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Elementary but accurate analytical approximation for a one-dimensional soliton, conservative or not
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Well-known rigorous methods have been elaborated long ago to exactly solve conservative soliton equations.
Mainly, there are the inverse scattering transform, Hirota’s direct method, and Sato’s formalism. These methods are
fully satisfactory: analytical expressions for solitons are obtained in any spatial dimension as well as multisoliton
solutions. Therefore, there is no need for an additional approach, especially if it is an approximate one, restricted
to a one-dimensional situation and to a single soliton solution. Except, our approach is really elementary,
straightforward, and unexpectedly accurate. It provides a physical background to the newfound exp-function
method and, most importantly, it furnishes an analytical description of front solution in a nonconservative
equation for which no other rigorous methods exist.
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I. INTRODUCTION

The basic idea of the inverse scattering transform is to
represent a nonlinear evolution equation as the compatibility
condition between two linear operators, the so-called Lax
pairs. The method was first introduced in the famous Gard-
ner et al. paper [1]. Further advances were made by Lax [2],
Zakharov and Shabat [3,4], and Ablowitz et al. [5,6]. Today,
the method is well elaborated and the algebraic structure of Lax
pairs was elucidated. The underpinnings of the early Hirota’s
direct method [7] was explained. Especially, works by Sato [8]
and others in his wake [9] make it possible to understand
the soliton theory from a unified point of view. Nevertheless,
finding the Lax pair in the first place may still remain a
problem even if methods based on symmetry considerations
are developing [10].

In one dimension, provided that one restricts himself to
solutions with simple time behavior (periodic or propagation
without deformation), solitons can then be understood as
homoclinic or heteroclinic connections of the associated
dynamical system where the space coordinate is viewed as
an effective evolution variable [11–13]. In this small way, this
point of view is more general because it is not restricted to a
conservative equation but is also valid for a nonconservative
partial differential equation. It leads to important qualitative
predictions [11–14] although it does not furnish any analytical
expressions of the localized solutions.

Here, we adopt this latter point of view and try to carry the
argument to its limit. In a first part we detail our analytic
approach for the classical nonlinear Shrödinger equation
(NLS) and investigate its convergence and accuracy. The
cases of the Korteweg–de Vries (KDV) and sine-Gordon (SG)
equations are reported in the Appendix. Then, we apply our
method to the still unsolved problem of the computation of
the front velocity in a modified Ginzburg-Landau (MGL)
equation. In conclusion, we discuss the limits and possible
extensions of the method.

*lionel.gil@inln.cnrs.fr

II. NLS SOLITON AS A HOMOCLINIC CONNECTION

The NLS equation is expressed as

i∂tψ = ∂zzψ + |ψ |2ψ. (1)

Restricting ourselves to solutions of the form

ψ(t,z) = e−iωtφ(ξ ) with ξ = z − ct, (2)

where ω and c are real, we are left with the ordinary differential
equation

�(φ) = −ωφ + ic∂ξφ + ∂ξξφ + |φ|2φ = 0. (3)

φ = 0 is a fixed point whose linear stability is given by the real
part of k:

φ = ekz =⇒ −ω + ick + k2 = 0

=⇒ k± = −ic
2 ±

√
ω − c2

4 .
(4)

In what follows, we consider situations where ω > c2

4 and
look for the soliton solution as a homoclinic connection
biasymptotic to the vanishing hyperbolic fixed point. It is
convenient to define k± = −iq ± b where q and b are real
and b > 0.

Because of the translation invariance of (3), there is no loss
of generality to assume the soliton core to be localized at ξ =
0. Far from the core, on the left side (ξ−→−∞), we look for
a solution of (3) as a power expansion in ebξ :

φL(ξ ) = L1e
−iqξ ebξ + L3(ξ )(ebξ )3 + L5(ξ )(ebξ )5 + . . . ,

ξ −→ −∞. (5)

Of course, L1 is a complex constant. The Li>1(ξ ) are complex
functions to be determined and whose variations are intended
to be slower than exponential. Note that the expansion does not
contain even contribution because of the cubic nonlinearity.

