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Multistable binary decision making on networks
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We propose a simple model for a binary decision making process on a graph, motivated by modeling social
decision making with cooperative individuals. The model is similar to a random field Ising model or fiber
bundle model, but with key differences in behavior on heterogeneous networks. For many types of disorder
and interactions between the nodes, we predict with mean field theory discontinuous phase transitions that
are largely independent of network structure. We show how these phase transitions can also be understood by
studying microscopic avalanches and describe how network structure enhances fluctuations in the distribution of
avalanches. We suggest theoretically the existence of a “glassy” spectrum of equilibria associated with a typical
phase, even on infinite graphs, so long as the first moment of the degree distribution is finite. This behavior
implies that the model is robust against noise below a certain scale and also that phase transitions can switch from
discontinuous to continuous on networks with too few edges. Numerical simulations suggest that our theory is
accurate.
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I. INTRODUCTION

Over the past decade there has been an explosion of
interest in the statistical physics community in the behavior
of simple statistical models on networks. These models often
lead to insight about qualitative behavior in social systems
as random graphs are a low-order approximation to realistic
social networks [1,2]. Decision making processes have long
been studied as a simple example of such an application. The
voter model [3], along with variations with nonlinearities [4]
or other complications [5,6], is a famous example, although
it is only a model of consensus building. The Axelrod model
is an alternative model that exhibits equilibria with a diversity
of opinions [7–10]. Other spin models or agent-based models
have been proposed to study financial markets [11,12].

Many of the above models do not predict a key phe-
nomenon: the presence of shocks, catastrophes, and discon-
tinuous phase transitions as external parameters are slowly
tuned. Oftentimes, entirely new models have been proposed
to account for this phenomenon [13–15]. More interesting,
however, is the proposal that the random field Ising model, well
known for hysteresis and discontinuous phase transitions [16],
can be used to model this phenomenon in social science
[17–19]. A similar model called the fiber bundle model, used
to study the breakdown of some materials, also has similarly
promising features [20,21]. Similarities between the fiber
bundle model at a phase transition and the behavior of financial
markets have also been noted [22]. Other recent models have
attempted to discuss disorder-induced phase transitions of
opinion dynamics, using disorder in the interactions between
individuals [23].

In this paper we propose a very simple model for a
binary decision making process on a network. Our model is
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similar to the random field Ising model in a global magnetic
field, but with some important differences that make our
model nearly exactly solvable on heterogeneous graphs. A
preliminary mean field analysis of the model predicts disorder-
induced discontinuous phase transitions and hysteresis. We
then provide a microscopic justification for mean field theory
as well, describing the microscopic dynamics of binary
decision making in terms of avalanches. We also describe how
fluctuations in the sizes of avalanches can scale with the size of
the network on certain heterogeneous networks with fat tails.

Most interestingly, we will show that there is an infinite
spectrum of equilibria in the large graph limit. This is not
surprising because the random field Ising model has spin
glasslike characteristics, often enhanced on networks [24–26].
Since our model does not admit a Hamiltonian and free energy,
the glassy behavior of the binary decision model will be
characterized by the presence of this spectrum of equilibria.
We will then use this spectrum of equilibria to justify two
phenomena: the robustness of the binary decision model to
small fluctuations and the possibility that network structure
can suppress a discontinuity in the phase transition.

The outline of our paper is as follows. In Sec. II we
describe the binary decision model and provide some intuitive
justification. In Sec. III we describe a mean field analysis of
the model, beginning with an exactly solvable case that has
discontinuous phase transitions. We then discuss numerical
simulations, confirm that the model is roughly independent
of the network structure, and discuss fluctuations in equilibria
due to small network sizes. Section IV describes avalanche
dynamics and provides a microscopic explanation for the
independence of the mean field theory on network structure.
In Sec. V we describe multistability, which is the appearance
of an exponential number of equilibria. We propose this
phenomenon first through a heuristic argument and then
through a more rigorous cavity calculation. We conclude the
paper with a discussion of basic consequences of multistability.
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II. BINARY DECISION MODEL

In this section we introduce the binary decision model,
justifying its use as a simple model for equilibrium social
behavior. We begin by approximating that individuals interact
via a social network, which can be described as an undirected
graph G consisting of a vertex set V and edges E. We define
N = |V |, i.e., there are N nodes in the graph. The number of
edges of a given node v in the graph is denoted by kv; in mean
field theory, we will often group together all nodes with the
same number of edges, as is often done [1]. With each node
v in the graph, we associate a binary variable xv ∈ {0,1}. For
example, xv = 0 may mean that the individual is uninterested
in participating and trading in a given economic sector, while
xv = 1 means the opposite; alternatively xv = 0 could model
that an individual does not have an active account for a social
media service, with xv = 1 the opposite. Each node will decide
its state, 0 or 1, by comparing an internal field, which we label
sv , to an external (global) field p [27]:

xv = �(sv − p). (1)

For example, if we think of p as the external price of some
good, then sv represents the effective price at which buyer v is
willing to buy: When sv > p, xv = 1 and the buyer is actively
buying; when sv < p, xv = 0 and the buyer is not actively
buying.

