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Absence of the nonpercolating phase for percolation on the nonplanar Hanoi network
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We investigate bond percolation on the nonplanar Hanoi network (HN-NP), which was studied previously
[Boettcher et al. Phys. Rev. E 80, 041115 (2009)]. We calculate the fractal exponent of a subgraph of the HN-NP,
which gives a lower bound for the fractal exponent of the original graph. This lower bound leads to the conclusion
that the original system does not have a nonpercolating phase, where only finite-size clusters exist for p > 0, or
equivalently, that the system exhibits either the critical phase, where infinitely many infinite clusters exist, or the
percolating phase, where a unique giant component exists. Monte Carlo simulations support our conjecture.
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I. INTRODUCTION

Percolation is the simplest model exhibiting a phase tran-
sition [1]. Many results for percolation on Euclidean lattices
have been reported. It is well known that bond percolation
with open bond probability p on the d(�2)-dimensional
Euclidean lattice shows a second-order transition between the
nonpercolating phase, where only finite-size clusters exist, and
the percolating phase, where a unique giant component almost
surely exists, at a unique critical point pc. However, this may
not be the case for non-Euclidean lattices.

Complex networks have been actively studied in recent
years [2–4]. Among extensive researches carried out on
complex networks, percolation on various networks has
played an important role in clarifying the interplay between
network topology and critical phenomena [5]. Percolation
on uncorrelated networks (represented by the configuration
model [6]) is well described by the local tree approximation;
there is a phase transition between the nonpercolating phase
and the percolating phase just as in Euclidean lattice systems,
but its critical exponents depend crucially on the heterogeneity
of the degree distribution of the network [7]. On the other
hand, several authors [8–11] have reported that percolation on
networks constructed with certain growth rules exhibits quite
a different phase transition from that of uncorrelated networks
and Euclidean lattices, referred to as an infinite-order transition
with inverted Berezinskii-Kosterlitz-Thouless (BKT) singular-
ity [12]: (i) The singularity of the phase transition is infinitely
weak. When p lies above the transition point pc, the order
parameter m(p) ≡ limN→∞ smax(N ; p)/N , where smax(N ; p)
is the mean size of the largest cluster over percolation trials in
the system with N nodes, obeys m(p) ∝ exp[−const./(�p)β

′
],

where �p = p − pc. (ii) Below the transition point, the mean
number ns of clusters with size s per node obeys the power
law ns ∝ s−τ . Furthermore, recent study [13] shows that a
hierarchical small-world network exhibits a discontinuous
transition instead of an infinite-order transition.

In [11,14,15], it has been found that for the growing
network models the region below pc corresponds to the critical
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phase (the intermediate phase), which has been observed in
nonamenable graphs (NAGs) [16,17]. NAGs are defined to be
transitive graphs with a positive Cheeger constant. Percolation
on NAGs (with one end) exhibits the following three phases
depending on the value of p: the nonpercolating phase (0 �
p < pc1), the critical phase (pc1 < p < pc2), where infinitely
many infinite clusters exist, and the percolating phase (pc2 <

p � 1). Here, an infinite cluster is defined to be a cluster
whose size is of order O(Nα) (0 < α � 1). It is called a
giant component when α = 1. In the critical phase, where
0 < α < 1, the system is always in a critical state where ns

satisfies a power law [18].
All previous studies [8–11,14,15,19] of percolation on

growing networks and hierarchical small-world networks
indicate 0 = pc1 < pc2 < 1, except in the following case.
Boettcher et al. investigated bond percolation on the nonplanar
Hanoi network (HN-NP) using the renormalization group
technique [20]. They concluded that there are two critical
probabilities pc1 and pc2 between zero and one: 0 < pc1 <

pc2 < 1.
In this paper, we reconsider this model. We show analyti-

cally that the fractal exponent of a subgraph, which is a lower
bound for that of the HN-NP, takes a nonzero value at all
p( �=0), indicating that pc1 = 0. This means that the system
is either in the critical phase or the percolating phase, not in
the nonpercolating phase, in contrast to the result of [20]. The
Monte Carlo simulations support our analytical prediction.