Substitution of (5) in (3) leads to a hierarchy of linear
differential equations. There is no contribution to the first order
(ebξ )1 because of (4). At order (ebξ )3, we get

L3bL3 = −|L1|2L1e
−iqξ , (6)

where Lp is the linear operator defined as

LpU = [∂ξξ + (ic + 2p)∂ξ + (p2 + icp − ω)]U. (7)
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Then,

L3(ξ ) = − |L1|2L1

8
(
ω − c2

4

)e−iqξ = G3e
−iqξ . (8)

At order (ebξ )5 we obtain

L5bL5 = − (
2|L1|2G3 + L2

1G
∗
3

)
e−iqξ , (9)

which leads to

L5 = −2|L1|2G3 + L2
1G

∗
3

24
(
ω − c2

4

) e−iqξ

= |L1|4L1[
8
(
ω − c2

4

)]2 e−iqξ

= G5e
−iqξ . (10)

The computation does not display any difficulty and can
go on to any order. Programs to do mathematics such as
MATHEMATICA or MAPLE are helpful. For the sake of clarity,
we will stop here, but expansions up to much more higher
orders have been performed, especially when dealing with
other equations than NLS.

For the right side (ξ−→+∞) we look for a solution of (3)
as a power expansion in e−bξ :

φR(ξ ) = R1e
−iqξ e−bξ + R3(ξ )(e−bξ )3

+ R5(ξ )(e−bξ )5 + . . . ,

ξ −→ +∞, (11)

where R1 is a new complex constant. Following the same steps
as for the left side, we obtain

R3(ξ ) = − |R1|2R1

8
(
ω − c2

4

)e−iqξ = D3e
−iqξ (12)

and

R5 = |R1|4R1[
8
(
ω − c2

4

)]
2

e−iqξ = D5e
−iqξ . (13)

We are now in possession of the two analytic asymptotic
expressions of the soliton. At the core, they are expected to
connect each other, the two unknowns R1 and L1 being pre-
cisely determined by the corresponding matching conditions.
However, it turns out that all direct attempts to connect (5)
to (11) results in failure. Indeed, let us call N the order of
the asymptotic expansions. Then, we observe that �[φR(ξ )]
and �[φL(ξ )], which constitute a measure of the inaccuracy,
do increase with N (values up to N = 100 have been tested).
This is an indication that the asymptotic expansions have a
finite convergence radius and diverge for ξ = 0, i.e., e±bξ = 1.
Fortunately, Padé approximants are known to give better
approximation than the associated truncated Taylor expansion,
and possibly still work even where these latter do not converge.
Therefore, we first construct the [3,3] Padé approximant of φL

(resp. φR) as a function of the variable of ebξ (resp. e−bξ ). Note
that we use a [3,3] approximant because (5) and (11) are valid

up to order 6 (6 = 3 + 3):

φL = e−iqξ [L1(ebξ ) + G3(ebξ )3 + G5(ebξ )5]

=⇒ φ
p

L = e−iqξ
G3L1e

bξ + (
G2

3 − L1G5
)

(ebξ )3

G3 − G5(ebξ )2
,

φR = e−iqξ [R1(e−bξ ) + D3(e−bξ )3 + D5(e−bξ )5]

=⇒ φ
p

R = e−iqξ
D3R1e

−bξ + (
D2

3 − R1D5
)
(e−bξ )3

D3 − D5(e−bξ )2

(14)

and only after we apply the matching conditions. Because (3)
is second order in space, there are two equations

φ
p

L(0) = φ
p

R(0),
(15)

∂zφ
p

L(0) = ∂zφ
p

R(0).

The previous system consists in two complex algebraic
equations for the two complex variables (L1 and R1). In the
most general way, it can be numerically efficiently solved with
Newton’s method. For the present case, it is easy to remark
that the first equation is obviously satisfied for L1 = A = R1.
The second equation is then expressed as

|A|2 = 8

(
ω − c2

4

)
= 8b2. (16)

Substituting the previous results (16) in the Padé approxi-
mants (14) leads to

φ
p

R(ξ ) =
√

2be−iqξ

cosh(bξ )
= φ

p

L(ξ ), (17)

which, miraculously, turns out to be the exact analytical soliton
solution!

Important remarks are now in order:
(1) We chose to present the computation up to order 5, but

the order 3 expansion leads already to the exact analytical
result.

(2) The defocusing regime of the NLS equation corresponds
to

i∂tψ = ∂zzψ − |ψ |2ψ (18)

and is known to not sustain solitons. As the change of sign
of the nonlinear term prevents neither the computation of
the asymptotic behaviors nor the computation of the Padé
approximants, our approach is still available. However, there is
no contradiction with the predicted absence of solitons because
it can be rigorously proved that in the defocusing regime, the
matching conditions (15) do not possess solutions, but the
vanishing one R1 = L1 = 0.