In order to fully specify the model we thus simply need to
describe how to determine sv . Our formulation of the binary
decision model is to assume that

sv ≡ Pvh(qv), (2)

where Pv is some internal variable, h is a monotonically
increasing function, and

qv = P (xu = 1|uv ∈ E) (3)

simply represents the fraction of neighbors of v that are in
state 1. Note that we will use P (· · · ) to denote probability
throughout this paper. We are free to rescale Pv so that h(0) = 1
and we will assume so for the remainder of the paper. Note
that we will always assume that h, Pv , and p are non-negative.
Note that under the identifications

p = ep+ , (4a)

Pv = eP+v , (4b)

h(q) = eh+(q), (4c)

we can formally write the binary decision model as

xv = �(h+(qv) + P+v − p+) (5)

since the exponential is a monotonically increasing function.
To understand the choice above, it is helpful to recast the

problem temporarily in the language of economics. Suppose
that p represents some globally observed price (or, more
abstractly, utility parameter); then Pv represents the price or
utility that node v believes is the value of existing in state
1. The key point of this model is that the effective value
of Pv is multiplied when neighbors of v are also in state 1.
For example, a social media service (where P represents a
utility, not a specific price) is far more valuable to its users
when there are many other users. Similarly, stock traders may
base much of their valuation of a stock based on what they

believe the rest of the market is doing. Therefore, this binary
decision model represents social scenarios where individuals
are making a binary decision based on comparing the utility of
two options, when the utility of one option is dependent on the
behavior of their neighbors. Furthermore, the decision making
is cooperative in the sense that if node v switches from xv = 0
to 1, the probability that any neighbor of v is in state x = 1
is nondecreasing. This is in contrast to antagonistic decision
making, where the probability that any neighbor of v is in state
x = 1 is nonincreasing after v switches state. In this paper we
consider only the cooperative case, where the individuals tend
to make the same decisions as their neighbors.

The argument can and has been made [18] that an alternative
choice

sv = Pv + J
∑

(uv)∈E

xu, (6)

which directly results in the famous random field Ising model,
is also worth studying. In fact, note that this model is formally
equivalent to the binary decision model on graphs where all
nodes have the same number of edges for a special choice of
h+(q) = kJq. For the purposes of this paper, we will stick with
Eq. (2), which leads to simpler calculations. We should note,
however, that there is one major drawback to a choice such as
this: As far as we can tell, there is in general no Hamiltonian
function that will result in the binary decision model and this
denies us the use of some of the tools of statistical mechanics.

III. MEAN FIELD THEORY

Let us now turn to mean field theory to solve the binary
decision model and compare to simulations. Our first pass will
demonstrate both how mean field theory can be quite accurate
as well as reveal some of its major drawbacks.

A. Macroscopic solution

Let us define

q = P (xv = 1), (7)

where the average over nodes is over the uniform distribution
over V . Let us also assume that the random variables Pv are
independent and identically distributed (i.i.d.), drawn from a
probability distribution with cumulative distribution function
(CDF) 1 − F (P ) and probability density function f (P ). It is
straightforward to see that

q = P [h(q)Pv > p] = F

(
p

h(q)

)
, (8)

where the mean field approximation that qv = q has been
applied. Equation (8) is the mean field equation describing the
possible equilibria of the system, as described by the single
parameter q. Note that this mean field equation appears to
be independent of the degree distribution of the graph, if we
choose to take this into account, since

qk = P (xv = 1|kv = k) = P (xv = 1) = q. (9)

The middle equality above is a consequence of the fact that in
mean field theory, every edge points to the same mean field
node, i.e., every edge contributes the same factor of q. There
are cases where this approximation will break down and we
will return to this at the end of the paper.
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FIG. 1. (Color online) Graphical method of solving Eq. (8) in various cases: (a) a case with one solution, (b) a critical point, and
(c) a bistable case with three solutions. The closed circles represent equilibria that are stable and the open circles represent equilibria that are
unstable; the half-closed circle represents a marginal point.

We are most interested in the case where there are
multiple equilibria, i.e., where Eq. (8) has multiple solutions.
Graphically, it is clear how to approach this problem, as
shown in Fig. 1. Inspired by this approach, we can also
straightforwardly analyze it analytically. Since F is a CDF,
we have 0 � F � 1. Because we must have 0 � F (q = 0)
and 1 � F (q = 1), there must be some q∗ for which Eq. (8)
is true. Furthermore, let us consider the behavior of F near
this point. Suppose that dF/dq > 1, which means that F < q

for q just smaller than q∗ and F > q for q just larger than
q∗. However, given the constraints at q = 0 and 1, we see
that there must be at least two other points at which q = F ,
implying the existence of at least three solutions to Eq. (8). We
conclude that if

dF (p/h(q))
dq

∣∣∣∣
q=q∗

= f

(
p

h(q∗)

)
ph′(q∗)

h(q∗)2
≡ α > 1, (10)

then we have multiple equilibria. In a later section we will find
a simple microscopic interpretation for α as the probability
that a spontaneous flip in any node’s state will cause one of
its neighbors to also flip. The stability criterion α < 1 follows
from the condition that an avalanche have finite expected size.

Now let us consider what happens as we change p. In
particular, suppose we increase p to some p = pc for which

f

(
pc

h(q∗)

)
pch

′(q∗)

h(q∗)2
= 1. (11)

Then we conclude that passing through pc in the direction
that decreases the left-hand side of Eq. (11) corresponds
to the disappearance of a pair of fixed points. In particular,
if the solution at q∗ disappears, it must discontinuously jump
to another point. This is the hallmark of a discontinuous phase
transition. It is not always the case that a distribution of F (P )
and an interaction h(q) will allow such a discontinuous phase
transition, but quite often discontinuous phase transitions do
occur. Essentially, increasing the value of h(q) makes the
model more and more likely to admit a discontinuous phase
transition and subsequently increase the size of the jump at the
transition.

B. Exactly solvable case

Let us look at a sample of an exactly solvable version of
this model to the level of approximation we have just studied.
We will take

h(q) = 1 + Aq (12)

and

F (P ) =
⎧⎨
⎩

1, P < P0

P0 + 1 − P, P0 < P < P0 + 1
0, P > P0 + 1.

