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Disorder-to-chaos transition in the conductance distribution of corrugated waveguides
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We perform a detailed numerical study of the distribution of conductances P (T ) for quasi-one-dimensional
corrugated waveguides as a function of the corrugation complexity (from rough to smooth). We verify the
universality of P (T ) in both the diffusive (〈T 〉 > 1) and the localized (〈T 〉 � 1) transport regimes. However,
at the crossover regime (〈T 〉 ∼ 1), we observe that P (T ) evolves from the surface-disorder to the bulk-disorder
theoretical predictions for decreasing complexity in the waveguide boundaries. We explain this behavior as a
transition from disorder to deterministic chaos since in the limit of smooth boundaries the corrugated waveguides
are, effectively, linear chains of chaotic cavities.
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I. INTRODUCTION

In studies of wave propagation through disordered wires
two setups are mostly considered: bulk-disordered and surface-
disordered waveguides. In both cases it is possible to dis-
cern between diffusive (metallic) and localized (insulating)
transport regimes by comparing the wire length L with the
mean-free path � and the localization length ξ ; i.e., wave
diffusion takes place when � � L � ξ , while localization is
observed for ξ � L.

From the analytical point of view, both disorder setups
have been successfully approached. On the one hand, transport
through bulk-disordered waveguides is well described by the
Fokker-Planck approach of Dorokhov, Mello, Pereyra, and
Kumar (DMPK) [1–6], and by the field-theoretic approach of
Efetov and Larkin, which leads to a supersymmetric nonlinear
σ model [7–9]. In fact, these two approaches were shown to
be equivalent in Ref. [10]. In addition, in Ref. [11], the distri-
bution of conductances P (T ) in the full diffusive-to-localized
crossover was derived, in the frame of the supersymmetric
approach, for waveguides with broken time-reversal invariance
[12]. On the other hand, transport through surface-disordered
wires has been properly characterized by the Fokker-Planck
approach developed by Froufe-Perez, Yepez, Mello, and Saenz
(FYMS) [13]. Other analytical approaches to transport through
surface-disordered wires are also available in Refs. [14,15].

Furthermore, for both setups, P (T ) evolves from a Gaussian
shape (deep in the diffusive regime) to a log-normal shape
(deep in the localized regime). However, at the crossover
between diffusive and localized regimes, the form of P (T )
is highly nontrivial [6,13,16–23] and importantly depends on
the type of disorder (bulk or surface). Moreover, the DMPK
approach and the FYMS approach provide accurate predictions
for P (T ) at the crossover regime for the corresponding setups
of disorder [6,13,16–20].

In this paper we numerically study P (T ) for a model of
quasi-one-dimensional surface-disordered waveguides with
tunable corrugation complexity: from rough to smooth. Here,
we concentrate on waveguides with time-reversal invariance.
We define the corrugated surface of our disordered wire as a
sum of harmonics with random amplitudes. In the rough limit
(large number of harmonics) the waveguide effectively shows
surface disorder; so, it is equivalent to the steplike corrugated
waveguide model used in Refs. [16–19]. On the other hand,
in the smooth limit (few harmonics) the waveguide can be

considered as a linear chain of attached chaotic cavities. Inter-
estingly, the transport properties of a waveguide constructed
as a linear chain of chaotic cavities [9,24,25] are equivalent to
those of a bulk-disordered wire [10]. Then, by decreasing the
corrugation complexity of our surface corrugated waveguide,
we expect to observe, at the diffusive-to-localized transition
regime, a transition in the form of P (T ) from the surface-
disorder FYMS to the bulk-disorder DMPK predictions.

The organization of this paper is as follows. In the next
section we define the waveguide model we use as well as the
scattering setup. In Sec. III, by extracting � and ξ from curves
of the average resistance and average logarithm of conductance
as a function of L, respectively, we define the diffusive and
localized transport regimes for our corrugated waveguides.
Then we study in detail the distribution of conductances P (T )
as a function of the corrugation complexity in both regimes,
diffusive and localized, as well as at the crossover regime.
Finally, Sec. IV is left for conclusions.