II. MODEL

The HN-NP consists of a one-dimensional chain and long-
range edges. The HN-NP with L(�2) generation is constructed
as follows [20]. (i) Consider a chain of NL = 2L + 1 nodes.
Here, each node i(=0,1,2, . . . ,NL − 1) connects to node i +
1. We call these edges the backbones. (ii) For each combina-
tion of i(= 0,1,2, . . . ,L − 2) and j (=0,1,2, . . . ,2L−i−2 − 1),
nodes (4j )2i and (4j + 1)2i are connected to (4j + 3)2i and
(4j + 4)2i , respectively. We call these edges the shortcuts. The
schematic of the HN-NP with L = 4 generations is shown in
Fig. 1. At generation L, the number of backbones is 2L and the
number of shortcuts is 2L − 2 (the total number of edges EL is
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FIG. 1. (Color online) HN-NP with L = 4 generations. The
black-thick lines are the backbones, and the red-dashed, green-solid,
and blue-dotted lines are the shortcuts of the skeletons Ta(4), Tb(4),
and Tc(4), respectively.

EL = 2L+1 − 2). The geometrical properties of the HN-NP
are as follows [20]. (i) The degree distribution pk decays
exponentially as p2m+3 ∝ 2−m, (ii) the average degree 〈k〉 is
〈k〉 = 2EL/NL = (2L+2 − 4)/(2L + 1) ≈ 4 (for L � 1), (iii)
the mean shortest path length 〈l〉 increases logarithmically with
NL as 〈l〉 ∝ log NL, and (iv) the clustering coefficient is zero.

Boettcher et al. studied bond percolation on the HN-NP
with open bond probability p [20]. In the HN-NP with
L generations, they considered the renormalization of four
parameters: RL (the probability that three consecutive points
a,b,c of a chain are connected), SL (the probability of bc

being connected, but not a), UL (the probability of ac being
connected, but not b), and N ′

L (the probability that there are
no connections among a, b, and c). From the renormalization
group flow for RL they determined the two critical probabilities
as pBCZ

c1 ≈ 0.319445 and pBCZ
c2 ≈ 0.381966.

III. ANALYTICAL CALCULATION FOR
THE SKELETON OF THE HN-NP

The fractal exponent ψmax(p) is useful to determine
phase behavior [18]. It is defined to be ψmax(p) =
limNL→∞ logNL

smax(NL; p). A nonpercolating phase, a critical
phase, and a percolating phase are characterized by ψmax(p) =
0, 0 < ψmax(p) < 1, and ψmax(p) = 1, respectively. Unfortu-
nately, it seems difficult to evaluate smax(NL; p) directly for
the HN-NP. Instead, we focus on a subgraph of the HN-NP
and evaluate its fractal exponent.

We extract a subgraph from the HN-NP with L generations
by removing the backbones. Because the resulting subgraph
has no cycles and the number of shortcuts is 2L − 2 = NL − 3,
this subgraph is composed of three disconnected trees. Indeed,
nodes i = 0, 2L−1, and 2L belong to the three different trees.
We call these the root nodes. Here the graphs isomorphic to
these trees and having root nodes i = 0, 2L−1, and 2L will
be called the skeletons Ta(L), Tb(L), and Tc(L), respectively.
Clearly, Ta(L) and Tc(L) are also isomorphic to each other,
Ta(L) � Tc(L). At L = 2, Ta(2) is composed of nodes 0 and
3 and the edge between them, Tb(2) is one isolated node
i = 2, and Tc(2) is composed of nodes 1 and 4 and the
edge between them. The skeletons Ta(L), Tb(L), and Tc(L)
for arbitrary L are given recursively as follows. First, we
consider two subgraphs of the sets of nodes {0,1, . . . ,2L−1}

(b)

(a)

FIG. 2. Construction of the skeletons Ta(L), Tb(L), and Tc(L).
Open circles represent the root nodes of the skeletons.

and {2L−1,2L−1 + 1, . . . ,2L} after removing the backbones
from the HN-NP with L generations. By symmetry, both
subgraphs consist of the skeletons Ta(L − 1), Tb(L − 1),
and Tc(L − 1) [Fig. 2(a)]. Here the root nodes of the
latter subgraph are i = 2L−1 [for Tc(L − 1)], 3 × 2L−2 [for
Tb(L − 1)], and 2L [for Ta(L − 1)]. Note that the skeletons
Ta(L), Tb(L), and Tc(L) are given by adding the two long-range
edges {0,3 × 2L−2} and {2L−2,2L}, and taking into account the
connection of node 2L−1 [Fig. 2(b)], we have

Ta(L) � Tc(L) � R1(Ta(L − 1),Tb(L − 1)), (1)

Tb(L) � R2(Tc(L − 1),Tc(L − 1)), (2)

where the operation R1(x,y) adds the edge between root nodes
of the skeletons x and y, and R2(x,y) merges two root nodes
of the skeletons x and y into one.