(13)

It is easy to check when q = 0 is a solution: This occurs
when F (p/h(0)) = 0 [or F (p) = 0] or p � P0 + 1. Further,
q = 1 is a solution if F (p/(1 + A)) = 1 or p < (1 + A)P0.
For 0 < q < 1, solutions occur when

q = 1 + P0 − p

1 + Aq
, (14)

which can easily be solved using the quadratic formula to give

q = 1

2

[
P0 + 1 − 1

A
±

√(
P0 + 1 + 1

A

)2

− 4p

A

]
. (15)

The important feature of Eq. (15) is the square root, which will
become imaginary at price

pc = A

4

(
P0 + 1 + 1

A

)2

. (16)

There are three distinct qualitative possibilities for the phase
diagram. To understand these possibilities, it will suffice to
consider q at p = pc, which is

qc = 1

2

(
P0 + 1 − 1

A

)
. (17)

If qc > 1, which occurs when P0 > 1 + A−1, then we know
that only one branch of physical solutions exists (other than
q = 0 or 1) and this branch has a positive slope in the pq

plane, connecting p = (1 + A)P0 and p = P0 + 1. If qc < 0,
then one branch of physical solutions exists, with negative
slope, connecting the same two points. Otherwise, we see that
qc is a physical value and therefore is a valid point in parameter
space; in particular, there are two branches of allowed solutions
(other than q = 0 or 1). We show examples in Fig. 2.

Physically, we see that depending on the parameters, the
binary decision model has a variety of interesting behaviors.
When A is small enough, there are no discontinuous phase
transitions, suggesting nice behavior. However, when A gets
large enough, discontinuous transitions begin to occur and
when A reaches a critical value, the only stable equilibria
are with the entire graph in state 0 or 1, representing a
hyperpolarized situation.
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FIG. 2. (Color online) Three examples of exact mean field solutions for uniform distributions on Pv displaying qualitatively different
behaviors: (a) P0 = 0 and A0 = 0.5, (b) P0 = 0 and A = 4, and (c) P0 = 3 and A = 1. The solid lines represent stable equilibria and the dashed
lines unstable equilbria; we will understand stability from a microscopic standpoint later.

C. Numerical simulations

We now present numerical simulations of the binary
decision model. In our numerical simulations, we always take
h(q) to have the linear form Eq. (12), although we allow the
coefficient A to vary. We ran simulations over Erdős-Rényi
random graphs, drawn from an ensemble where every possible
edge is equally likely to be included in the graph. We then
repeated simulations on asymptotically scale-free graphs,
generated by a modification of the algorithm of Ref. [28] in
which the added nodes have multiple edges. The algorithm is
particularly easy to implement numerically, generates graphs
that have degree distributions with robust scale-free (ρk ∼ k−ν)
tails, and can generate distributions for an arbitrary exponent
ν > 2. It does have the peculiarity that if each node that is
added has m edges (in the large-N limit), 〈k〉 = 2m, although
this is just signifying that the small-k distribution is not
scale free. Since we are interested in studying the model on
scale-free graphs for any possible effects of nodes with very
large k, this peculiarity is acceptable. We also note that many
of our theoretical results are robust against the details of the
graph ensemble and our simulations confirm this claim.

For our internal P distributions, we generated Pv from ei-
ther uniform distributions over [0,1] or Gaussian distributions
with μ = 1, σ varying around 0.2, and scale-free distributions
with varying exponents and minimum Pv of 1. We chose these
distributions because they represent three different types of
behavior, which could cause our mean field theory approxima-
tions to break down. The uniform distribution has substantial
fractions of nodes with very low Pv; in contrast, the scale-free
distributions have nodes with very large Pv . The Gaussian
distribution tends to cluster nodes around Pv ≈ 1. To observe
bistability if it exists, we began our simulation by starting with
p = 0, then increased p in uniform steps up until some value
pmax, and then decreased p in equal steps back to p = 0.

As a first simulation, we demonstrate that for a given
internal disorder distribution F (P ) and a given h(q), the
mean field theory solution of Eq. (8) is typically a very good
approximation. This is shown in Fig. 3. Note that, typically, the
phase transition does not look as sharp as it occurred because
we are averaging over runs and there are small fluctuations in
the critical value of p due to internal disorder. We emphasize
that the details of the graph ensemble, beyond 〈k〉, appear
to have no effect on the curve q(p). Figure 4 shows the
emergence of a phase transition as the interaction strength A is
increased past a critical value of 1 for the given uniform price
distribution, as shown by both theory and numerics, as well as
some sample distributions where Pv is a Gaussian or scale-free

random variable. In each case, up to the deviations from mean
field theory described above, we see excellent agreement with
the theory, suggesting that for any Pv distribution, mean field
theory will be a good approximation.

While the mean field theory approximation appears to
typically hold, we should point out some key failures. In
particular, there is a noticeable hysteresis effect associated
with the upper branch of the mean field solution near the phase
transition. We also notice that the phase transition appears to
be slightly delayed for smaller values of 〈k〉 and on some
graphs it appears as though there is no discontinuous phase
transition at all. Furthermore, this effect cannot be removed by
increasing N . Both of these phenomena are key signatures of
the advertised multistability and we will return to them later.