Applications of the method to the KDV and SG equations
are reported in the Appendix.

III. FRONT IN THE MODIFIED GINZBURG-
LANDAU EQUATION

A. Comparison with the exp-function method

Recently, a new method called exp-function method has
been proposed to seek solitary solutions, periodic solutions,
and compactonlike solutions of nonlinear differential equa-
tions [15]. The exp-function method is very simple. It is based
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on the assumption that traveling wave solutions U (z,t) can be
expressed as

U (η) =
∑c

n=−d ane
nη∑p

m=−q bmemη
, (19)

where c, d, p, and q are unknown positive integers, an

and bm are unknown complex constants, and η = kz + ωt

is a complex variation. The method has been successfully
applied to the KDV and the Dodd-Bullough Mikhailov
equation [15], KDV equation with variable coefficients [16],
discrete sine-Gordon equation [17], and nonlinear Schrödinger
equations [18]. Our approach, which also involves rational
fraction between finite sum of exponentials functions (14),
is clearly related to the exp-function method. However,
a close examination of (19) and (14) points out several
differences:

(1) First, in [15–18], the mathematical formula (19) has the
status of an ansatz, an assumption (sic). On the contrary, our ap-
proach is strongly underpinned by the physical understanding
of soliton as homoclinic or heteroclinic connections [11–13].

(2) More important: In (14), we end up with two rational
fractions, one valid for the soliton left part, the other for
the right part. For the NLS equation, it turns out that the
satisfaction of the matching conditions forces the two rational
fractions to be equal. But, the deep reason for that is the
symmetry of the NLS soliton envelops with respect to the
parity transformation. In the case of a localized solution
which breaks the parity symmetry, the exp-function method

is not available because it uses the same complex variation
η = kz + ωt for the left and the right parts. On the contrary,
we will show in the following that our method still leads to an
analytical accurate approximation.

B. Modified Ginzburg-Landau equation

The GL equation is involved in Landau’s description of the
ferromagnetic phase transition. It is expressed as

∂tU = U − U 3 + 1
2∂zzU, (20)

where U (t,z) is real. It is well known to possess topological
solitons, either kink or antikink [±tanh(z)]. Here, we consider
the following modification:

∂tU = U − U 3 + 1
2∂zzU − θ + θ3, (21)

where θ ∈ [− 1√
3
,+ 1√

3
]. In presence of a nonvanishing value

of H = θ − θ3, the U −→ −U symmetry is broken and the
topological solitons are expected to move with a constant
velocity c. In the context of the ferromagnetic phase transition,
the symmetry breaking term H stands for an additional
external magnetic field. For small values of θ , one can perform
standard perturbative computations and obtain

c = 3
2θ − 69

32θ3 + O(θ5) (22)

in very good agreement with numerical simulations. But, for
large values of θ , the perturbative analysis is no more available.
For example, for θ = 0.5, Eq. (22) leads to c 	 0.48, but the
velocity numerically measured is 0.75 ± 0.01. Also, to our
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FIG. 1. Graphical resolution of Eq. (32) for N = 3. The dashed lines correspond to the points in the (R1,L1) plane where Pc (R1,L1) = 0.
The continuous lines are associated with Qc(R1,L1) = 0. The various plots correspond to different values of c between 0.7498 and 0.7502. An
intersection point only exists for c 	 0.7500.
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FIG. 2. (a) and (b) are the same as Fig. 1 but with N = 9 which allows a better resolution (scales have been changed). (c) is the plot of the
two Padé approximants U

p

L (z) and U
p

R (z) versus z, for c = 0.749 999 and L1 = −R1 = 1.803.

best knowledge, there is no analytical method to solve the
problem in such a regime. It is therefore a decisive test for our
method.

Stationary homogeneous solutions of Eq. (21) are

U− = −θ

2
−

√
1 − 3

4
θ2,

U0 = θ, (23)

U+ = −θ

2
+

√
1 − 3

4
θ2.

Therefore, our problem is to find the single value of c for
which Eq. (21) possesses a front solution U (z − ct) which
asymptotically connects U− [=U (−∞)] to U+ [=U (+∞)].