We now calculate the mean size of a cluster including the
root node (the root cluster size) for each skeleton. We denote
the root cluster sizes of Ta(L) [�Tc(L)] and Tb(L) by sa(L) and
sb(L), respectively. Because of the recursive structure [Eqs. (1)
and (2)] of the skeletons, the root cluster sizes sa(L) and sb(L)
also satisfy recursive relations:

sa(L + 1) = sa(L) + psb(L), (3)

sb(L + 1) = 2sa(L) − 1, (4)

where the initial conditions are sa(2) = 1 + p and sb(2) = 1.
Then, we find that

sa(L) = 1

2
+ (1 + √

1 + 8p)L+1 − (1 − √
1 + 8p)L+1

2L+2
√

1 + 8p
, (5)

sb(L) = 1 + (1 + √
1 + 8p)L − (1 − √

1 + 8p)L

2L
√

1 + 8p
. (6)

For L � 1, we obtain sa(L) ∝ NL
ψ skeleton

root (p), where

ψ skeleton
root (p) = log2(1 +

√
1 + 8p) − 1. (7)

We expect ψ skeleton
root (p) = ψ skeleton

max (p) because the roots are
hubs. In fact, we performed Monte Carlo simulations for the
bond percolation on the skeletons. Our numerical result of
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FIG. 3. (Color online) (a) Order parameter m(NL; p) = smax(NL; p)/NL and (b) fractal exponent ψ(NL; p). The numbers of generations L

are 19 (black-diamond), 18 (red-circle), 17 (green-square), 16 (blue-triangle), 15 (open-diamond), and 14 (open-circle). The vertical solid line
and dashed line indicate pBCZ

c1 and pBCZ
c2 , respectively. In (b), the fractal exponent ψ skeleton

root (p) of the skeleton given by Eq. (7) is shown by the
thick-dashed line.

ψ skeleton
max (p) shows a good correspondence with Eq. (7) except

near p = 0 (not shown). According to Eq. (7), ψ skeleton
root (p)

increases continuously from ψ skeleton
root (0) = 0 to ψ skeleton

root (1) =
1. This means that the subsystem consisting only of the
shortcuts is in the critical phase for all p( �= 0,1), like the
growing random tree [15]. Because the HN-NP is obtained
by adding the backbones to the skeletons, the clusters in the
skeletons become larger. Therefore, the entire system permits a
critical phase even for infinitesimal p, i.e., the nonpercolating
phase does not exist except at p = 0.

IV. NUMERICAL CHECK

In the previous section, we evaluated the root cluster size
of the skeleton to show that its fractal exponent ψ skeleton

root (p)
takes a nonzero value for all p > 0. Because the skeleton is
just a subgraph of the HN-NP, ψ skeleton

root (p) is a lower bound
for the fractal exponent of the largest cluster of the HN-
NP ψHN−NP

max (p), i.e., ψ skeleton
root (p) ≈ ψ skeleton

max (p) � ψHN−NP
max (p).

For bond percolation on the HN-NP, ψHN−NP
max (p) > 0 when

p > 0, implying that pc1 = 0. To check our prediction, we
performed Monte Carlo simulations of bond percolation on
the HN-NP. The number of generations is L = 13,14, . . . ,20,
and the number of percolation trials is 100 000 for each p.

Figures 3(a) and 3(b) show the results for the order
parameter m(NL; p) and the fractal exponent of the largest
cluster ψHN−NP

max (NL; p), respectively. Here the fractal exponent
ψHN−NP

max (NL; p) at a finite generation L is evaluated as

ψHN−NP
max (NL; p) ≈ log smax(NL+1; p) − log smax(NL−1; p)

log NL+1 − log NL−1
.