D. Finite-size fluctuations from disorder

Let us briefly discuss the fluctuations about mean field
theory due to finite-size effects (but not small 〈k〉 effects).
These fluctuations are simply due to the fluctuations in the
values of the internal fields Pv . To quantitatively estimate their
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N = 4000, k = 10, SF (ν = 2.5)
N = 4000, k = 10, SF (ν = 3.5)
N = 2000, k = 20, SF (ν = 3.5)

N = 1000, k = 20, ER
N = 5000, k = 20, ER
N = 5000, k = 50, ER

FIG. 3. (Color online) Average value of q(p) for a uniform
distribution of prices with A = 2. We averaged over at least 50 trials
for each type of network. The smoother transitions correspond to
graphs with smaller 〈k〉, a fact that we will explain later; note that
there is only a single square (〈k〉 = 50) in the crossover regime,
but many triangles (〈k〉 = 10). Here and in the following figures SF
denotes the scale-free graph and ER denotes the Erdős-Rényi graph.
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FIG. 4. (Color online) Here we show how increasing the
interaction strength in the binary decision model causes the onset of
a discontinuous phase transition in both theory and simulation. Our
simulations for this graph used Erdős-Rényi graphs with 5000 nodes
and 〈k〉 = 20. The distribution of Pv is (a) Gaussian with mean 1 and
standard deviation σ = 0.3, (b) scale free with exponent ν = 3, and
(c) uniform on [0,1]. Note that the discontinuous phase transition
appears smeared out because of fluctuations in the realizations of
disorder; data from individual runs clearly indicate the presence of
discontinuous phase transitions for larger values of A.

size, let us define q = q0 + δ, with q0 the mean field value
predicted by Eq. (8) and δ a small fluctuation. Similarly, let us
denote the CDF of the actual distribution of P , realized on the
graph, by F = F0 + �, with F0 the mean field value and � a
small fluctuation. Then, expanding Eq. (8) to lowest order in
the fluctuations we find

q0 + δ = F0

(
p

h(q0 + δ)

)
+ �

(
p

h(q0)

)

= q0 + αδ + �

(
p

h(q0)

)
, (18)

which implies that

δ = �

1 − α
. (19)
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N = 1000, k = 20, A = 2, uniform, ER
N = 4000, k = 10, A = 2, uniform, SF
N = 2000, k = 10, A = 2, uniform, SF
N = 5000, k = 20, A = 1, uniform, ER

N = 5000, k = 20, A = 0.5, uniform, ER
N = 2000, k = 20, A = 2, Gaussian, ER
N = 800, k = 20, A = 1, Gaussian, ER

FIG. 5. (Color online) We compare the predictions of Eq. (21)
to numerical simulations on a variety of graphs. The last two entries
of the legend refer to the distribution of Pv and the graph type,
respectively. For the data shown, Gaussian distributions have σ = 0.3
and scale-free graphs have ν = 2.5. For clarity, only some of our data
are shown, although we emphasize that the data not shown were
just as good of a fit. Significant deviations come near the onset of
a phase transition; we have removed some of these values near the
critical point when our code is averaging over realizations in different
phases.

The distribution of � is simple to find, although we will
focus only on the variance of the fluctuations, as the higher-
order fluctuations are rapidly suppressed for increasing N .
Since the internal disorder consists of i.i.d. random variables
and for the given value of p and the distribution of Pv the
probability that a node is in state xv = 1 is F0, assuming the
rest of the network to be in a mean field state, we conclude that

Var(�) = Var

(
1

N

∑
v

xv

)
=

∑ Var(xv)

N2

= F0(1 − F0)

N
= q(1 − q)

N
. (20)

This implies that

Var(q) = Var(δ) = q(1 − q)

(1 − α)2

1

N
. (21)

Since this number is typically quite small due to the factor
of 1/N and our theory suggests that this variance is not
dominated by large deviations, we postulate that higher-order
fluctuations will not play an important role. We find that this
relation is obeyed very well so long as we do not approach
α = 1, as shown in Fig. 5.

IV. AVALANCHES

We now turn to a slightly different question, which is a
reinterpretation of our previous mean field analysis on the
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existence of a phase transition. Let us consider a state of
the graph in equilibrium at q∗ = F (p0/h(q∗)). Suppose that
the external field p0 is increased slightly to p, causing only
node v0 to flip. How many other spins will also flip due to the
change of state of v0?

Let us define Q as the probability that one of the vertices v

connected to v0 will flip:

Q = P

(
p

h(qv − 1/kv)
> Pv >

p

h(qv)

)

= F

(
p

h(q)

)
−

〈
F

(
p

h(q − 1/k)

)〉
edges

= F

(
p

h(q)

)
− F

(
p

h(q)

)
+

〈
1

k
f

(
p

h(q)

)
ph′(q)

h(q)2

〉
edges

= α

〈
1

k

〉
edges

. (22)

Now we have to be a bit careful. As noted above, the averaging
occurs over the distribution of nodes that an edge points to,
which is different from the distribution of nodes itself because
nodes with more edges are counted more often: In fact, each
node v is counted kv times in the average 〈· · · 〉edges over nodes
pointed to by an edge. Therefore,〈

1

k

〉
edges

=
∑ kρk

〈k〉
1

k
= 1

〈k〉 , (23)

so we conclude that

Q = α

〈k〉 . (24)

Note that we can in fact make the stronger statement that the
probability for one of v’s neighbors to flip is independent of
the degree of the neighbor.

Let us now denote by n the number of vertices v we expect
to transition to the 0 state. For any given site, this occurs with
probability Q, so

〈n〉 =
〈 kv0∑

j=1

Q

〉
=

∑
ρkkQ = 〈k〉Q = α. (25)

Assuming that Q stays constant, if any new spin flips, then
it too will have the possibility of flipping spins. If we
approximate the new spin as the same as the old spin [29]
then, since the avalanche approximately grows as a birth and
death process, we conclude that the total size of the avalanche
is

〈ntotal〉 ≈ α

1 − α
. (26)

Of course, this formula holds only for α < 1; for α > 1 it is
well known that the birth and death process has an expected
infinite size and for α = 1 it is almost surely finite but with
infinite expected value.