We will proceed in the same way as before. The front
solution U (ξ ) (ξ=z − ct) satisfies

0 = U − U 3 + c∂ξU + 1
2∂ξξU − θ + θ3. (24)

After linearization around the stationary solutions Us = U±,
we get

U = Us + u =⇒ 0 = −(Us − θ )(2Us + θ )u+ c∂ξu+ 1
2∂ξξu,

(25)

then

u = ekz =⇒ k±(Us) = −c ±
√

c2 + 6U 2
s − 2. (26)

Note that for θ ∈ [ −1√
3
, +1√

3
], k+ is always positive and k− always

negative. We introduce

bL = k+(U−) and bR = k−(U+). (27)

Far from the core, on the left side, a solution of (24) is

UL = U− + L1e
bLξ + L2e

2bLξ + L3e
3bLξ + . . . LNeNbLξ ,

(28)

where N is the order of the approximation and

L2 = − 3U−L2
1

−2b2
L − 1 + 3U 2− − 2cbL

,

L3 = 2L3
1

(
15U 2

− + 2b2
L + 1 + 2cbL

)
(−2b2

L−1 + 3U 2− − 2cbL

)(−9b2
L − 2 + 6U 2− − 6cbL

) ,

. . . . (29)

For the right side, we have

UR = U+ + R1e
bRξ + R2e

2bRξ + R3e
3bRξ + . . . RNeNbRξ

(30)
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with

R2 = − 3U+R2
1

−2b2
R − 1 + 3U 2+ − 2cbR

,

R3 = 2R3
1

(
15U 2

+ + 2b2
R + 1 + 2cbR

)
(−2b2

R − 1 + 3U 2+ − 2cbR

)(−9b2
R − 2 + 6U 2+ − 6cbR

) ,

. . . . (31)

It is worth noting the fact that k+ 
= k− [Eq. (26)] definitively
rules out the exp-function method which only involves a single
asymptotic complex behavior (e±η).

We next compute the Padé approximants (Up

R and U
p

L ) and
then obtain the two matching conditions

U
p

L (0) − U
p

R (0) = Pc(R1,L1) = 0,
(32)

∂ξU
p

L (0) − ∂ξU
p

R (0) = Qc(R1,L1) = 0,

where Pc and Qc are long and tiresome polynomials in R1 and
L1 parametrized by c.

Figures 1 and 2 stand for the graphical resolution of
Eq. (32). The order of the approximation N is, respectively,
equal to 3 for Fig. 1 and 9 for Fig. 2. The noticeable
topological change around c 	 0.750 00 is associated with the
velocity selection mechanism. Hence, we expected the selected
velocity to satisfy 0.749 999 < c < 0.750 001. Therefore, the
algebraic computation leads to a selected velocity in very good
agreement with the numerical observation, even for low value
of N .

IV. DISCUSSION

In the system dynamics point of view, solitons are thought
of as homoclinic or heteroclinic connections, which asymptot-
ically connect a homogeneous stationary solution. Although
analytic asymptotic expansions are easy to compute, there
were no previous attempts in the literature to derive an
analytical description from the matching conditions because
the asymptotic expansions were recognized to be valid only
far from the core.

Here, we have identified the reason why the asymp-
totic expansions fail to describe the soliton near its
core. It deals more with the convergence radius than with
the number of terms of the asymptotic expansions. Therefore,
the technical solution is well known and is called the Padé
approximant.

On one hand, the resulting method is straightforward,
accessible, and is valid for a large class of equations. It
provides a physical background to the newfound exp-function
method, but turns out to be more general. In contrast with
classical soliton methods, it can be used to describe the
topological solutions of nonconservative partial differential
equations. It provides analytical expressions with control-
lable precision, and is accurate enough to investigate some
selection mechanism (as the front velocity in the MGL
equation).

On the other hand, the algebraic computations, although
basic, are so long that computer programs to do mathematics
can fail because of a lack of memory. Also, once obtained,
the matching equations take the form of nonlinear multivariate

polynomials. Certainly, the complexity has decreased because
we start with nonlinear differential equations and end up
with nonlinear algebraic equations, but a final numerical
investigation is always required. Lastly, multisolitons solutions
are not described.

