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Fickian and non-Fickian diffusion with bimolecular reactions
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Mixing zone dynamics of a reaction product C during diffusion of two species (A and B) are examined,
using a two-dimensional particle tracking model (PT) for the reaction A + B → C, allowing for both Fickian
and non-Fickian transitions. The form of PT we use is equivalent to a continuous time random walk, which
is a widely used model for anomalous transport and diffusion. It is shown that the basic patterns of the C

dynamics—the temporal evolution of the spatial profile and the temporal C production—are similar for both
modes of diffusion. However, the distinctive time scale for the non-Fickian case is very much larger even when
the median transition steps are matched with the Fickian case. For immobile C, the spatial profile pattern is a
broadening (Gaussian) reaction front evolving to a concentration-fluctuation dominated (Lorentzian) shape. The
temporal C production is fit well by a stretched exponential for both diffusion types. In analyzing experiments,
the appearance of a Gaussian C profile does not prove that the diffusion process is Fickian.
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I. INTRODUCTION

Reaction-diffusion problems are a rich source of nonlinear
dynamics, manifest in a wide range of systems intensely
studied for many years in physics, chemistry, biology, and
earth sciences [1–4]. A particular broad interest involves
the bimolecular chemical reaction A + B → C, where A

and B denote two reactive species [5–7]. A plethora of
modeling studies of bimolecular reactions has appeared over
the last three decades [8–12], based mostly on solving
partial differential equations (PDEs) and particle tracking
(PT) methods. A key feature of recent work has been the
inclusion of transport and diffusion in disordered systems
into the reaction dynamics. Important examples are studies
of the potential of geological formations (porous media) as
long-term repositories for nuclear wastes and the sequestration
of CO2.

The combination of species migration (with or without a
bias) in a complex (heterogeneous) medium and the encounter
modes of chemical reaction has been difficult to model,
especially with PDEs [13]. The basic difficulty is the treatment
of the effect of fluctuations at multiple scales, which give
rise to anomalous (non-Fickian) diffusion [14,15] and the
mixing zone evolution of the reacting species. In the PDE
approach, it is the very equations one must solve that
contain an empirical nonlinear form for the reaction term.
For the Fickian case, this term is usually assumed to be a
product of the species concentrations �cA(x,t)cB(x,t), where
� is a reaction constant [16]. For the non-Fickian case, the
reaction term for the (nonlocal-in-time) PDE has not been
established.

Our theoretical approach to this problem is PT with specific
space-time distributions that make the process equivalent to a
continuous time random walk (CTRW). We have demonstrated
that, in the pure transport (nonreacting) case, using this PT is
equivalent to solving the (Fickian) advection-diffusion equa-
tion and the (non-Fickian) PDE version of CTRW, depending
on the distributions determining the particle advance [17]. The
advantage of PT is the natural way one can study the influences
of small-scale fluctuations in the species concentrations on
reaction mixing and pattern formation [13,18–21]. PT can

flexibly model different reaction schemes, e.g., a reaction rule
based strictly on the spatial proximities of A and B (without
the attendant volume averaging).

II. METHOD OF ANALYSIS

We concentrate on the dynamics of the reaction product
C, recording both the temporal C production and the spatial
profile over time. In our two-dimensional (2D) computations
we consider a square domain with symmetric initial conditions
and pulse injection of A and B at two different points
along the horizontal center line of the domain. The domain
is sufficiently large that the boundaries do not affect the
diffusion-reaction patterns. The two species move either by
Fickian or non-Fickian diffusion and undergo the bimolecular
reaction A + B → C, where C either precipitates (and is
therefore immobile) or remains in solution and diffuses. The
reaction is considered instantaneous and irreversible when
the species are within a circle of radius R. This step can be
generalized easily in a number of ways.