This gives us much new insight into the physical processes
at work behind mean field theory. Looking back at Eq. (11),
we see that reaching a point where α = 1 corresponds to a
phase transition, where we expect a spin avalanche to have
infinite size. Furthermore, we can now analyze the stability
of the fixed points we found earlier: Only the fixed points
where α < 1 are stable. Understanding phase transitions by

considering microscopic avalanche sizes is not new; see, e.g.,
Ref. [18] in the context of the random field Ising model or Refs.
[20,21,30,31] in the context of the fiber bundle model. For our
binary decision model, this calculation helps to give insight
into why the graph structure is seemingly so unimportant in
mean field theory. Even though more connected nodes are
affected more often by spin flips, they are not affected as
much and these effects cancel each other. This would not be
the case in the random field Ising model on a heterogeneous
network, for example, where α itself would obtain an intricate
dependence on the degree distribution. In this sense, our
binary decision model, where h(q) is k independent, is a very
convenient toy model to solve.

Let us also ask about the fluctuations in the size of
avalanches, which we will explore by considering variations in
the size of n, the number of neighbors that one site flipping will
also flip. These fluctuations occur within the same realization
of both graph structure and internal disorder. However, for
simplicity we have included many realizations in our average.
Defining zv = 1 if v flips and 0 otherwise,

Var(n) = 〈n2〉 − 〈n〉2

=
∑

ρk

˝⎛
⎝ k∑

j=1

zj

⎞
⎠

2˛
− α2

=
∑

ρk

*
k∑

j=1

z2
j +

∑
j 
=l

zj zl

+
− α2

=
∑

ρk[kQ + k(k − 1)Q2] − α2

= α(1 − α) + 〈k2 − k〉
〈k〉2

α2. (27)

We see that the graph structure thus plays an important role
in fluctuations of the size of avalanches. This theory is quite
accurate as shown in Fig. 6, although it does seem to break
down very close to a phase transition, as the diverging curves
suggest.

Other work [30,31] considers in more detail the theory
behind avalanche distributions in the fiber bundle model,
which is quite similar to the binary decision model on fully
connected networks. However, there is no general theory of
the distribution of avalanches accounting for heterogeneous
network structure and we have just seen how the variance
of this distribution depends on details of the graph structure.
Determining the full avalanche distribution, accounting for
network structure, is likely intricate even in a mean field
approximation.

V. MULTISTABILITY

In this section we discuss the binary decision model’s most
interesting feature: multistability. By the term multistability
we mean that there is a continuous spectrum of equilibrium
states, even in the N → ∞ limit, so long as 〈k〉 is finite.
Recall that an equilibrium for the binary decision model is
a state where all nodes satisfy the constraint equation that
xv = �(Pvh(qv) − p). Since qv depends on the values of xu

for each neighbor u of node v, it is possible that there are
multiple possible solutions to the constraint equation; thus
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FIG. 6. (Color online) We compare theory vs numerics for the
predicted variance in the number of nodes that change state based
on the change of a single node. The deviations appear to become
much more significant as we approach a phase transition, perhaps
due to loopy effects in the graph (where our avalanche theory breaks
down). In the data shown, scale-free graphs we used had ν = 2.5 and
Gaussian Pv distributions had σ = 0.2. We generated more data that
appear very similar, but have not shown all of it for clarity.

multiple equilibria exist. We have trivially seen that this can be
true by the existence of two phases, but here we are interested
in the possibility that multiple equilibria may exist for any
given phase.

Due to the internal disorder and the similarity to the random
field Ising model, it is not surprising that glasslike behavior
arises, although the lack of a formal Hamiltonian or free energy
makes it challenging to classify the binary decision model
as a glass. Instead, we will call the behavior multistability.
The goal of this section is to propose multistability from
a theoretical standpoint. We will then show it exists in our
numerical simulations and comment on the implications of
this phenomenon.

A. Spectrum of equilibria

Let us approximate the probability that a pair of spins will
satisfy the xv constraint if they are both in either state 1 or
state 0. Note that it will never be the case that we would
need to consider the possibility that a pair of nodes could flip
between 10 and 01 because the constraint equation implies that
decisions are always made cooperatively [32]. We will assume
that the remainder of the graph is treated within the mean field
approximation. The probability that one node flipping will flip
another node has been calculated in the preceding section in
Eq. (24). Thus we may calculate the probability that the pair
can be in either state 1 or 0 by computing the probability node

u flipping flips node v and vice versa:

P (pair is mutually 0 or 1) =
(

α

〈k〉
)2

. (28)

Since there are N〈k〉/2 edges in the graph, we thus approxi-
mate the number of equilibria as being

Nequilibria ∼ 2Nα2/2〈k〉. (29)

However, we now need to take into account the expected
value of the avalanche caused by the pair flip. This can be
accounted for by roughly multiplying by a factor of (1 − α)−1,
corresponding to the expected size of the avalanche caused by
one of the nodes. Thus we find that given a pair of nodes, we
should expect that flipping them will cause a change of

�qone pair ∼ 1

N

2α2

(1 − α)〈k〉2
, (30)

which leads to a width of the equilibrium spectrum that is finite
even in the N → ∞ limit, so long as 〈k〉 is finite:

�q ∼ α2

(1 − α)〈k〉 . (31)