II. MODEL

The model we shall use in our study is a waveguide
formed by attaching L two-dimensional cavities. Each cavity
of length Lx is defined by two hard walls: one flat at y = 0
and a corrugated one given by y = d + εf (x). Here d is the
average width of the cavity and ε is the corrugation amplitude.
Since we are interested in studying the transport properties of
waveguides as a function of the complexity of the corrugated
boundary we choose

f (x) =
NT∑
n=1

An cos

(
2πn

Lx

x

)
, (1)

where An are random numbers drawn from a flat distribution
in the range [−1,1]. This form for f (x) allows us to choose
the desired degree of complexity of the corrugated waveguide
boundary: from rough, NT ∼ 20, to smooth, NT ∼ 1 (see
Fig. 1). It is important to stress that once the parameters Lx , d,
ε, and NT are fixed we randomly generate (through different
values of An) L different cavities that we attach to form a
nonperiodic waveguide [26,27]. To this end the minimal NT

we use is 2.
We note that depending on the values of the parameters

(Lx , d, ε, and NT ), the classical (or ray) dynamics in each of
the cavities can yield mixed or full chaos. However, here we
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FIG. 1. Examples of cavities used to form corrugated waveguides.
Here we show one realization of cavities with NT = 20 and NT = 3.
In our study we go from NT = 18 to NT = 2.

consider only the case of full chaos [28]: εdNT /L2
x > 0.01.

Then, below we use Lx = 2π , d = Lx/2, and ε = Lx/20.
This set of parameters produces full chaos for any NT � 1.
Finally, note that all lengths, here and below (including �, ξ ,
and L), are given in units of Lx .

We open the waveguide of length L defined above by
attaching two semi-infinite collinear flat leads of width d to
its left and right ends. The leads support plane waves with
energy E = (h̄2/2m)[k2

m + (mπ/d)2], where km and mπ/d

are, respectively, the longitudinal and transversal components
of the total wave vector K = √

2mE/h̄. Then, using finite
element methods (see, e.g., [29,30]) we compute the scattering
matrix, S matrix, which has the form

S =
(

t r ′

r t ′

)
,

where t , t ′, r , and r ′ are M × M transmission and reflection
matrices. Here, M is the highest mode given by the largest m

beyond which the longitudinal wave vector km = [2mE/h̄2 −
(mπ/d)2]1/2 becomes complex. Then, once the S matrix is
known we calculate the dimensionless conductance from [31]

T = Tr(t t†). (2)

With this definition, the conductance can take values in the
interval [0,M].

The experimental realization of a scattering setup similar
to ours has been recently reported in Ref. [32]. However,
we notice that in numerical simulations of transport through
surface-disordered wires, steplike corrugated waveguides are
more often used [16–19,33–35], among others [13,36]. We also
note that here we concentrate on the case of small number of
open modes, M = [2,9]; the case of M � 1 has been recently
addressed in Ref. [35].

III. RESULTS

A. Diffusive and localized regimes

In order to identify the diffusive and localized transport
regimes in our corrugated waveguides, in Fig. 2 we plot
the average resistance 〈1/T 〉 and the average logarithm of
conductance 〈ln T 〉 as a function of L for waveguides with
NT = 18, 8, 3, and 2.

For disordered wires, it is well established that (i) for
relatively short wire lengths the resistance increases linearly
with L as [16,36–38]

〈
1

T

〉
= 1

M
+ L

M�
, (3)

0

2

4

<1
/T

>

0

2

4

<1
/T

>

0 100 200 300 400
L

-2

0

<l
n 

T>

0 100 200 300 400
L

-2

0

<l
n 

T>

0

2

4

<1
/T

>

0

2

4

<1
/T

>

0 100 200 300 400
L

-2

0

<l
n 

T>

0 100 200 300 400
L

-2

0

<l
n 

T>

(a) (b)

(c)

(d)

(II)

(II) (III)

(III)

(III)

(II)

(II)(I) (I)

(I) (I)

