ < 0. This restricts the values of ε to
ε > εH

c . Otherwise, the homogeneous steady state has already
undergone a Hopf instability to homogeneous oscillations.
Figure 3 shows the dependence of εH

c on the parameter f

for different typical values of q. The requirement det J > 0
produces the inequality

1 − 2u0 − 2qf u0

(u0 + q)2
< f

u0 − q

u0 + q
≡ ε∗, (2.16)

which is satisfied for typical values of q and f .
Appropriate values q, f , and ε, chosen from Fig. 3, are

used for the conditions to determine the Turing region in the
Oregonator model,

D11D22 − u2
0D12D21 > 0, (2.17a)

(D11 − D22)2 + 4u2
0D12D21 � 0, (2.17b)

−D11 + εH
c

ε
D22 − u0D12 + ε∗

ε
u0D21 > 0, (2.17c)

[
−D11 + εH

c

ε
D22 − u0D12 + ε∗

ε
u0D21

]2

− 4

ε
(D11D22 − u2

0D12D21)
(
ε∗ − εH

c

)
� 0. (2.17d)
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FIG. 4. Oregonator: pattern formation space for q = 0.02, f =
1, and ε = 0.7 with (a) D11 = 1,D22 = 3 and (b) D11 = 2,D22 = 1.
Thin gray, thick gray, thick black, and thin black curves correspond
to Eqs. (2.17a), (2.17b), (2.17c), and (2.17d), respectively. The
Turing region corresponds to the hatched areas. All quantities are
dimensionless.

The Turing space for the Oregonator is shown in Fig. 4
for the same � = D22/D11 values as in Fig. 1. For this
model, the circumstances for pattern formation are most
favorable if D12 < 0 and D21 > 0, as was mentioned by
Chung and Peacock-López [15] for the templator model
with cross-diffusion terms. The regions given by the general
inequalities (2.2) are slightly modified compared to those for
the Brusselator, and Turing patterns are allowed in the regions
above the straight line, here given by (2.17c), instead of below,
as in Fig. 1. For the Oregonator, a pure activator-inhibitor
system, we have a kind of inverted situation compared to the
Brusselator, a cross activator-inhibitor system. Except for this
inversion, the Turing regions in the D12-D21 plane for the two
models are essentially similar, which allows us to restrict the
discussion to the Brusselator model from now on.

III. TURING PATTERNS

In order to determine the long-time dynamical evolution, in
particular to find a possible saturation amplitude of the Turing
pattern and its overall character, nonlinear effects of (1.1) and
(1.2) must be taken into account. Close to the threshold of
the instability, these equations can be transformed into weakly
nonlinear evolution equations for small perturbations X and Y

of the steady state, i.e.,

∂tX = f1(X,Y ) + D11∂
2
r X + D12∂r [(A + X)∂rY ], (3.1a)
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∂tY = f2(X,Y ) + D21∂r [(B/A + Y )∂rX] + D22∂
2
r Y,

(3.1b)

where the new reaction functions,

f1(X,Y ) = (B − 1)X + A2Y + B

A
X2 + 2AXY + X2Y,

(3.2a)

f2(X,Y ) = −BX − A2Y − B

A
X2 − 2AXY − X2Y,

(3.2b)

are different from the original ones given in (1.2). If the set
of equations (3.1) and (3.2) leads to solutions with a small
saturating amplitude, then the weakly nonlinear expansion is
justified a posteriori, sufficiently close to the threshold.

The form of the perturbations X and Y reflects the
type of the emerging pattern. The simplest possibility is a
modulation with a wave number close to the critical value
kc. In a one-dimensional setting and with kc �= 0, this is
also the only possibility for a codimension one bifurcation.
In two spatial dimensions, if we read the spatial derivatives
in (3.1) as gradients, states comprising several nonaligned
wave vectors and describing squares or hexagons can occur. A
one-dimensional perturbation would be described as a stripe
pattern in higher dimensions, but since we consider here a
one-dimensional basic set of equations, we will just speak of
Turing patterns.