(8)

We also plot the fractal exponent ψ skeleton
root (p) of the skeleton

[Eq. (7), shown as the thick-dashed line] and pBCZ
c1 and pBCZ

c2
(shown as vertical lines) in Fig. 3.

From Fig. 3(b), we see that ψ skeleton
root (p) is actually the lower

bound of ψHN−NP
max (p), implying that pc1 = 0. In particular,

ψHN−NP
max (NL; p) coincides with ψ skeleton

root (p) for p � 0.26 (ex-
cept near p = 0, where finite-size effects are not negligible).
For p � 0.26, ψHN−NP

max (NL; p) is considerably greater than
ψ skeleton

root (p), and reaches unity at p = pBCZ
c2 . At a glance, in the

large-size limit, ψHN−NP
max (NL; p) seems to change continuously

with p < pBCZ
c2 . However, we speculate that in the large-size

limit ψHN−NP
max (NL; p) (i) coincides with ψ skeleton

root (p) in the
entire region below pBCZ

c1 , (ii) jumps to a higher value at
p = pBCZ

c1 , and (iii) increases monotonically up to unity for
pBCZ

c1 < p � pBCZ
c2 . The coincidence between ψHN−NP

max (p) and
ψ skeleton

root (p) for p < pBCZ
c1 means that the partial ordering

[in the sense that the largest cluster is O(Nα) with α < 1]
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FIG. 4. (Color online) (a) Cluster size distribution ns(NL; p) at p = 0.16, 0.26(<pBCZ
c1 ), and 0.36(>pBCZ

c1 ), from left to right. (b) Scaling
result for ns(NL; p) at p = 0.20(<pBCZ

c1 ), 0.32, and 0.35(>pBCZ
c1 ), from right to left. The numbers of generations L are 19 (black-diamond), 18

(red-circle), 17 (green-square), 16 (blue-triangle), 15 (open-diamond), and 14 (open-circle).
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in this region is essentially governed by the shortcuts. Because
Boettcher et al. [20] considered renormalization of the con-
necting probability of consecutive points of the backbones,
we would expect their first critical probability pBCZ

c1 to be
the probability above which the backbones become relevant.
Thus, we expect that there is a transition between critical
phases, in the sense that the fractal exponent jumps, implying
a qualitative change in the criticality, while it is very difficult
to judge whether such a transition exists or not by finite-size
simulations. Such a jump in the fractal exponent has already
been observed in site-bond percolation on the decorated (2,2)
flower [21]. In addition, our numerical result shows that
ψHN−NP

max (p) reaches unity smoothly at pBCZ
c2 . This indicates that

the phase transition to the percolating phase is discontinuous,
similarly as in [13].

Finally, we discuss the cluster size distribution function
ns(p) below pBCZ

c2 . Figure 4(a) shows ns(p) for several values
of p with 0 < p < pBCZ

c2 . In the critical phase, we expect a
power law for ns(p):

ns(p) ∝ s−τ (p), (9)

where

τ (p) = 1 + ψmax(p)−1, (10)

and a corresponding scaling form:

ns(NL; p) = N
−ψmax(p)τ (p)
L f

(
sN

−ψmax(p)
L

)
, (11)

where the scaling function f (·) behaves as

f (x) ∼
{

rapidly decaying func. for x � 1,

x−τ (p) for x � 1.
(12)

We tested this scaling for 0 < p � 0.26 and pBCZ
c1 < p <

pBCZ
c2 and obtained excellent collapses [Fig. 4(b)]. We would

also expect ns to be fat-tailed for 0.26 � p < pBCZ
c1 because

ns(p) for the skeletons perfectly obeys Eqs. (9) and (10) via
Eq. (11) for 0 < p < 1 (not shown), and ns is broader when we
add the backbones to the skeletons, i.e., for the original HN-NP.

V. SUMMARY

In this paper, we have studied bond percolation on the HN-
NP. Our results give the two critical probabilities as pc1 =
0(<pBCZ

c1 ) and pc2 = pBCZ
c2 , implying that the system has only

a critical phase and a percolating phase, and does not have
a nonpercolating phase for p > 0. As far as we know, all
complex network models with a critical phase have only the
critical phase and the percolating phase ( [8–11,13–15,19] for
percolation and [12,19,22–27] for spin systems). It will be
challenging to clarify the origin of such universal behavior.
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J. Tobochnik, and P. Érdi, Phys. Rev. E 68, 066104 (2003).
[11] T. Hasegawa, M. Sato, and K. Nemoto, Phys. Rev. E 82, 046101

(2010).
[12] M. Hinczewski and A. N. Berker, Phys. Rev. E 73, 066126

(2006).
[13] S. Boettcher, V. Singh, and R. M. Ziff, Nature Commun. 3, 787

(2012).