FIG. 2. (Color online) Average resistance 〈1/T 〉 (upper panels)
and average logarithm of conductance 〈ln T 〉 (lower panels) as a
function of the length L of corrugated waveguides with (a) NT = 18,
(b) 8, (c) 3, and (d) 2 (black full lines). To average, 104 waveguide real-
izations were used. The waveguides support M = 3 open modes. Red
dashed lines are best fittings of 〈1/T 〉 [〈ln T 〉] with Eq. (3) [Eq. (4)]
for small [large] L. The extracted (�,ξ ) are approximately equal to
(a) (44.77,134.38), (b) (55.88,179.28), (c) (94.97,265.78), and (d)
(136.88,346.61). Blue dot-dashed vertical lines indicate the positions
of � and ξ which delimit the transport regimes: quasiballistic (I), diffu-
sive (II), and localized (III). Red vertical lines mark the value of M�.

while (ii) for relatively large wire lengths the conductance
decays exponentially with L in the form [16,36,39,40]

〈ln T 〉 ∝ −L

ξ
. (4)

We extract � and ξ from Fig. 2 by performing fittings of the
data with Eqs. (3) and (4), respectively (see red dashed lines).
In Fig. 2 we also indicate, with blue dot-dashed vertical lines,
the positions of the obtained � and ξ . From this figure, it is clear
that both � and ξ decrease by increasing NT ; equivalently, the
mean-free path and the localization length increase when the
disorder decreases. Therefore, in Fig. 2 we label as (II) and (III)
the diffusive and localized regimes, respectively. Additionally,
we identify with (I) the quasiballistic regime L < �, which we
will not explore here.

It is also interesting to mention that we found that relation
ξ ≈ M� (see, for example, [17,19]) works well only when
the surface corrugation is complex enough, i.e., for NT � 7
(see upper panels of Fig. 2). When NT → 1 we observe that
ξ < M� (see lower panels of Fig. 2). In any case the diffusive
regime is clearly discernible in our calculations for all the
values of M and NT we used here.

Note that to construct Fig. 2 we have used waveguides
supporting M = 3 open modes. [Here and below, when
showing results for different values of M we always fix the
energy such that K = π (M + 1/2)/d.] We obtained similar
plots for other values of M . However, by increasing M the
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FIG. 3. (Color online) Conductance probability distributions
(a) P (T ) and (b) P (ln T ) for corrugated waveguides with NT = 18,
8, 3, and 2 (from left to right) in the (a) diffusive and (b) localized
regimes. 104 values of T were used to construct each histogram.
The waveguides support M = 9 open modes. Dashed lines are
(a) Gaussian and (b) log-normal distribution functions characterized
by the values of (a) 〈T 〉 and (b) 〈ln T 〉 reported in the corresponding
panels.

values of � and ξ decrease and, as a consequence, the regimes
(I) and (II) become narrower. For M = 9, the highest M we
explored, the quasiballistic regime is hardly visible in the scale
of Fig. 2. In the following figures we will use values of M

different from 3 to emphasize that our results do not depend
on the number of open modes, once the transport regimes are
well determined.

Then, in Fig. 3, we verify the predictions for the conduc-
tance probability distribution function in the diffusive and
localized regimes. As clearly shown in this figure, where
M = 9 open modes were considered, P (T ) has a well defined
Gaussian shape in the diffusive regime [Fig. 3(a)], while
P (ln T ) has the log-normal form in the localized regime
[Fig. 3(b)]. We know that the results reported in Fig. 3 are
already expected and thus it may seem unnecessary to show
them. However, we decided to present them in order to stress
that the transport properties, exemplified here by the form of
P (T ), of rough and smooth corrugated waveguides are in fact
similar except at the crossover regime, as will be shown below.