In the vicinity of the Turing instability, these patterns can
be described by amplitude equations derived through a weakly
nonlinear analysis using the method of multiple scales. For the
system (1.1) and (1.2), the amplitude equation

∂W

∂t
= ηW + g |W |2 W + D ∂2W

∂r2
, (3.3)

where the function W = W (r,t) is the complex amplitude, has
the following coefficients (for details of their derivation see
the Appendix):

η = 1

1 + αβ

[
1 − β

(
1 + D21k

2
c

/
A

)]
(B − Bc), (3.4)

D = 4k2
c

1 + αβ

(D11 + αAD12)(AD12 + βD22)

A
(
A − D12k2

c

) , (3.5)

g = 1

1 + αβ

[
3α(1 − β) + 2(Bc/A)â2

+ 2(1 − β)A(b̂0 + b̂2 + αâ2) + D12k
2
c (αâ2 − 2b̂2)

+βD21k
2
c (b̂2 − b̂0 − 2αâ2)

]
, (3.6)

where

α = −Bc − 1 − D11k
2
c

A2 − D12Ak2
c

= −Bc + D21(Bc/A)k2
c

A2 + D22k2
c

, (3.7)

β = A2 − D12Ak2
c

A2 + D22k2
c

= Bc − 1 − D11k
2
c

Bc + D21(Bc/A)k2
c

, (3.8)

and

b̂0 = −(2/A3)(Bc + 2αA2), (3.9a)

â2 = c22c01 − c02c12

c11c22 − c12c21
, (3.9b)

b̂2 = c11c02 − c01c21

c11c22 − c12c21
, (3.9c)

with

c11 = −Bc + 1 + 4D11k
2
c , (3.10a)

c12 = −A2 + 4AD12k
2
c , (3.10b)

c21 = Bc + 4(Bc/A)D21k
2
c , (3.10c)

c22 = A2 + 4D22k
2
c , (3.10d)

c01 = Bc/A + 2α
(
A − D12k

2
c

)
, (3.10e)

c02 = −Bc/A − 2α
(
A + D21k

2
c

)
. (3.10f)

The sign of g determines the nature of the Turing instability:
the system undergoes a supercritical bifurcation if g is negative
and a subcritical bifurcation if g is positive. In the first case,
the cubic amplitude equation can be expected to provide a sat-
isfactory description of the system dynamics sufficiently close
to the instability threshold. In the latter case, the nonlinear
analysis has to be extended at least to fifth order, and this may
not be sufficient to accurately capture finite-amplitude effects
then arising. Even if the fifth-order term leads to saturation,
one cannot be sure that the fifth-order equation constitutes
a good approximation, because there is no way of making
the amplitude arbitrarily small. It jumps to a finite value at
the instability threshold, and this value may be too large to
allow truncation at the fifth order with sufficient accuracy.
The only case where arbitrary accuracy can be attained with
fifth-order amplitude equations, and not with cubic ones, is that
of a tricritical point, i.e., if g = 0, because then the amplitude
becomes arbitrarily small near the bifurcation point.

Figure 5 displays the regions with super- and subcritical
bifurcations in the pattern formation space from Fig. 1(b).

FIG. 5. Brusselator: pattern formation space with zones of sub-
critical (gray) and supercritical (white) bifurcation for A = 5,B = 20
and D11 = 2,D22 = 1, as in Fig. 1(b). Turing regions correspond
to the area between the curves marked “T.” All quantities are
dimensionless.
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As mentioned in Sec. II B, the conditions for a Turing
instability (2.2) give rise to an inverted situation for the
Oregonator, a pure activator-inhibitor system, compared to
the Brusselator, a cross activator-inhibitor system. Since the
Turing space of both models is however essentially similar,
except for this inversion, we expect that the results of the
weakly nonlinear analysis apply qualitatively also to the
Oregonator.

IV. DISCUSSION

Examining the diagrams of the pattern formation space
in Fig. 1, one notes that they are symmetric with respect to
the second bisector of the axes, i.e., the line D12 + D21 = 0.
The Turing regions cover mostly only two (narrow) domains
of increasing D12 or decreasing D21, as the distance from the
instability threshold is increasing. Note also that this symmetry
in the D12-D21 plane is present only within the linear analysis.
It does not occur in the nonlinear analysis, see Fig. 5, and there
is indeed no reason for it to remain preserved.

The antisymmetric influence of D12 and D21 can be
understood by examination of (2.2), (2.5), and (2.13), which

shows that the signs of the Jacobian elements ( ++−− ) for the

Brusselator and ( +−+− ) for the Oregonator are responsible for

this behavior. These sign structures of the Jacobian correspond
to cross and pure activator-inhibitor systems, respectively, as
discussed above.