[14] T. Hasegawa, T. Nogawa, and K. Nemoto, arXiv:1009.6009.
[15] T. Hasegawa and K. Nemoto, Phys. Rev. E 81, 051105 (2010).
[16] I. Benjamini and O. Schramm, Electron. Comm. Probab. 1, 71

(1996).
[17] R. Lyons, J. Math. Phys. 41, 1099 (2000).
[18] T. Nogawa and T. Hasegawa, J. Phys. A: Math. Theor. 42, 145001

(2009).
[19] A. N. Berker, M. Hinczewski, and R. R. Netz, Phys. Rev. E 80,

041118 (2009).
[20] S. Boettcher, J. L. Cook, and R. M. Ziff, Phys. Rev. E 80, 041115

(2009).
[21] T. Hasegawa, M. Sato, and K. Nemoto, Phys. Rev. E 85, 017101

(2012).
[22] M. Bauer, S. Coulomb, and S. N. Dorogovtsev, Phys. Rev. Lett.

94, 200602 (2005).
[23] E. Khajeh, S. N. Dorogovtsev, and J. F. F. Mendes, Phys. Rev.

E 75, 041112 (2007).
[24] S. Boettcher and C. T. Brunson, Phys. Rev. E 83, 021103

(2011).
[25] S. Boettcher and C. Brunson, Front. Physiol. 2, 102 (2011).
[26] T. Nogawa, T. Hasegawa, and K. Nemoto, Phys. Rev. Lett. 108,

255703 (2012).
[27] T. Nogawa, T. Hasegawa, and K. Nemoto, Phys. Rev. E 86,

030102 (2012).

032810-4

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1103/PhysRevE.66.036113
http://dx.doi.org/10.1103/PhysRevE.66.036113
http://dx.doi.org/10.1103/PhysRevE.64.041902
http://dx.doi.org/10.1103/PhysRevE.64.066110
http://dx.doi.org/10.1103/PhysRevE.64.066110
http://dx.doi.org/10.1103/PhysRevE.68.066104
http://dx.doi.org/10.1103/PhysRevE.82.046101
http://dx.doi.org/10.1103/PhysRevE.82.046101
http://dx.doi.org/10.1103/PhysRevE.73.066126
http://dx.doi.org/10.1103/PhysRevE.73.066126
http://dx.doi.org/10.1038/ncomms1774
http://dx.doi.org/10.1038/ncomms1774
http://arXiv.org/abs/arXiv:1009.6009
http://dx.doi.org/10.1103/PhysRevE.81.051105
http://dx.doi.org/10.1063/1.533179
http://dx.doi.org/10.1088/1751-8113/42/14/145001
http://dx.doi.org/10.1088/1751-8113/42/14/145001
http://dx.doi.org/10.1103/PhysRevE.80.041118
http://dx.doi.org/10.1103/PhysRevE.80.041118
http://dx.doi.org/10.1103/PhysRevE.80.041115
http://dx.doi.org/10.1103/PhysRevE.80.041115
http://dx.doi.org/10.1103/PhysRevE.85.017101
http://dx.doi.org/10.1103/PhysRevE.85.017101
http://dx.doi.org/10.1103/PhysRevLett.94.200602
http://dx.doi.org/10.1103/PhysRevLett.94.200602
http://dx.doi.org/10.1103/PhysRevE.75.041112
http://dx.doi.org/10.1103/PhysRevE.75.041112
http://dx.doi.org/10.1103/PhysRevE.83.021103
http://dx.doi.org/10.1103/PhysRevE.83.021103
http://dx.doi.org/10.3389/fphys.2011.00102
http://dx.doi.org/10.1103/PhysRevLett.108.255703
http://dx.doi.org/10.1103/PhysRevLett.108.255703
http://dx.doi.org/10.1103/PhysRevE.86.030102
http://dx.doi.org/10.1103/PhysRevE.86.030102