As discussed earlier, we ran simulations of the binary
decision model by first increasing p from a state of all 1 and
then decreasing p from states with many 0. This means that we
can observe, quantitatively, the range of spectrum of equilibria
by observing the difference between the value of q on the
upward sweep versus the downward sweep. Figure 7 shows
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N = 1000, k = 10, A = 2, uniform, SF
N = 5000, k = 50, A = 2, uniform, ER
N = 5000, k = 30, A = 2, uniform, ER
N = 5000, k = 10, A = 2, uniform, ER
N = 5000, k = 20, A = 1, uniform, ER

N = 5000, k = 20, A = 0.5, uniform, ER
N = 2000, k = 20, A = 2, Gaussian, ER

FIG. 7. (Color online) Comparison of the numerically determined
width of the equilibria spectrum to Eq. (31). We see that the theory
is very accurate even near a phase transition (these are the points
with larger �q). We have only shown a subset of the data for clarity.
In the data shown, scale-free graphs have ν = 2.5 and Gaussian Pv

distributions have σ = 0.2.
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that Eq. (31) is quantitatively correct, despite the incredibly
simple theory we used.

Indeed, it should not be so surprising that we found
characteristics of glassy behavior, considering the similarity
of this model to the random field Ising model. Interestingly, it
is unlikely this model is a true spin glass due to its similarity to
the random field Ising model, where it was shown that the spin
glass susceptibility is not divergent [33]. This is perhaps more
of a mathematical technicality than a physically meaningful
statement: In our model, so long as 〈k〉 is finite and α > 0, the
binary decision model is always a multistable glass.

B. Multistability by the cavity method

Since the multistability phenomenon is so fundamental to
our model, let us predict multistability via a second approach:
Thouless-Anderson-Palmer-like equations for xv via the cavity
method [34]. The cavity method is an extension of mean field
theory that is used to understand disordered systems. We pick
a special node in the graph, called the cavity node, and evaluate
the probability that it is in each state, assuming that all of its
neighbors feel the effect of the cavity’s state exactly, with the
remainder of the graph treated at a mean field level. Of course,
this can be extended: An mth-order cavity method could take
into account the reaction of the cavity on nodes up to m edges
away. Note that the approach is also in the spirit of belief
propagation on a tree [35].

To use the cavity method for our problem is straightforward:
We need to make our mean field argument from earlier a bit
more refined, so we will pick a special node v (the cavity) and
explicitly write

xv = �

(
Pv − p

h(qv)

)
(32)

and explicitly determine qv . To find qv , we need to determine
the expected value of a state xu for each u with uv ∈ E. If we
only use a first-order cavity approximation, then ku − 1 of the
edges of u point to nodes with x = q, so we find

xu = �

(
Pu − p

h(q + (xv − q)/ku)

)
. (33)

Averaging over the internal disorder and graph structure, it is
straightforward to show that, assuming that k is large,

P (xu = 1) = qv = F

(
p

h(q)

)
+ α

〈k〉 (xv − q)

= q + α

〈k〉 (xv − q). (34)

Then we find the equation for the cavity node v, assuming
again that k is large enough that we can Taylor expand h(q):

xv ≈ �

(
Pv − p

h(q)
+ ph(q)

h′(q)2

α

〈k〉 (xv − q)

)
. (35)

Now averaging over the internal disorder of Pv , we find that
it may be possible that both xv = 0 and 1 are solutions. The

calculation of how likely this is very simple:

P

(
1 + h′(q)

h(q)

αq

〈k〉 >
h(q)

p
Pv > 1 + h′(q)

h(q)

α(q − 1)

〈k〉
)

≈ f

(
p

h(q)

(
1 + h′(q)

h(q)

αq

〈k〉
))

α

〈k〉
ph′(q)

h(q)2

= α2

〈k〉 + O(α3), (36)

where the O(α3) terms correspond to terms proportional to
the derivative of f . This is precisely what we found earlier,
neglecting the back reaction onto the remainder of the graph
(via avalanches), up to the new terms that have arisen via the
cavity method.

Let us now perform the cavity method to higher orders:
In particular, let us assume that the graph is treelike (at least
locally) and keep track of all the nodes up to a graph distance
of n away from the cavity. The treelike approximation is very
convenient as it allows us to assume that each node feels the
effects of the cavity node v through exactly one neighbor. We
start by considering the case of n = 2; the generalization to
larger n will be very straightforward. The state of the cavity is
given by

xv = �

(
Pv − p

h
(

1
kv

∑
xi

))
(37)

and x1, . . . ,xkv
denote the states of v’s neighbors. The state of

one of the neighbors of v, e.g., x1, is given by

x1 = �

(
P1 − p

h
(

xv

k1
+ (

1 − 1
k1

)
q1

))
, (38)

where q1 corresponds to the fraction of nodes (other than v)
that are neighbors of node 1 and are in state 1. However, note
that if x1 is unknown, we already computed the formula for q1

previously:

q1 = q + α

〈k〉 (x1 − q), (39)

where, as before, q is the fraction of nodes far from the graph.
Now we write, assuming that the number of nodes is large, as
usual,

x1 = �

(
P1 − p

h(q)

{
1 − h′(q)

h(q)

[
α

〈k〉
(

1 − 1

k1

)
(x1 − q)

+ xv

k1

]})
(40)

and using the same argument as before by finding the largest
and smallest possible corrections to the effective value of p,
we conclude that the probability that there is an equilibrium
state with x1 = 1, as well as one with x1 = 0, given xv , is given
by

P (x1 = 0 or 1|xv) = α
α

〈k〉
(

1 − 1

k1

)
+ O(α3). (41)

Note that we have not yet allowed for fluctuations in x0, which
we have assumed is fixed. Also, given this formula, it should
be fairly clear that we could have guessed this answer a priori

032806-8



MULTISTABLE BINARY DECISION MAKING ON NETWORKS PHYSICAL REVIEW E 87, 032806 (2013)

from what we found before, under the assumption that one
node xv is fixed.