Comparison of the Turing regions in the diagrams for the
different values of the model parameters leads to the idea that
the influence of the variation of the cross-diffusion coefficients
on the size and the shape of the Turing regions is similar
for different types of systems with cross diffusion. Since the
system of inequalities (2.2) depends only on a particular linear
combination of D̂12 and D̂21 as well as the product D̂12D̂21,
we can simplify these conditions via the introduction of two
new variables,

� = 1

D̂11D̂22
D̂12D̂21 (4.1)

and

� = ξ−1(D̂11J22 + D̂22J11 − D̂12J21 − D̂21J12), (4.2)

with ξ = 2
√

D̂11D̂22 det J . We obtain the three inequalities

− χ � � < 1, � > 0, � � 1 − �2, (4.3)

where

χ = 1

4

(
D̂11

D̂22
+ D̂22

D̂11
− 2

)
= 1

4d2
(1 − d2)2, (4.4)

and the notation d ≡
√

D̂11/D̂22 for the ratio of the effective
diagonal diffusion coefficients has been introduced.

The inequalities (4.3) determine the Turing region in terms
of a linear combination, �, and the product, �, of the cross-
diffusion coefficients and contain only one parameter, χ , which
depends solely on the ratio of the diagonal diffusion constants.
When they are equal, χ vanishes so that D̂12 and D̂21 have the
same sign, or are equal to zero. In this case, the Turing region

has a minimal size. The form (4.3) is universal, reducing an
eight-parameter problem to a three-parameter one, into which
the kinetics enter only via the single parameter �. The generic
shape of the Turing regions is thus fixed for a great variety of
reaction-diffusion systems.

There is a limitation to the present consideration, which
does not refer to the nonlinear behavior in any case. In
our approach we consider only the regime of small and
moderate concentrations for the activator and inhibitor. If the
concentrations become too large, a linear density dependence
of the cross-diffusion coefficients violates the thermodynamic
conditions (2.2a) or (2.2b). At sufficiently large concentra-
tions, the cross-diffusion coefficients must deviate from linear
behavior. For example, they could display saturation effects,
D12(u) = D̃12u/(u + δu), where δu � 1, and a similar form
for D21(v). Then for u � δu, we obtain D12(u) = D̃12u/δu =
D12u, i.e., the linear dependence used in (1.1), with D12 =
D̃12/δu. A more detailed discussion of this question is outside
the scope of this paper [23].

V. CONCLUSION

Cross-diffusion effects can play an important role in
chemical reactions in the gas phase and fluid flows, at a surface,
and in solution. An example for the first case is combustion,
where cross diffusion acts on all variables. In hydrogen-air
flames at atmospheric pressure, for instance, cross-diffusion
effects are comparable to the main diffusion effects [24].
As expected, cross diffusion plays an important role in the
dynamics of flame fronts [25,26]. Numerical studies show that
neglecting cross-diffusive effects produces estimates of the
flame front thickness that disagree with experimental data [26].

An example for the role of cross-diffusive effects in surface
reactions is the O2 + H2 reaction on a Rh(110) surface doped
with the promotor K [27,28]. The latter is a mobile species
adsorbed on the Rh surface and enhances the rate of the
catalytic reaction. This system is bistable and a reaction front
propagates on the Rh surface. It leads to the formation of
water and also redistributes the adsorbed potassium. The
reaction front drags the potassium along and leads to its
accumulation. When two reducing fronts, i.e., reaction fronts
that invade regions on the surface that are rich in oxygen,
collide, they annihilate and form islands of coadsorbed oxygen
and potassium of macroscopic size. After the shutoff of the
supply of gaseous reactants, diffusion processes reestablish a
homogeneous distribution of K on the Rh surface [27,28]. A
three-variable model, where cross diffusion is included only in
the evolution of the potassium concentration [27,29], produces
numerical results in good agreement with the experimental
observations.

For chemical reactions in solution, cross diffusion occurs
in strong electrolytes, micelles, and microemulsions [5]. It
has been established conclusively that cross-diffusive effects
play an important role in the BZ-AOT reaction. Experiments
show that cross-diffusion coefficients in this system are either
comparable to or larger than the main diffusion coefficients
[8,9,30]. Cross-diffusion effects are therefore expected to play
a role in the pattern-forming mechanisms of this system [5]. We
are not aware of any theoretical studies of the BZ-AOT reaction
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that have explicitly included cross-diffusion terms in modeling
this reaction. Cross diffusion in the CDIMA reaction system
does not appear to have been studied experimentally, though
such effects are expected to be present due to electrostatic,
excluded volume, and complexation effects [5]. The effects of
cross diffusion on the Turing instability in the CDIMA reaction
have been studied theoretically [10] using the two-variable
Lengyel-Epstein model [31,32] for that reaction. As far as the
pH oscillator reaction-diffusion systems are concerned, neither
theoretical nor experimental studies of cross-diffusive effects
exist to our knowledge.