The general method of our PT is described in detail in [19].
Briefly, in this CTRW PT, the movement of each reactant (and
product) particle is governed by the equation of motion:

s(N+1) = s(N) + ς (N), t (N+1) = t (N) + τ (N), (1)

where a random spatial increment ς (N) and a random temporal
increment τ (N) are assigned to each particle transition, accord-
ing to the joint transition displacement and time probability
density ψ(s,t). The decoupled form ψ(s,t) = p(s)ψ(t) [19],
where ς (N) and τ (N) are chosen from distinct and independent
probability density functions (PDFs), has been shown to work
well except in the case that p(s) describes a Lévy flight, which
we do not consider here. Here, the spatial PDF p(s) is chosen
as a normal distribution for s with a radially uniform angular
component. The temporal PDF, ψ(t), controls the character
of the diffusion: pure Fickian diffusion is obtained by an
exponential distribution ψ(t) = λte

−λt t , with mean 1/λt . For
non-Fickian diffusion, a truncated power law (TPL) PDF [17]
embodies two key characteristics, a power law behavior and a
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transition to Fickian:

ψ(t) = n

t1
exp(−t/t2)/(1 + t/t1)1+β, (2)

where

n ≡ (t1/t2)−β exp(−t1/t2)/�(−β,t1/t2) (3)

is a normalization factor; β is a measure of the spectrum;
t1 is a scaling time, e.g., for median transitions between
sites; t2 is a “cutoff” time; and �(a,x) is the incomplete
Gamma function [22]. For transition times t1 � t � t2, ψ(t)
behaves as a power law ∝ (t/t1)−1−β , while, for t � t2,
ψ(t) decreases exponentially; thus a finite t2 enables smooth
evolution from non-Fickian to Fickian transport. Note that
anomalous diffusion occurs only for 0 < β < 1, the root mean
square (rms) of the plume σ (t) ∝ tβ/2 [23]; it is normal
for β � 1. This is a general characterization of anomalous
diffusion.

At each sampling time, 	t , all particles in the system
are frozen in midflight [19]. If A and B particles are within
a reaction radius R, C forms at the midpoint between the
particles, and A and B are removed from the system. All
possible reactions between A and B particles for that sampling
time are allowed to occur. Note that no crowding effects occur
as particles diffuse in a 2D continuum. It is evident that R

plays a key role in determining the reaction behavior. As R

increases, averaging of A and B concentrations increases, and
consequently C production increases, concentration fluctua-
tions are suppressed, and the tails of the C profile diminish (in
contrast to recent experimental observations, e.g., [19,21,24]).
In most cases, the reaction radius was set at R = 0.1 μm.
The sampling time, 	t , also affects the degree of mixing and
reaction and thus that of the formation of C particles. A more
continuous accounting of the reactions is achieved for 	t that
are sufficiently small.

We choose a diffusion coefficient D ∼ 10−9 m2/s, which
is representative of an ion such as Na+ (1.33 × 10−9 m2/s) or
Cl− (2.03 × 10−9 m2/s) diffusing in water at 25 ◦C [25]. For
Fickian diffusion, we sample from a normal PDF for the spatial
transitions, with mean ε = 10 μm and standard deviation
σ = 1 μm. For the temporal transitions, we sample from an
exponential distribution with mean transition time 1/λt . In a 2D
system, D = ε2/(4δt), where ε and δt are the mean step length
and time, respectively. For D ∼ 10−9 m2/s and ε = 10 μm,
it follows that δt = 1/40 s. The injection points for A and B

particles are separated by 100 μm. The sampling time (i.e.,
at which the reactions between A and B are determined) is,
in most cases, 	t = 1

5δt = 1/200 s with a total run time T =
55 s. For the non-Fickian diffusion case we choose a value
of β = 0.7 [14], with a large cutoff time t2 = 104 s. The
influence of t1 is defined by its role as a scaling factor in the
TPL, i.e., t1ψ(t) = f (τ ), with τ = t/t1. We set t1 typically
equal to δt = 1/40 s to have the two types of diffusion at
similar time steps. The very large difference in migration time
scales between them is then due to the anomalous spreading
of the non-Fickian profiles; i.e., the PT results confirm that
rms σ ∝ tβ/2. An important final parameter is the number
of particles for each of A and B. Previous analyses [19]
confirmed that 50 000 particles yielded representative results
(e.g., 100 000 particles yielded identical results). In most cases,

we consider particle concentrations normalized by the total
number of (A or B) particles.