B. Crossover regime

As already anticipated, we have found that the most
interesting result for the distribution of conductances appears
at the crossover regime, where 〈T 〉 ∼ 1. Here, we observe that
the shape of P (T ) does depend on the waveguide corrugation
complexity. To show this, in Fig. 4 we plot P (T ) for corrugated
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FIG. 4. (Color online) Conductance probability distributions P (T ) for corrugated waveguides with NT = 18, 8, 3, and 2 (columns) for
〈T 〉 = 1, 4/5, 1/2, and 1/3 (rows). Each panel contains three histograms corresponding to waveguides with M = 5, 7, and 8. 104 values of T

were used to construct each histogram. Continuous and dashed lines are the surface-disorder FYMS and the bulk-disorder DMPK predictions
for P (T ), taken from [13,18], respectively.
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waveguides with NT = 18, 8, 3, and 2 (columns) for some
values of 〈T 〉 (for comparison purposes in Fig. 4 we chose the
same values of 〈T 〉 used in [13,16–19]). As a reference, we
also include the surface-disorder FYMS and the bulk-disorder
DMPK predictions for P (T ). In each panel we plot three
histograms corresponding to waveguides supporting M = 5,
7, and 8 open modes. Note that for large NT , in our case
NT = 18 [41], the shapes of the numerically obtained P (T ) are
well described by the FYMS prediction for surface-disordered
waveguides, as expected (see panels in the leftmost column of
Fig. 4). However, once the waveguide corrugation complexity
is decreased, important deviations appear. Moreover, when
NT = 2, P (T ) fully coincides with the DMPK prediction
for bulk-disordered waveguides (see panels in the rightmost
column of Fig. 4). This fact is more evident for 〈T 〉 = 1 and 4/5
where the differences between FYMS and DMPK predictions
are easily distinguishable.

So, we observe an effective and smooth evolution in the
form of P (T ), from the surface-disorder FYMS to the bulk-
disorder DMPK predictions, as a function of the (decreasing)
waveguide corrugation complexity NT . We understand this
result in the following simple way. In the limit NT → 1 our
waveguide can be considered as a linear chain of coupled
chaotic cavities, each one defined by the cosine billiard
[42]. Then, the model of quantum dots in series of Iida,
Weidenmuller, and Zuk applies [24]. Moreover, this model
reduces to a supersymmetric nonlinear σ model [7–9] which
turns out to be equivalent to the DMPK approach [10].
That is, while FYMS describes well the limit NT � 1 of
our corrugated waveguide, DMPK should describe the limit
NT → 1, as we in fact observe in Fig. 4. Therefore, our
waveguide model shows a disorder-to-chaos transition in the
shape of the conductance distribution.

Finally, we want to add that the parameters used in
Refs. [16–19], translated to our symbols, are [43]: d/ε =
7 − 13.25 (here we used d/ε = 10) and NT ≈ 7. Then,
since we are observing well developed surface-disorder

FYMS transport properties in our corrugated waveguides for
NT � 8, there is no contradiction between our results and those
presented in Refs. [16–19]. Moreover, we think that it would
be interesting to explore the limit where the step length, in
the steplike corrugated waveguide model of Refs. [16–19],
becomes of the order of the waveguide width, which is
somehow equivalent to the limit NT → 1 in our waveguide
model.

IV. CONCLUSIONS

We have studied the distribution of conductances P (T ) for
a quasi-one-dimensional corrugated waveguide with tunable
corrugation complexity: from rough, NT = 18, to smooth,
NT = 2. We verified that both the mean free path and the
localization length decrease for increasing NT . Also, we
confirmed that P (T ) and P (ln T ) have the Gaussian and
log-normal shapes in the diffusive (〈T 〉 > 1) and localized
(〈T 〉 � 1) transport regimes, respectively.

At the crossover between the diffusive and the local-
ized regime 〈T 〉 ∼ 1, we reported that P (T ) monotonously
evolves from the surface-disorder FYMS (when NT = 18)
to the bulk-disorder DMPK (when NT = 2) predictions for
decreasing NT . We understood this behavior as a consequence
of the underlying deterministic dynamical chaos since the
waveguides having smooth boundaries (i.e., when NT → 1)
are effectively linear chains of attached chaotic cavities.

We believe that our results, as well as our model of
corrugated wires with tunable corrugation complexity, may
stimulate further analytical and numerical studies on the
transport properties at the diffusive-to-localized transition
regime.
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