We have investigated the effects of cross-diffusion terms,
specifically terms that depend linearly on concentration, on
the Turing space of two-variable reaction-diffusion systems.
We have explicitly considered an example of a pure activator-
inhibitor system as well as an example of a cross activator-
inhibitor system. The Turing region is similar for both systems,
modulo an inversion with respect to a straight line bisecting
the D12-D21 plane. Employing a weakly nonlinear analysis,
we have derived an amplitude equation for the Turing patterns
near the onset of instability, which allows us to determine
whether the Turing bifurcation is supercritical or subcritical.
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APPENDIX: WEAKLY NONLINEAR ANALYSIS WITH
MULTISCALE EXPANSION

In the vicinity of the instability, the control parameter B ≈
Bc and the concentrations u and v are expressed as expansions
in the deviations X and Y from the steady state as [33](

u

v

)
=

(
u0

v0

)
+ ε

(
X1

Y1

)
+ ε2

(
X2

Y2

)
+ ε3

(
X3

Y3

)
+ · · · ,

(A1)
where the small expansion parameter ε is related to the distance
μ from the instability via the expansion

μ ∝ B − Bc = εB1 + ε2B2 + · · · . (A2)

Then the differential operators can be written as

∂t = ∂τ0 + ε∂τ1 + ε2∂τ2 + · · · , (A3a)

∂r = ∂ρ0 + ε∂ρ1 + ε2∂ρ2 + · · · . (A3b)

Substituting (A1)–(A3) into (3.1) and (3.2) and collecting
the terms at each order in ε, we obtain a set of equations,1

(∂τ0 − Lc)

(
Xn

Yn

)
=

(
Inx

Iny

)
, n = 1,2,3, . . . , (A4)

where the matrix Lc,

Lc =
(

Bc − 1 + D11 ∂2
ρ0

A2 + D12A∂2
ρ0

−Bc + D21(Bc/A) ∂2
ρ0

−A2 + D22 ∂2
ρ0

)
, (A5)

is calculated at the critical values of the control parameters.

1At the order ε0, one recovers the steady state (u0,v0).

At the order ε1 (n = 1), Eq. (A4) represents a linear equation with I1x = I1y = 0, whereas the equations at orders ε2 and ε3

are nonlinear and have the following right-hand sides:(
I2x

I2y

)
= −∂τ1

(
X1

Y1

)
+

(
Bc

A
X2

1 + 2AX1Y1

) (
1

−1

)
+

(
B1 + 2D11∂ρ0∂ρ1 2D12A∂ρ0∂ρ1

−B1 + 2D21(Bc/A)∂ρ0∂ρ1 2D22∂ρ0∂ρ1

)(
X1

Y1

)

+
(

0 D12X1∂
2
ρ0

+ D12∂ρ0X1∂ρ0

D21(B1/A + Y1)∂2
ρ0

+ D21∂ρ0Y1∂ρ0 0

)(
X1

Y1

)
(A6)

and(
I3x

I3y

)
= −∂τ2

(
X1

Y1

)
+

[
2Bc

A
X1X2 + 2A(X1Y2 + X2Y1) + X2

1Y1

](
1

−1

)

+
(

B2 + D11
(
∂2
ρ1

+ 2∂ρ0∂ρ2

)
D12A

(
∂2
ρ1

+ 2∂ρ0∂ρ2

)
−B2 + D21(Bc/A)

(
∂2
ρ1

+ 2∂ρ0∂ρ2

)
D22

(
∂2
ρ1

+ 2∂ρ0∂ρ2

)
)(

X1

Y1

)
+ 2

(
D11 D12A

D21Bc/A D22

)
∂ρ0∂ρ1

(
X2

Y2

)