III. RESULTS

Figure 1 shows the picture of the interactions of the
spreading plumes and the difference between the two diffusion
cases. In Fig. 1(a), representative plumes of A and B for
Fickian diffusion are interpenetrating and interacting, creating
islands of C particles, which are initially most dense along
the center line. Interestingly, one can observe the survival of
individual A particles in the “sea” of B particles (and vice
versa). This is in fact one of the key elements of our analysis:
PT captures the statistically small fluctuations in concentration
that play a significant role in the overall temporal evolution
of particle and product concentrations and spatial patterns.
Such behavior has been found experimentally (e.g., [24]) and
quantified with PT [19,21].

One can glean key features of the reaction from this plot
augmented with the C production data of Fig. 2. Basically there
is a rapid C production in the initial maximum overlap of A and
B, which we designate the reaction front in the representative
region 200 ± 25 μm. Analysis of the data shows that the C

production in this region peaks at T = 1 s and subsequently
decays due to exhausting A and B in the region. Meanwhile the
C production outside this region grows and peaks at T = 3 s
due to the dispersing of A in the B peak area and vice versa.

We examine this reaction dynamic in further detail. We
spatially integrate the C islands along the y axis and show it
in a comparison with similar plots of the A and B plumes in
Fig. 1(b). The same plot is shown in Fig. 1(c) for non-Fickian
diffusion at the same time of T = 2 s. In Fig. 1(b) one can
observe that the peaks of A and B have shifted and the profile
is not symmetric about the peak position, with a sharper decline
within the reaction front. The tail of the A plume is dispersing
in the B plume (and vice versa) outside the reaction front
and creating spreading C islands [see Fig. 1(a)] with larger
concentration fluctuations. This overlap is due to random
encounter in the PT approach. In Fig. 1(c) the plume peaks
have not shifted (the peaks are very sharp, characteristic of
anomalous or non-Fickian behavior) and the C production is
confined strictly to the reaction front. A relative measure of
the C production and the diminution of A and B can be seen
in Fig. 1(d). We plot the time dependence of the ratios of the
peaks (maxima) of the spatially integrated C and A profiles
for the two diffusion cases (note the different time scaling
of the two curves). We can observe the time evolution of the
picture outlined above: for the Fickian case a rapid growth of
C with decreasing A and B followed by a surprisingly sharp
transition to a decrease in C production with a slower decrease
in A and B. The non-Fickian case has the same pattern but
on a different time scale—a shift in the peak position by a
factor of ∼20. Although the median temporal steps between
the two cases have been chosen to be the same, the anomalous
dynamic manifests the much larger time scale of reaction.
It is caused by the admittance in the non-Fickian case of
less frequent long transitions compared to the median one.
This is characteristic of disorder. The non-Fickian aspect has
measurable consequences for recent observations of diffusion
in cells (with a β = 0.7 [14]).
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FIG. 1. (Color online) (a) Representative spatial A and B plume patterns, interacting to produce C (T = 15 s, with 10 000 particles each of A

and B) for Fickian diffusion. (b), (c) Spatially integrated (over the y axis) concentration profiles of A, B, and C particles, at T = 2 s, R = 0.1 μm,
for (b) Fickian diffusion and (c) non-Fickian diffusion with β = 0.7, t1 = 0.025 s, and t2 = 104 s. (d) Ratios of peaks of spatially integrated C

profile to A profiles, over time, for Fickian diffusion (lower x axis) and non-Fickian diffusion (upper x axis) with β = 0.7, t1 = 0.025 s, and
t2 = 104 s.

The profiles evolution is further evinced in the next two
figures. Figure 2 shows the C particle production over time,
for the two cases. They are both fit very well with a stretched
exponential (SE) function f (t) = exp(−atγ ) from the peak of
each profile with γ =0.2 (Fickian) and γ =0.08 (non-Fickian).
Again we observe a sharp transition, with the production
decaying faster for the Fickian and becoming comparable to
the non-Fickian after T = 10 s. At longer times, the curves
reach “quasiasymptotic” (transient, not steady-state) values
and subsequently converge to zero as there are a fixed number
of reactant particles. The convergence is slow, and the remain-
ing (unreacted) A and B particles are approximately uniformly
distributed in the region between the two points of injection.
At time T = 20 s, the numbers of C particles produced (from a