Finally, let us return to the question of interest: the
probability that xv can be in both states. We need to compute
the largest and smallest possible values of qv:

P (x1 = 1|xv = 1) = q + α

[
α

〈k〉
(

1 − 1

k1

)
(1 − q) + 1 − q

k1

]
,

(42a)

P (x1 = 0|xv = 0) = q + α

[
α

〈k〉
(

1 − 1

k1

)
(−q) − q

k1

]
.

(42b)

Note that the formula above neglects some of the smaller
corrections due to derivatives in f , e.g., although these could
easily be carried through if needed. We may finally average
over the degree distribution and replace 1/k1 with 1/〈k〉. Using
these equations to find upper and lower bounds on qv , we
finally can conclude, using the same logic as in our earlier
computation, that

P (xv = 0 or 1) = α

[
α

〈k〉 + α2

〈k〉
(

1 − 1

〈k〉
)]

≈ α2(1 + α)

〈k〉 .

(43)

Note that this is also the width �q of equilibria, up to second
order in the cavity method.

Now let us extend this computation to higher orders. If we
have found the width of the spectrum accounting for all nodes
up to a distance n away, assuming the graph is a tree, we can
easily determine the width of the spectrum accounting for all
nodes a distance n + 1 away from xv by simply treating the
neighbors of xv as the cavities and using the result for n. An
analogous computation to the one we did above shows that

�q(n+1) = α

[
α

〈k〉 + �q(n)

]
. (44)

Using the results for �q(1) and �q(2) from before, it is clear
that

�q(n) = 1

〈k〉
n∑

k=1

α1+k. (45)

Summing this series to infinite order, we find that

�q(∞) = α2

(1 − α)〈k〉 , (46)

assuming that α < 1 so that the series is summable. Thus we
see that the cavity method recovers the result we found using
simple logic earlier.

C. Robustness to fluctuations

An important consequence of the spectrum of equilibria
is that the macroscopic model is robust against small per-
turbations in the external field p. To estimate the size ε of
a perturbation in the external field p required to change the
macroscopic state (the value of q) [36], we use the fact that

dq(p)

dp
∼ 1

ε

α2

(1 − α)〈k〉 . (47)

Equation (47) follows directly from basic graphical consider-
ations by considering Eq. (8) and using that if the slope of the
mean field curve is known, then the fluctuations in both the
q and p directions in F (p/h(q)) must be related. Taking an
implicit derivative of Eq. (8), we find that

dq(p)

dp
= − α

1 − α

h(q)

ph′(q)
, (48)

which implies that

ε ∼ α

〈k〉
ph′(q)

h(q)
. (49)

For a generic model, the h-dependent factor in ε is likely O(1)
and so the dominant feature is the α and 〈k〉 dependence.

Equation (49) should be valid only away from a critical
point since we made a linear approximation to relate its
fluctuations in p and q. Near a critical point, nonlinear and
nonanalytic effects in the relation between p and q become
important. Indeed, Eq. (49) predicts that the binary decision
model becomes more robust against small price fluctuations
as we approach a critical point where α = 1, a statement that
is unlikely to be true.

D. Suppression of discontinuous phase transitions

What happens to the fluctuations of multistability as we
approach the critical point? Here the simple linear response
arguments we used above begin to fail. The 1/〈k〉 fluctuations
can become so large on graphs with small values of 〈k〉 that
they can in fact remove the discontinuity in the phase transition.

We can use a simple mean field theoretic argument to justify
this. Let qk denote the fraction of nodes with k edges in state
1 and r the probability that an edge points to a node in state 1:

r ≡ 1

〈k〉
∑

k

kρkqk. (50)

Accounting for possible fluctuations in the number of neigh-
bors of each node that are in state 1, we can find a more precise
expression for qk than we gave in Eq. (9):

qk =
k∑

m=0

k!

m!(k − m)!
rm(1 − r)mF

(
p

h
(

m
k

))
. (51)

For simplicity, let us suppose that k is large enough that
a binomial distribution is well approximated by a Gaussian
distribution, so we have

qk ≈
∫ 1

0

dq√
2πk−1r(1 − r)

e−k(q−r)2/2r(1−r)F

(
p

h(q)

)
. (52)

Certainly when k gets very large, the Gaussian collapses to a δ

function and we obtain qk = F (p/h(r)), independently of k.
However, suppose that the length scale qF of the curvature (in
the variable q) of F (p/h(q)) is comparable to

√
k−1r(1 − r).

Then we see above that fluctuations in the number of nodes
that are actually in state 1 may average over a large enough
region of q in F (p/h(q)) to remove the phase transition.

Since Eq. (51) is far too complicated to analyze in the
regime of interest, where k becomes small, we resort to
estimating numerically whether or not there will be a phase
transition. We begin by determining self-consistent values of
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TABLE I. The theoretical/numerical values for 〈k〉 at which we
expect to see the onset of discontinuous phase transitions (into the
q = 0 state) for the uniform distribution. Because these predictions
require a precise understanding of multistability at the critical point,
they should not be taken too seriously: We believe a standard deviation
of ±2 on each data point is not unreasonable (as we can only make
scale-free graphs with even 〈k〉 with our algorithm).