One of the most interesting natural extensions of this work
deals with the addition of fourth order spatial derivatives in
the NLS, SG, and MGL soliton equations. First, because usual
solitons technics are mainly restricted to second order spatial
derivatives (especially the exp-function method). Second, be-
cause in such a case, each asymptotic behavior generically in-
volves two exponential decay rates and therefore the possibility
of spatial oscillations [19]. Third, because surprising complex
selection mechanisms have been qualitatively predicted [14] in
this regime. From a technical point of view, Padé approximants
with two variables are then expected to be involved. Works in
this direction are in progress.
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APPENDIX

1. Korteweg–de-Vries equation

The KDV equation is expressed as

∂tu + 6u∂zu + ∂zzzu = 0, (A1)

where u(t,z) is real. Looking for a solution of the form u(t,z) =
u(z − ct), we are left with

−c∂ξu + 6u∂ξu + ∂ξξξu = 0, ξ = z − ct, (A2)

where c is real and assumed to be positive without loss of
generality. Solutions of the linear problem are expressed as

u(ξ ) = ekξ =⇒ k± = ±√
c. (A3)

6

1

-10 0 +10

z

FIG. 3. (Color online) Sine-Gordon soliton. The continuous line
stands for the exact solution. The dashed lines (one on the left, the
other on the right) correspond to the [2,3] Padé approximants.
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FIG. 4. Convergence of the method for the sine-Gordon equation.
The plot displays the maximal deviation between the exact sine-
Gordon soliton and the Padé approximants versus the order of the
asymptotic expansion.

As previously, b = √
c is defined as the real part of k+. The

asymptotic left and right solutions are

UL(ξ ) = L1e
bξ + L2(ebξ )2 + L3(ebξ )3 + . . . ,

L2 = −L2
1

c
, L3 = 3

4

L3
1

c2
,

(A4)
UR(ξ ) = R1e

−bξ + R2(e−bξ )2 + R3(e−bξ )3 + . . . ,

R2 = −R2
1

c
, R3 = 3

4

R3
1

c2
.

The corresponding [1,2] approximants are expressed
as

U
p

L (ξ ) = L3
1e

+bξ

L2
1 − L2L1e+bξ + (

L2
2 − L1L3

)
(e+bξ )2

= 4L1c
2e+bξ

(2c + L1e+bξ )2
,

U
p

R (ξ ) = R3
1e

−bξ

R2
1 − R2R1e−bξ + (

R2
2 − R1R3

)
(e−bξ )2

= 4R1c
2e−bξ

(2c + R1e−bξ )2
. (A5)

Equation (A2) is a third order ordinary differential equation
and therefore there are three matching conditions for only two
variables. It turns out that with the constraints R1 = A = L1,
the matching conditions for the left and right expansions (Up

R

and U
p

L ) as well as for the third order derivatives (∂ξξξU
p

R

and ∂ξξξU
p

L ) are automatically satisfied. We are then left with
the second order derivatives matching condition which can be

reduced to

A = 2c (A6)

and after substitution in (A5), we obtain

U
p

L (ξ ) = c/2

cosh( b
2ξ )2

= U
p

R (ξ ), (A7)

i.e., again the exact analytical soliton expression!

2. Sine-Gordon equation

The SG equation is expressed as

∂ttu − ∂zzu + sin(u) = 0, (A8)

where u(t,z) is real. Restricting ourselves to solution with the
form u(t,z) = u(z − ct), we are left with

(c2 − 1)∂ξξu + sin(u) = 0, ξ = z − ct, (A9)

u = 0 and u = 2π are fixed points with the same linear
stability

u =
⎧⎨
⎩

0
or
2π

+ εekz =⇒ k2 = 1

1 − c2
. (A10)

In what follows, we assume c2 < 1 and define b = 1√
1−c2 . The

asymptotic solutions are

UL(ξ ) = 0 + L1e
+bξ + L3(e+bξ )3 + L5(e+bξ )5 + . . . ,

L3 = −L3
1

48
, L5 = L5

1

1280
,

(A11)
UR(ξ ) = 2π + R1e

−bξ + R3(e−bξ )3 + R5(e−bξ )5 + . . . ,

R3 = −R3
1

48
, R5 = R5

1

1280
,

and the [2,3] Padé approximants are

U
p

L (ξ ) = 48L1e
bξ

48 + L2
1(ebξ )2

,

U
p

R (ξ ) = 6R2
1(−16 + 3π2)(e−bξ )2 + 48R1π (e−bξ ) + 480π2

240π − 96R1(e−bξ ) + 9R2
1π (e−bξ )2 − 2R3

1(e−bξ )3
.

(A12)

The two matching conditions do not depend on c. Their
numerical resolution with a Newton’s method leads to

L1 = 3.10309 . . . , R1 = −5.49222 . . . . (A13)

Figure 3 shows the comparison between the exact soliton
solution and its Padé [2,3] approximants. The highest
deviation is obtained near the core and corresponds to 	0.6,

i.e., about 10% of the soliton amplitude. Increasing the order
of the Padé approximants leads to a decrease of the deviation
as shown in Fig. 4.
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