maximum of 50 000) are already ∼38 000 and ∼15 000 for the
Fickian and non-Fickian diffusion cases, respectively. The SE
has a widespread association with “relaxation” phenomena.
An important derivation of the SE in this context is in [26],
where a model of the first passage time for one “defect” out of
N , undergoing anomalous diffusion, to hit the origin is solved
[see Fig. 1(a): individual A particles in the denser B particle
region and vice versa]. The exponent of the SE in that model
is proportional to S(t), the number of distinct sites visited in
time t with a equal to defect concentration and γ = β (in
three dimensions). In the present reactive case, the “defects”
are B and the target for “relaxation” is A. The S(t) is modified
in the reactive field, as the B “defects” may encounter other
A particles as they diffuse toward the “target” A; we thus
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FIG. 2. Production of C particles over time, for (a) Fickian
diffusion and (b) non-Fickian diffusion with β = 0.7, t1 = 0.025 s,
and t2 = 104 s. Dashed lines show fits of a stretched exponential
function (from the peak of each profile), f (t) = exp(−atγ ), with
a = 4.54, γ = 0.20 and a = 6.17, γ = 0.08, respectively, for the
Fickian and non-Fickian cases. Note that the y-axis scale for the
Fickian case is larger than that for the non-Fickian case.

consider an effective γ < β. Hence we expect γ < 1 even for
the Fickian diffusion.

The decreases in relative concentrations of A particles
(identical behavior holds for the B particles, due to the symme-
try of the system), for Fickian and non-Fickian diffusion, are
shown in Fig. 3. As for the C concentrations (after the peak)
shown in Fig. 2, the decreases in A and B concentrations
over time are considerably slower for the case of non-Fickian
diffusion.

Figure 4 shows the C particle profiles (for immobile C) at
times T = 2 and 15 s, for Fickian diffusion [Figs. 4(a) and 4(b)]
and non-Fickian diffusion, with β = 0.7 [Figs. 4(c) and 4(d)].
The expectation in light of the discussions of Figs. 1 and 2 is for
the C profiles to follow a two-time regime evolution. At short
times (T � 2 s) in Fig. 4(a), the profile should reflect rapid
compact growth in the reaction front region. The good fit to a
Gaussian as shown confirms this behavior. As the C decreases
due to sharpening decrease of A and B, the C production builds
up outside the reaction front region [see Fig. 1(a)] and the
spatial extent of the profile spreads, as is evident in tails heavier
than the Gaussian in Fig. 4(b). As the production spatially
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FIG. 3. (Color online) Decrease in relative concentration of A

(or B) particles over time, for Fickian diffusion and non-Fickian
diffusion with β = 0.7, t1 = 0.025 s, and t2 = 104 s, corresponding
to the temporal C production shown in Fig. 2.

spreads, so do the concentration fluctuations. Indicative of this,
we quantitatively capture it with a Lorentzian curve. Over the
same time range, the non-Fickian C profile remains a Gaussian
functional form [Figs. 4(c) and 4(d)].

Hence, the C profile for Fickian diffusion is an evolving
one, transiting from a compact Gaussian to a heavy tailed
Lorentzian. In order to gain a measure of this transiting we
closely estimate this stable distribution by the weighted sum
of the stable distributions of a Gaussian and a Lorentzian:

a exp[−|x − 200|2/(4dtα)] + b/[1 + c|x − 200|2/(dtα)],
(4)

where a, b, c, d, and α are fitting constants. The relative
weighting a/b is the key parameter of interest. Note that
when applying this PDF to a profile of pure Fickian diffusing
particles, d is the diffusion coefficient D and α = 1. However,
we apply the PDF here to the profiles of generated C particles,
so that these constants may take on different values. In our
analysis, we find good fits to the C profiles, choosing α = 1
for Fickian diffusion and α = 0.7 for non-Fickian diffusion.
The numerical values of a/b (see Fig. 4 caption) demonstrate
the evolving Lorentzian form for the Fickian case (a and b are
approximately equal at T = 5 s) and the dominant Gaussian
form for the non-Fickian case; however, a/b for the latter is
decreasing in time, indicating the same pattern, although on a
much larger time scale.