Graph type A = 2 A = 3 A = 4

scale-free, γ = 2.5 20/20 14/14 10/10
scale-free, γ = 3 18/20 12/14 10/10
scale-free, γ = 4 18/20 12/14 10/10
Erdős-Rényi 18/18 13/13 10/10

r , as calculated by using Eqs. (50) and (51). It is simplest
to do this by plotting the function r and then the function
determined by Eqs. (50) and (51) and looking for intersections.
This graphical method also has the advantage that is easy to add
in the effects of 1/〈k〉 fluctuations by simply adding 1/2〈k〉 to
the right-hand side of Eq. (50). This follows from considering
multistability as being caused by fluctuations of order α/2〈k〉:
In fact, we can derive (31) in this way if we use the mean field
expression for F (p/h(q)). The consequences of accounting
for small 〈k〉 effects can become quite serious near a phase
transition. Coupled with the effect of few edges smoothing out
the weighting function F (p/h(q)) in the mean field equation,
we find that theoretically we can see the disappearance of
discontinuities in the phase transitions.

This gives us a crude way to estimate numerically whether
a graph will admit a discontinuous or continuous phase transi-
tion. In Table I we perform the procedure above, assuming that
F (P ) is the uniform distribution, and estimate the value of 〈k〉
for Erdős-Rényi or scale-free graphs for which we should see
the onset of shocks and discontinuous transitions. A sample of
what the adjusted mean field curve looks like, near the mean
field critical point, with low 〈k〉 is also shown in Fig. 8. Numer-
ical estimates suggest that this transition should be fairly sharp
and we observed this numerically as well. Because we do not

0 0.2 0.4 0.6 0.8 1

0

0.5

1

q

ideal
k

k = 10

FIG. 8. (Color online) Sample of how small network effects alter
the mean field equation, assuming that F (P ) corresponds to the
uniform distribution, the network is Erdős-Rényi, and h(q) = 1 + 2q.
The given value of p = 1.16 is quite close to the mean field critical
point pc = 1.125. We have added the 1/2〈k〉 correction to the finite
〈k〉 curve. Note that, while for the ideal case the only solution is
q = 0, the small 〈k〉 curve still intersects the line at a positive value
of q, i.e., the phase transition has not occurred yet.

have a precise way of determining whether a phase transition
has been discontinuous other than simply to observe the size
of the change in q at each step forward in p, these results
should be taken as at most semiquantitative. However, they do
suggest that we have correctly identified the mechanism for
the disappearance of discontinuous phase transitions.

Of course, there remains the question of whether or not
these fluctuations actually merge the two phases together. This
is a question beyond the scope of the simple arguments of
this paper. We suggest that the answer may be that it depends
on the network, the distribution of the disorder F (P ), and/or
the interaction strength h(q). For example, in the case with
uniform F (P ), there is a very sharp discontinuous phase
transition as the value of p is lowered from above to below
the maximum allowed Pv . This transition is hard to remove
because the coefficient of the 1/〈k〉 fluctuations is in fact 0
(as all nodes are in xv = 0) and so network fluctuations will
not affect this transition. Thus, at least for these systems, we
conclude that there must be two distinct phases, although one
of the transitions between the two phases may be continuous.

VI. CONCLUSION

We have presented the binary decision model and explored
its major aspects: understanding from both a macroscopic and
microscopic view the mean field solutions and fluctuations
of basic quantities and then understanding the glassy multi-
stability phenomena and the consequences of a spectrum of
equilibria. The simple form of the decision making, as well as
the interactions, allowed us to nearly exactly solve this model
with very simple, physically motivated arguments. However,
there are many questions about this model that are still open.
First, it is unknown how robust the basic features of this model
are to modifications: for example, heterogeneity among nodes
in the interactions h(q) or thermal random behavior among
the nodes. Second, while it is unlikely that the multistability
effect is a true spin glass effect, it is an interesting question
whether or not this model’s dynamics at finite temperature
would exhibit aging, another characteristic feature of a glass.
Third, an investigation of the model on nonrandom graphs
such as hypercubic lattices or on graphs with many loops may
help shed light on the nature of multistability, as we mentioned
earlier.

It appears that on heterogeneous networks, the binary
decision model has fundamentally different behavior from
the random field Ising model despite the similarity in the
motivation between the two models. One can intuitively see
this as follows: For the random field Ising model with coupling
J , using the additive formulation, the equation of state is

xv = �(Pv + Jkvqv − p). (53)

This equation explicitly depends on kv , the number of edges of
v. Therefore, we expect the mean field equations to depend on
graph structure, unlike in the binary decision model. Further
study of qualitative differences in behavior between these two
models, as well as modified fiber bundle models with the ability
to regenerate nodes as p is decreased, is a worthwhile direction
for further study.

Finally, it is important to understand the ways in which
this model can be tested against empirical data. In general,
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this is quite challenging, but let us conclude by discussing
some features of this model that may be observable. One of
the most interesting features of our model is the remarkable
robustness of our results against the degree distribution of the
graph. For example, the probability that a node is involved in
an avalanche is independent of its degree. Further, given 〈k〉,
one could compare the width of the spectrum of equilibria
to the typical size of avalanches and should find the same
value of α from both measurements. There are two important
drawbacks to this approach. First, trying to show the robustness
of opinion dynamics against graph structure may require better
knowledge of the social graph than can be obtained. Second, it
is unclear how robust our formulas are to model modifications:
For example, correlations between Pv and kv may restore the
degree distribution into many of our results.

The most important signature to look for in empirical
data is multistability. This is unlikely to be a peculiarity
of our model’s precise formulation and discovery of such
behavior would confirm the importance of emphasizing glassy
features in opinion models. We leave further understanding
of experimental signatures of this model, and related ones, to
future work.
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