+
(

D12
(
X2∂

2
ρ0

+ 2X1∂ρ0∂ρ1 + ∂ρ0X2∂ρ0 + ∂ρ0X1∂ρ1 + ∂ρ1X1∂ρ0

)
Y1 + D12

(
X1∂

2
ρ0

+ ∂ρ0X1∂ρ0

)
Y2

D21
[
(B2/A + Y2)∂2

ρ0
+ 2Y1∂ρ0∂ρ1 + ∂ρ0Y2∂ρ0 + ∂ρ1Y1∂ρ0 + ∂ρ0Y1∂ρ1

]
X1 + D21

(
Y1∂

2
ρ0

+ ∂ρ0Y1∂ρ0

)
X2

)
, (A7)

respectively.
The perturbations (X1,Y1) are proportional to the critical modes of Lc, the right eigenvectors of Lc with zero eigenvalue. In

the case of the Turing instability, the right and left eigenvectors (column and row vectors) are(
Ux

Uy

)
=

(
1

α

)
eikcρ0 (A8)
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and

(U ∗
x ,U ∗

y ) = 1

1 + αβ
(1,β)eikcρ0 , (A9)

respectively. Here α and β are given by (3.7) and (3.8).
The perturbations (X1,Y1) for the simplest one-dimensional

(1D) pattern are built on one pair of opposite wave vectors [33],(
X1

Y1

)
=

(
1

α

)
Weikcρ0 +

(
1

ᾱ

)
W̄e−ikcρ0 , (A10)

where W̄ is the complex conjugate of the amplitude.
Substituting this expression into I2x and I2y , we write

the solvability condition, the Fredholm alternative, U ∗
x I+

2x +
U ∗

y I+
2y = 0 and U ∗

x I−
2x + U ∗

y I−
2y = 0, where I+ and I− are

the coefficients of the terms proportional to exp(ikcρ0) and
exp(−ikcρ0), respectively. For this solvability condition,

−(1 + αβ)∂τ1W + (1 − β)B1W − β(B1/A)D21k
2
cW

+ 2ikc[D11 + αAD12 + β(Bc/A)D21 + αβD22]∂ρ1W = 0,

(A11)

we find

D11 + αAD12 + β(Bc/A)D21 + αβD22 = 0, (A12)

and taking into account that ∂τ1W = ∂τ1W̄ = 0, we obtain
B1 = 0.

The deviations of second order are defined as [33](
X2

Y2

)
=

(
a0

b0

)
+

(
a1

b1

)
eikcρ0 +

(
a2

b2

)
e2ikcρ0 + c.c., (A13)

with c.c. as the notation for complex conjugate terms.
Substituting (X1,Y1) and (X2,Y2) into the second order of

the multiscale expansion (A6) with B1 = 0 and collecting the
terms of the exponentials, we determine the coefficients an and
bn, with n = 0,1,2. They are given by

a0 = 0, b0 = b̂0 |W |2 ,

a2 = â2 |W |2 , b2 = b̂2 |W |2 ,
(A14)

αa1 − b1 = 2ikc

D11 + αAD12

A2 − AD12k2
c

∂ρ1W

= −2ikc

αD22 + (Bc/A)D21

A2 + D22k2
c

∂ρ1W,

with the quantities bearing a hat given in (3.9).
The cubic amplitude equation is obtained from the solv-

ability condition U ∗
x I+

3x + U ∗
y I+

3y = 0 and U ∗
x I−

3x + U ∗
y I−

3y = 0,
i.e.,

−(1 + αβ)∂τ2W + [1 − β(1 + D21k
2
c /A)]B2W + 4k2

c

(D11 + αAD12)(AD12 + βD22)

A
(
A − D12k2

c

) ∂2
ρ1

W + 2(Bc/A)â2 |W |2 W + 2(1 − β)

×A(b̂0 + b̂2 + αâ2) |W |2 W + 3α(1 − β) |W |2 W + D12k
2
c (αâ2 − 2b̂2) |W |2 W + βD21k

2
c (b̂2 − b̂0 − 2αâ2) |W |2 W = 0.

(A15)

We multiply the equation by ε3 and take into account that the amplitude W depends on the slow time and space variables
τ2 and ρ1 only. Therefore, the leading-order terms on the right-hand side of (A3) disappear on application of the differential
operators to W . Further, given that the distance from the instability threshold is of order ε2, because B1 = 0, we can make the
formal replacements

ε2∂τ2 = ∂t , ε∂ρ1 = ∂r , ε2B2 = B − Bc, (A16)

and εW → W . (Because the amplitude scales as the square root of the distance to the threshold, εW should be of order ε.) As a
result of these steps, we obtain the amplitude equation in the final form (3.3) with coefficients (3.4)–(3.10).
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