To reiterate, one can conclude from all the figures that
the reaction patterns of the two different diffusing species
are similar but occurring on very different time scales. This
is a distinguishing feature of very anomalous behavior. The
Gaussian form is a reaction front behavior [16], basically a
broadened delta function. As the reaction proceeds, fluctu-
ations in reactant concentrations increase and contribute to
the growth of the Lorentzian shape. The very long time scale
of the non-Fickian reactions precludes a clear emergence of
fluctuation heavy tails (even though a/b is decreasing) as the
Gaussian component broadens (we do not detect a a/b < 1
out to T = 55 s). Thus, in an experiment, the appearance of a
Gaussian C profile does not prove that the diffusion process is
Fickian. One can detect non-Fickian diffusion by comparing
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FIG. 4. (Color online) Spatially integrated (over the y axis) concentration profiles of (immobile) C particles, for Fickian diffusion at
(a) T = 2 s and (b) T = 15 s and for non-Fickian diffusion with β = 0.7, t1 = 0.025 s, and t2 = 104 s at (c) T = 2 s and (d) T = 15 s. Here, the
profiles are normalized by the total number of C produced at the given time. Continuous curves show best fits of the weighted sum of Gaussian
(weight a) and Lorentzian (weight b) distributions. Also shown (dashed lines, in red) are pure Gaussian fits. Curves are normalized by the total
number of C particles produced at the given time. Ratios of weights a/b (Gaussian/Lorentzian) are (a) 2.1, (b) 0.3, (c) 12.8, and (d) 6.0.

the C profile dynamics to calculated expectations based on
normal diffusion.

Parallel analysis demonstrates that allowing the C particles
to be mobile (diffusing according to the same rules as the A and
B particles) for the Fickian case suppresses the fluctuations,
with Gaussian behavior persisting [similar to Fig. 4(a)]. In
contrast, for the non-Fickian case, the C profiles have equal
weights of Gaussian and Lorentzian components.

Finally, we stress that the times and distances used in these
figures offer representative behaviors; PTs determined with
larger and smaller (200 and 50 μm) distances between A and
B injection points yield similar behaviors to those shown here,
with appropriate scaling.

Significantly, PTs with initial A and B vertical strip
distribution (widths 5 μm and centers separated by 100 μm)
yield the same C particle distribution behavior seen in the
figures here (i.e., A and B particles bypass each other in the
2D domain); the point or strip injection is not particularly
relevant. The dynamics we find are basic phenomena which

account for growth of concentration fluctuations, as the species
numbers decline in the reaction front.

IV. CONCLUDING REMARKS

In conclusion, we have used a particular PT method which
is equivalent to solving PDEs for both Fickian and non-Fickian
diffusion, depending on the choice of ψ(t). The data generated
by this PT are analogous to numerical solutions of these PDEs,
with a suitable (but currently ill-defined) reaction term [21].
We maintain that the choice of the reaction mode in the PT is
physically intuitive and avoids problematic features of volume
averaging methods [21] which suppress fluctuations. In short,
the PT with ψ(t) and reactions is the theoretical model and the
data generated are the solution. Specifically, we present a 2D
study of the mixing zone dynamics of the reaction A + B → C

during Fickian and non-Fickian diffusion of two species, A

and B. We examine the basic pattern of the C dynamics: the
temporal evolution of the spatial profile and the production of
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C. The results demonstrate a similarity between the two types
of diffusion, but the distinctive time scale for the non-Fickian
case is very much larger even when the median transition
steps are matched to the Fickian case. The spatial profile
pattern is a broadening Gaussian reaction front evolving to
a concentration-fluctuation dominated Lorentzian shape. The
temporal production of C is fit well by a stretched exponential
for both diffusion types, with the exponent for the Fickian
being 2.5 times larger than for the non-Fickian. The exponents
are smaller than the corresponding ones for the nonreacting

case, and we assume that this reflects the attenuation of S(t) due
to the reactions. There are measurable quantitative differences
between the two diffusion cases, which can form the basis for
distinguishing between them in the analysis of experimental
results.
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